Buildings of Excellence
Design Competition

Cost Data Presentation - March 2021
Overview

• Data Collection and Strategies
• Aggregated Cost Analysis
• Project Specific Analysis
• Observations
• Presentation of Appendices
Buildings of Excellence Design Completion Overview Presentation

Introductory overview is provided in a separate presentation

- Program Goals
- Project Requirements
- Awarded Project Overview
Cost Data Collection

Cost data being collected goes beyond just project budgets

Financials
- Overall building first cost
- Overall building incremental first cost
- Performance related tax credits
- Non-Performance related tax credits
- NYSERDA incentives
- Project Soft costs vs. Hard Costs
- Performance related costs breakouts
 - Space Conditioning
 - Envelope
 - DHW
 - Appliances
 - Engineering and Design

Building Attributes
- System types and classifications
- Performance path
- Construction methods
- Critical component identification
- Building Height
- Renewables
- # Units (Dwelling, sleeping, congregate, other)
- Sq.Ft.
- All Electric
- Net Zero

Market
- Energy Equity and Affordability
- Disadvantaged Communities
- Equity and Inclusivity
- Climate Justice
- Environmental Justice Area
- LMI/Market Rate
- Regional Economic Development Council (REDC)
- Building use

Building Performance
- Source energy with renewables
- Source energy without renewables
- Annual predicted energy cost
- Annual predicted demand charges
- Annual predicted operational cost

Cost data is updated monthly and published on the Buildings of Excellence Winners page
Building Systems by Project Count

Buildings of Excellence Space Conditioning Distribution

- GSHP
- Minisplit - ASHP
- Multisplit - ASHP
- VRF - ASHP
- VRF - GSHP

Buildings of Excellence DHW Distribution

- ASHP
- ASHP w/ CO2
- GSHP
- Solar Thermal
- Fossil Fuel

Note: Charts show Round 1 and Round 2 Projects

Acronyms
- GSHP – Ground Source Heat Pump
- ASHP – Air Source Heat Pump
- VRF – Variable Refrigerant Flow
- DHW – Domestic Hot Water
- CO2 – Carbon Dioxide
Building Attributes by Project Count

Buildings of Excellence Height Classification Distribution

- Super Tall
- High Rise
- Mid Rise
- Low Rise

Buildings of Excellence Performance Path Distribution

- ASHRAE
- ERI
- PHI
- PHIUS

Note: Charts show Round 1 and Round 2 Projects
Building Attributes by Project Count

Buildings of Excellence Regional Distribution
- Capital Region
- Central NY
- Finger Lakes
- Mid Hudson
- Mohawk Valley
- NYC
- Southern Tier
- Western NY

Buildings of Excellence Structural Envelope Distribution
- Block and Plank
- Block and Steel Joists
- Cast in Place Concrete
- Gut Rehab
- ICF and Concrete Deck
- ICF and Plank
- Modular
- Panelized
- Steel and Plank
- Structural Steel
- Wood Frame
- Wood Frame Over Podium

Note: Chart shows Round 1 and Round 2 Projects

Acronyms
ICF – Insulated Concrete Form
Percent Incremental Cost Before and After Incentives and Tax Credits for Round 1 Awarded and Round 2 Buildings of Excellence Projects

Project Incremental Cost (%)

Incremental Cost (Before Tax Credits and Incentives) - All Electric - BOE1
Incremental Cost (Before Tax Credits and Incentives) - All Electric - BOE2
Incremental Cost (Before Tax Credits and Incentives) - Fossil Fuels - BOE1
Incremental Cost (After Credits and Incentives) - All Electric - BOE1
Incremental Cost (After Credits and Incentives) - All Electric - BOE2
Incremental Cost (After Credits and Incentives) - Fossil Fuels - BOE1

Stacked data points represent incremental cost before and after incentives and tax credits for a project.

Project Cost Data is preliminary and subject to change.
Project Incremental Cost and Performance Based Incentives, Awards and Tax Credits /Dwelling Unit with Total Project Cost /Dwelling Unit ($) by Project

- Project Incremental Cost (before Tax Credits and Incentives) / Dwelling Unit
- Project Incentives Awards and Tax Credits/ Dwelling Unit
- Project Cost Before Incentives Awards and Tax Credits/ Dwelling Unit

Outlier project – 4-unit Market Rate Gut rehab

Indicators:
- Incremental Cost
- Incentives, Awards and Tax Credits

Categories:
- All Electric
- Fossil Fuels
Average of Percent Incremental Cost (Before Tax Credits and Incentives) - 4.24%
Average of Percent Incremental Cost (After Credits and Incentives) - 8.44%
Average of Annual Energy Cost/Sq.Ft. - $2.59

Building Height Categories:
- Super Tall = 40+ stories
- High Rise = 26-39 stories
- Mid Rise = 4-25 stories
- Low Rise = 1-3 stories

Note: Project annual energy cost per sq.ft. represents dollars paid to utility for energy net of renewable generation.
Percent Incremental Cost Before and After Incentives and Tax Credits and Annual Energy Cost by Space Conditioning System

Project Cost Data is preliminary and subject to change

Lowest incremental cost before credits and incentives – higher after with highest energy cost

Note: Project annual energy cost per sq.ft. represents dollars paid to utility for energy net of renewable generation

Acronyms
GSHP – Ground Source Heat Pump
ASHP – Air Source Heat Pump
VRF – Variable Refrigerant Flow
Note: Project annual energy cost per sq.ft. represents dollars paid to utility for energy net of renewable generation
LIHTC, historic tax credits, property tax abatements, and other non-performance based financial benefits are EXCLUDED from this presentation.
Envelope and HVAC System Cost Per Sq.Ft. Upstate and Downstate by Project Structural Envelope

- **Avg. HVAC Cost Per Sq.Ft.**
- **Avg. Envelope Cost Per Sq.Ft.**
- **Avg. Total Project Cost Per Sq.Ft.**
- **Avg. Total Project Cost Per Sq.Ft. AFTER Incentives and Tax Credits**

Downstate = 5 boroughs

Structural Envelope

- **Block and Plank**
 - HVAC: $15
 - Envelope: $64
 - Total: $79

- **Cast in Place Concrete**
 - HVAC: $23
 - Envelope: $291
 - Total: $314

- **ICF and Plank**
 - HVAC: $12
 - Envelope: $38
 - Total: $50

- **Structural Steel**
 - HVAC: $24
 - Envelope: $61
 - Total: $85

- **Gut Rehab**
 - HVAC: $2
 - Envelope: $114
 - Total: $116

- **ICF and Concrete Deck**
 - HVAC: $17
 - Envelope: $97
 - Total: $114

- **Wood Frame**
 - HVAC: $7
 - Envelope: $145
 - Total: $152

- **Structural Steel**
 - HVAC: $16
 - Envelope: $133
 - Total: $149

Acronyms

- **ICF** – Insulated Concrete Form
- **HVAC** – Heating Ventilation and Air Conditioning

Project Cost Data is preliminary and subject to change
HVAC System and Envelope Cost Per Sq.Ft. Upstate and Downstate by Project Space Conditioning System

Avg. HVAC Cost Per Sq.Ft.

Avg. Envelope Cost Per Sq.Ft.

Avg. Total Project Cost Per Sq.Ft.

Avg. Total Project Cost Per Sq.Ft. AFTER Incentives and Tax Credits

Project Cost Data is preliminary and subject to change.

Space Conditioning System

- **Downstate = 5 boroughs**

- **VRF - ASHP**
 - HVAC Cost/Sq.Ft. $16
 - Envelope Cost/Sq.Ft. $52

- **GSHP**
 - HVAC Cost/Sq.Ft. $17
 - Envelope Cost/Sq.Ft. $31

- **Minisplit - ASHP**
 - HVAC Cost/Sq.Ft. $4
 - Envelope Cost/Sq.Ft. $17

- **Multipsplit - ASHP**
 - HVAC Cost/Sq.Ft. $9
 - Envelope Cost/Sq.Ft. $18

Average HVAC Cost Per Sq.Ft.

- Downstate: $345
- Upstate: $192

Average Envelope Cost Per Sq.Ft.

- Downstate: $332
- Upstate: $172

Average Total Project Cost Per Sq.Ft.

- Downstate: $345
- Upstate: $192

Average Total Project Cost Per Sq.Ft. AFTER Incentives and Tax Credits

- Downstate: $332
- Upstate: $172

Cost data is preliminary and subject to change.
DHW and HVAC System Cost Per Sq.Ft. Upstate and Downstate by Project DHW System

Downstate = 5 boroughs

- **Average HVAC Cost Per Sq.Ft.**
- **Average DHW Cost Per Sq.Ft.**
- **Average Total Project Cost Per Sq.Ft.**
- **Average Total Project Cost Per Sq.Ft. AFTER incentives and Tax Credits**

Project Cost Data is preliminary and subject to change.

Note: Fossil Fuel systems consist of CHP and Boilers.
Observations

• **Incentives and tax credits are more impactful for projects with certain building attributes**
 - Low Rise
 - All Electric
 - Geothermal

• **Space Conditioning**
 - VRF-ASHP are overwhelmingly the most popular space conditioning solution
 - Projects using VRF-ASHP show:
 - Highest annual energy cost per sq.ft. of HVAC options
 - Lowest incremental construction cost before incentives and tax credits
 - Higher incremental construction cost after incentives and tax credits
 - GSHP
 - GSHP projects are more cost effective after incentives and tax credits
 - Projects average the lowest annual energy cost per sq.ft.

• **Observations on incremental construction costs after tax credits and incentives**
 - Almost half of all BoE projects resulted in <0% incremental cost

• **Electrified DHW**
 - Many projects are still able to achieve a <0% incremental construction cost after tax credits and incentives
 - Electrified DHW projects see lower average cost of energy for building operation when renewables are factored into the cost
 - ASHP, Solar Thermal, and GSHP systems have the lowest DHW system Cost per Sq.Ft across projects with detailed cost submittals
Appendices

> Appendix A – Awarded Project Cost Detail
> Appendix B – Awarded Project Summaries
> Appendix C – Building Systems Illustrations and Definitions
> Appendix D – Understanding the Data
Appendix A

Awarded Project Cost Detail
North Miller Passive
Newburgh, New York

Technical attribute summary:
• 3 Dwelling Units
• LMI
• Exceptionally low-cost gut rehab
• Fully electrified
• Minisplit ASHP Space Conditioning
• ASHP DHW
• ERV
• Advanced controls/monitoring
• 100% Renewable Energy

$39,720 Award

Project Cost Data is preliminary and subject to change
Solara Phase 2
Rotterdam, NY

Technical attribute summary:
• 3 Stories, 72 Dwelling Units
• Solar thermal DHW
• Minisplit ASHP Space Conditioning
• Wood Frame
• ERV
• HP clothes dryers
• EV Charging
• Advanced controls/monitoring
• 100% Renewable Energy
• All Electric

$750,000 Award
Zero Place
New Paltz, NY

Technical attribute summary:
• 4 Stories, 46 Dwelling Units
• GSHP DHW
• GSHP Space Conditioning
• ICF
• ERV
• EV Charging
• Advanced controls/monitoring
• 100% Renewable Energy
• All Electric

$750,000 Award

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

- Non-Performance Related Costs/Sq.Ft.
- Other Performance Related Cost/Sq.Ft.
- Testing and Inspection Cost/Sq.Ft.
- Smart Buildings Cost/Sq.Ft.
- Lighting Cost/Sq.Ft.
- Appliance Cost/Sq.Ft.
- Generation Cost/Sq.Ft.
- DHW Cost/Sq.Ft.
- HVAC Cost/Sq.Ft.
- Envelope Cost/Sq.Ft.
- Tax Credit/Sq.Ft.
- Incentive/Sq.Ft.
- Award/Sq.Ft.

Project Cost Data is preliminary and subject to change
Perdita Flats
Ithaca, NY

Technical attribute summary:
• 3 Stories, 4 Dwelling Units
• ASHP w/ CO2 DHW
• Multisplit ASHP Space Conditioning
• Wood Frame
• ERV
• Advanced controls/monitoring
• 100% Renewable Energy
• All Electric

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

$70,560 Award

Perdita Flats
PROJECT

Project Cost Data is preliminary and subject to change.
Technical attribute summary:
- 22 Stories, 140 Dwelling Units
- Condensing Boiler DHW
- VRF Space Conditioning
- ERV
- HP clothes dryers

$500,000 Award

Project Cost Data is preliminary and subject to change.
2050 Grand Concourse
Bronx, NY

Technical attribute summary:
- 13 Stories, 96 Dwelling Units
- LMI
- Ultra-high efficiency condensing storage tank DHW
- VRF ASHP Space Conditioning
- ERV
- Advanced controls/monitoring

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

Project Cost Data is preliminary and subject to change

- Non-Performance Related Costs/Sq.Ft.
- Other Performance Related Cost/Sq.Ft.
- Testing and Inspection Cost/Sq.Ft.
- Smart Buildings Cost/Sq.Ft.
- Lighting Cost/Sq.Ft.
- Appliance Cost/Sq.Ft.
- Generation Cost/Sq.Ft.
- DHW Cost / Sq.Ft.
- HVAC Cost / Sq.Ft.
- Envelope Cost/Sq.Ft.
- Tax Credit/Sq.Ft.
- Incentive/Sq.Ft.
- Award/Sq.Ft.

$750,000 Award
Tree of Life
Jamaica, NY

Technical attribute summary:
- 12 Stories, 174 Dwelling Units
- LMI
- CHP DHW
- VRF ASHP Space Conditioning
- ICF
- ERV
- Advanced controls/monitoring
- 19% Renewable Energy

$500,000 Award

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost per Sq.Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Performance Related Costs</td>
<td>$300</td>
</tr>
<tr>
<td>Other Performance Related Cost</td>
<td>$275</td>
</tr>
<tr>
<td>Testing and Inspection Cost</td>
<td>$250</td>
</tr>
<tr>
<td>Smart Buildings Cost</td>
<td>$225</td>
</tr>
<tr>
<td>Lighting Cost</td>
<td>$200</td>
</tr>
<tr>
<td>Appliance Cost</td>
<td>$175</td>
</tr>
<tr>
<td>Generation Cost</td>
<td>$150</td>
</tr>
<tr>
<td>DHW Cost</td>
<td>$125</td>
</tr>
<tr>
<td>HVAC Cost</td>
<td>$100</td>
</tr>
<tr>
<td>Envelope Cost</td>
<td>$75</td>
</tr>
<tr>
<td>Tax Credit</td>
<td>$50</td>
</tr>
<tr>
<td>Incentive</td>
<td>$25</td>
</tr>
<tr>
<td>Award</td>
<td>$0</td>
</tr>
</tbody>
</table>

Project Cost Data is preliminary and subject to change.
Technical attribute summary:
• 10 Stories, 178 Dwelling Units
• LMI
• Natural Gas DHW
• VRF ASHP Space Conditioning
• ERV
• Advanced controls/monitoring
• 4% Renewable Energy

Project Data is preliminary and subject to change

Financial Breakdown:

- Total Project Performance Related Costs
- Non-Performance Related Costs
- Incentives
- Awards
- Tax Credits

$750,000 Award
1182 Woodycrest
Bronx, NY

Technical attribute summary:
• 9 Stories, 45 Dwelling Units
• ICF Construction
• VRF ASHP Space Conditioning
• ERV
• Replicable Model
• LMI

$412,860 Award

Project Cost Data is preliminary and subject to change
Park Avenue Green
Bronx, NY

Technical attribute summary:
- 15 Stories, 154 Dwelling Units
- LMI
- Natural Gas DHW
- VRF ASHP Space Conditioning
- ERV
- Advanced controls/monitoring
- Comparison to “Sister Building”

$250,000 Award

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

Project Cost Data is preliminary and subject to change
St. Marks Passive House

Brooklyn, NY

$247,815 Award

Technical attribute summary:
- 5 Stories, 10 Dwelling Units
- Net Zero
- VRF ASHP Space Conditioning
- ERV
- Urban Infill
- Clip on Panelized Façade
- Market Rate

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost Per Sq.Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Performance Related Costs</td>
<td>$200 - $375</td>
</tr>
<tr>
<td>Other Performance Related Cost</td>
<td>$25 - $125</td>
</tr>
<tr>
<td>Testing and Inspection Cost</td>
<td>$25 - $100</td>
</tr>
<tr>
<td>Smart Buildings Cost</td>
<td>$25 - $75</td>
</tr>
<tr>
<td>Lighting Cost</td>
<td>$25 - $150</td>
</tr>
<tr>
<td>Appliance Cost</td>
<td>$25 - $100</td>
</tr>
<tr>
<td>Generation Cost</td>
<td>$25 - $150</td>
</tr>
<tr>
<td>DHW Cost</td>
<td>$25 - $100</td>
</tr>
<tr>
<td>HVAC Cost</td>
<td>$25 - $125</td>
</tr>
<tr>
<td>Envelope Cost</td>
<td>$75 - $250</td>
</tr>
<tr>
<td>Tax Credit</td>
<td>$75 - $375</td>
</tr>
<tr>
<td>Incentive</td>
<td>$75 - $375</td>
</tr>
<tr>
<td>Award</td>
<td>$75 - $375</td>
</tr>
</tbody>
</table>

Project Cost Data is preliminary and subject to change
425 Grand Concourse
Bronx, NY

Technical attribute summary:
• 26 Stories, 277 Dwelling Units
• LMI
• Natural Gas DHW
• VRF ASHP Space Conditioning
• ERV
• Mixed Use
• Smart Building Controls

$750,000 Award

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

Non-Performance Related Costs/Sq.Ft.
Other Performance Related Cost/Sq.Ft.
Testing and Inspection Cost/Sq.Ft.
Smart Buildings Cost/Sq.Ft.
Lighting Cost/Sq.Ft.
Appliance Cost/Sq.Ft.
Generation Cost/Sq.Ft.
DHW Cost / Sq.Ft.
HVAC Cost / Sq.Ft.
Envelope Cost/Sq.Ft.
Tax Credit/Sq.Ft.
Incentive/Sq.Ft.
Award/Sq.Ft.

Project Cost Data is preliminary and subject to change.
West Side Homes

Buffalo, NY

Technical attribute summary:
- 3 Stories, 15 Dwelling Units
- LMI
- GSHP Space Conditioning and DHW
- ERV
- Panelized Construction
- Smart Building Controls
- Net Zero

$363,620 Award

Total Project Performance Related Costs, Non-Performance Related Costs, Incentives, Awards, and Tax Credits Per Sq.Ft.

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost/Sq.Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Performance Related Costs</td>
<td>$0</td>
</tr>
<tr>
<td>Other Performance Related Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Testing and Inspection Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Smart Buildings Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Lighting Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Appliance Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Generation Cost</td>
<td>$0</td>
</tr>
<tr>
<td>DHW Cost</td>
<td>$0</td>
</tr>
<tr>
<td>HVAC Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Envelope Cost</td>
<td>$0</td>
</tr>
<tr>
<td>Tax Credit</td>
<td>$25</td>
</tr>
<tr>
<td>Incentive</td>
<td>$25</td>
</tr>
<tr>
<td>Award</td>
<td>$363,620</td>
</tr>
</tbody>
</table>

Project Cost Data is preliminary and subject to change.
Appendix B

Awarded Project Summaries
Round 1
North Miller Passive Multifamily honors Newburgh’s existing historic townhouses while delivering high-performance benefits of comfort, indoor air quality, and durability. The improved project will upgrade the building to Net Zero designation benefiting not only the building occupants, but also the building owner. The business case includes: 1) scarcity of affordable housing, 2) negligible property costs / low capital requirements; and 3) owner-paid utility model which allows the project to turn utility savings into income. Because this combination of factors is common in Newburgh and other financially distressed areas, this project can serve as an example to be replicated by other developers and lenders.

Technical attribute summary: Exceptionally low-cost gut rehab, indicating replicability, fully electrified with ASHP for HVAC and dhw, ERV, smart buildings controls.
Solara Apartments in Rotterdam, NY is a leading example of market-rate net zero energy housing using conventional materials and technologies. The apartments are designed to radically reduce energy use through extensive air sealing, continuous exterior insulation, air source heat pumps for heating and cooling, energy recovery ventilation, premium windows, and solar hot water. Photovoltaic solar panels will produce 100% of Solara’s energy. The apartments feature attractive, “all-inclusive” living with all utilities included in the monthly rent. Solara demonstrates that market-rate green multifamily buildings are superior to conventional multifamily buildings and provide an enhanced living environment without sacrificing comfort and convenience.

Technical attribute summary: PV, solar thermal dhw, ASHP, ERV, HP clothes dryers, EV, advanced controls/monitoring strategy for energy, humidity, IAQ, all-in rental model.
Village Grove
Trumansburg, NY

Under Construction
$932,280 Award

Ithaca Neighborhood Housing Services
Sustainable Comfort

Village Grove is the proposed development of a highly energy efficient forty-unit affordable multifamily rental building in Trumansburg, NY, to be developed by INHS. The building will be one of the first affordable housing developments in upstate New York to attain Passive House certification and utilize ground source heat pumps, and plans to achieve NetZero through the purchase of off-site community solar. Village Grove will serve as a model to other affordable housing developers of the financial, environmental and social benefits of energy efficiency upgrades.

Technical attribute summary: GSHP for space conditioning and DHW, ERV, replicable panelized wall and floor system, cost effective, PV through contract acquisition, all-in-one rental and utility model, individual energy consumption tracking.
425 Grand Concourse
Bronx, NY

Late Design
$750,000 Award

Trinity Financial, Inc
Dattner Architects D.C.P.

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or Gut Rehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env. Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>1</td>
<td>26</td>
<td>New</td>
<td>310,758</td>
<td>264,033</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td></td>
<td>Central condensing natural gas-boiler</td>
<td>No</td>
<td>Urban</td>
<td>Yes</td>
<td>PHIUS + 2015</td>
<td>PHIUS, EGC</td>
<td>LMI</td>
<td></td>
</tr>
</tbody>
</table>

425 Grand Concourse is an ambitious mixed-use, mixed-income high-rise multifamily project being certified under the PHIUS+ 2015 standard. Passive House provides a promising path to a building with greatly reduced energy consumption and greenhouse gas emissions, and at the same time to an increased quality of life. As there is currently limited data on Passive House high-rise construction cost, performance and economic viability, this project aims to show that Passive House is a replicable solution by providing much of the needed data, details, construction methods and lessons learned to the high-density housing development and construction community.

Technical attribute summary: 277-unit PHIUS, VRF, ERV, Smart Buildings controls.
Sendero Verde Building A (SV-A) will be a transformative affordable housing and mixed-use development in New York City that will be a leader in sustainability and energy efficient design upon its completion. In an effort to drastically cut the carbon emissions of the building, the design team is committed to achieving Passive House certification. As a result of SV-A’s superior quality of design, its residents will not only realize energy cost savings, but will also be living in a building with enhanced indoor air quality, comfort, and resiliency. Congruent to the project’s goals of achieving Passive House certification, the SV-A project team is employing both financing and design strategies to ensure the project is both cost-effective and replicable for future development. A significant marketing effort has already begun for this project with numerous publications and presentations highlighting how it will excel as a leader in sustainable and energy efficient affordable housing development. This thorough marketing effort is only expected to continue and likely ramp up as the project progresses through development and ultimately post-occupancy operation.

Technical attribute summary: Large HPD PH Pilot (383 unit), small PV array, VRF, ERV
Affordable and Sustainable Multifamily Housing for City of Hudson

City of Hudson, NY

Early Design
$1,000,000 Award

Galvan Initiatives Foundation, Inc.
Urban Architectural Initiatives

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or Gut Rehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>1</td>
<td>5</td>
<td>New</td>
<td>95,896</td>
<td>91,630</td>
<td>Nat Grid</td>
<td>Nat Grid</td>
<td>Capital Region</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>ASHP w/ CO2</td>
<td>Panelized wall assemblies</td>
<td>No</td>
<td>Urban</td>
<td>Yes</td>
<td>Yes</td>
<td>PHIUS</td>
<td>PHIUS</td>
<td>LMI</td>
</tr>
</tbody>
</table>

The Hudson Passive Community project is an all new 84-unit mixed-use project encompassing Net Zero energy goals in the City of Hudson. This project will address the severe housing crisis in the city, while also setting an example in the community for drastic energy use reduction, walkable community, and active residential life.

Technical attribute summary: Panelized wall assemblies by reliable manufacturer, advanced combination ASHP system for space conditioning (HVAC w/ energy recovery, ventilation and humidity controls), CO2 DHW, lower costs projected, PV, larger project incorporates adaptive re-use of existing buildings.
Rheingold Senior Housing
Brooklyn, NY

Demonstrating truly integrated design to facilitate delivery of a wholly sustainable senior housing community on budget, Southside United HDFC – Los Sures presents Rheingold Senior Housing, a 94-unit North Brooklyn affordable housing development that meets sustainability goals in diverse categories. Commitment to passive house design and verification principles, as well as deep-rooted investment in its residents and surrounding community, drove the project to achieve 47% source-energy savings and 44% energy-cost savings, while also providing superior indoor air quality through its highly efficient mechanical systems, robust building envelope, and meticulous choice of materials. Going one step further, the project team carefully chose construction materials with low embodied energy and long-term durability, making this innovative building truly an environmental and community asset from its first day of occupancy. Los Sures, the residents, and the local community will share and learn from this innovative space for years to come.

Technical attribute summary: PV, VRF, ERV, stone wool and foam glass insulation, glass fiber panelized rain screen, ‘active design’.
Geneva Solar Village

Geneva, NY

Early Design

$1,000,000 Award

The Solar Village Company

Sustainable Comfort

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC</th>
<th>Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>6</td>
<td>3</td>
<td>New</td>
<td>69600</td>
<td>69600</td>
<td>NY SEG</td>
<td>NA</td>
<td>Central NY</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Space Conditioning

<table>
<thead>
<tr>
<th>Minisplit - ASHP</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERV</td>
<td>ASHP</td>
<td>Panelized</td>
<td>Yes</td>
<td>Urban</td>
<td>Yes</td>
<td>No</td>
<td>ERI</td>
<td>EPA ENERGY STAR</td>
<td>LMI</td>
<td></td>
</tr>
</tbody>
</table>

Technical attribute summary: Modular (Geneva), PV, unique integration of ASHP to support space conditioning ERV, ASHP pre-heat of dhw, induction cooktop, HP clothes dryer, Smart buildings monitoring & controls.

Solar Pods are the continuation of the modular, net-zero model of buildings first seen at the development of a high performance, net-zero modular community in Geneva, NY called the Lake Tunnel Solar Village. Building upon the efforts of the single-family home community, Solar Pods looks to take the lessons learned from Lake Tunnel Solar Homes to reach full net-zero energy and drive the cost effectiveness of a high-performance building. The project will push the market forward by sharing operation financials and energy performance of the project, to show the transition to high performance buildings is possible.
La Central Building C
Bronx, NY

La Central Building C, a 100% affordable housing development, will be a leader in sustainability among all development types across the state of New York upon its completion. In an effort to drastically cut the carbon emissions of the building, the design team is committed to achieving Passive House certification and is currently evaluating the feasibility of achieving the Passive House Plus standard by designing an all-electric building. As a result of Building C’s superior quality of design, its residents will not only realize energy cost savings over a typical new-construction affordable housing development but will also be living in a building with enhanced indoor air quality, comfort, and resiliency. Congruent to the project’s goals of achieving Passive House certification, the Building C project team is employing both financing and design strategies to ensure the project is both cost-effective and replicable for future development.

Technical attribute summary: VRF, ERV, (potential) central HP water heating under review. Induction cooktop, PV.
Flow Chelsea 211 West 29th Street

New York, NY
Under Construction
$500,000 Award

Bernstein Real Estate
ZH Architects

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>1</td>
<td>24</td>
<td>New</td>
<td>64,725</td>
<td>55,672</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Space Conditioning

<table>
<thead>
<tr>
<th>Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>Gas</td>
<td>Panelized Taktl cement bd rain screen, mineral wool, AAC block walls/insulation & EPS EIFS over AAC</td>
<td>No</td>
<td>Urban</td>
<td>No</td>
<td>Yes</td>
<td>PHI</td>
<td>PHI</td>
<td>Market Rate & LMI & 421A</td>
</tr>
</tbody>
</table>

211 W 29th street or “Flow Chelsea” is a 24-story Passive House development by Bernstein Real Estate (BRE) that will be a 24 story mixed use building in Manhattan. By meeting stringent Passive House criteria, 211 W 29th street will provide a new standard of comfort, quality in the competitive NYC rental market. As the tallest infill PH project in the city and with a mix of market rate and inclusionary / 421A rentals, Flow Chelsea provides an ideal template for other future developments. Those living and working at 211 W 29th will be in one of the most energy efficient buildings in the city, while BRE, as the developers enjoy reduced utility costs and the benefits of durable, high end construction.

Technical attribute summary: PV, VRF, ERV, induction cooktop, HP clothes dryers, panelized Taktl cement bd rain screen, mineral wool, AAC block walls/insulation.
Park Haven
Bronx, NY

Late Design
$750,000 Award

The Community Builders, Inc., Bright Power

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>1</td>
<td>10</td>
<td>New</td>
<td>180,155</td>
<td>157,525</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>Gas roof HWH</td>
<td>R-25 exterior walls</td>
<td>No</td>
<td>Urban</td>
<td>No</td>
<td>Yes</td>
<td>ASHRAE</td>
<td>EGC</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Park Haven is a high-performance new construction in its late stage of design to be erected in The Bronx, NY. It will be 10 stories high, with 178 dwelling units, 180,155 gross square feet, and designed to the rigorous Passive House Standards. This building design will be implementing advanced, climate-specific design strategies to reduce energy use and carbon emissions. The Community Builders are seeking funding under Buildings of Excellence (RFP 3928) to pilot real-time energy management equipment and services at the property in order to ensure it is successfully maintained and operated at peak performance. Data collected will provide detailed information on the usage patterns of high-performance building systems to all arms of the TCB organization, both informing ongoing operational costs and underwriting for future developments, supporting the successful transition to the operations and property management team, and engaging residents to promote responsible energy use.

Technical attribute summary: PV, VRF, ERV, focus on smart buildings controls and monitoring
Park Avenue Green

Bronx, NY

Completed within 3 years
$250,000 Award

Omni New York, LLC
Bright Power

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>1</td>
<td>15</td>
<td>New</td>
<td>163,743</td>
<td>159,146</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>Yes</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>CHP and Demand Recirculation</td>
<td>EIFS-Majority thickness is 7”</td>
<td>No</td>
<td>Urban</td>
<td>No</td>
<td>Yes</td>
<td>PHIUS</td>
<td>PHIUS, 2015 Enterprise Green Communities & ENERGY STAR MFHR</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Park Avenue Green is a recently constructed PHIUS+ 2015 Certified building. With 15 stories, 154 dwelling units, and approximately 164,000 gross square feet, it is the world’s largest PHIUS+ Certified project by height, number of units, and square footage. Park Avenue Green is located directly adjacent to Morris I Apartments, a similarly sized new construction development. Omni New York is seeking funding under Buildings of Excellence (RFP 3928) to perform an energy usage comparison of these two buildings. The goal of this comparison is to collect granular data on energy use across both buildings in order to quantify the energy savings benefits of Passive House construction versus standard building techniques in multifamily housing.

Technical attribute summary: Recently completed PHIUS building adding smart buildings controls to improve performance, and to allow data capture to compare performance with sister building constructed following standard practices.
HELP One
Brooklyn, NY

Early Design
$1,000,000 Award

HELP USA
Curtis + Ginsberg Architects

HELP One, located on Sutter Avenue between Snediker Avenue and Hinsdale Street in Brooklyn, will be permanent housing with 178 dwelling units (each with a dedicated bathroom and kitchen) and accessory uses. HELP One is designed with VRFs, Energy Star appliances, water conserving plumbing fixtures, thick insulation, and LED lighting. These features will provide greater comfort and improved air quality for residents and will result in lower annual operating costs. With funding from NYSERDA’s Buildings of Excellence competition, ERVs and solar panels would be added, providing further benefits to residents and DHS.

Technical attribute summary: VRF, ERV, modest PV (5% of predicted load).
Bushwick Alliance

Brooklyn, NY

Late Design
$402,220 Award

RiseBoro Community Partnership
STAT Architecture PC

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>4</td>
<td>New</td>
<td>20,111</td>
<td>20,111</td>
<td>ConEd</td>
<td>NA</td>
<td>NYC</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>ASHP w/ CO2</td>
<td>Panelized rain screen</td>
<td>Yes</td>
<td>Urban</td>
<td>Yes</td>
<td>No</td>
<td>PHIUS</td>
<td>PHIUS</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Bushwick Alliance is an affordable housing project to be developed in 2020 by RiseBoro Community Partnership and St. Nicks Alliance, two local non-profits with a long history of community service. The all electric, carbon-neutral building at 63 Stockholm St. will have 20 units of deeply affordable rental housing, with passive house design, solar panels, hot water via heat pumps, and a culture of sustainability. This high profile project is a crucial opportunity to prove an all electric sustainable design model to NYC housing agencies and that sustainable and cost effective buildings are possible for our city’s most vulnerable populations.

Technical attribute summary: PV, CO2 dhw, panelized rain screen.
The New York City Housing Authority (NYCHA) and Department of Housing Preservation and Development (HPD) selected Blue Sea Development and Gilbane Development, through a competitive RFP process, to develop Linden Grove: a 155-unit, affordable housing development for low- and very-low income seniors. To help address the critical need for affordable housing, Linden Grove will demonstrate a fundamental proof of concept: the technical feasibility of affordable, Passive House certified, modular construction. The thirteen-story, volumetric modular, structure will serve as a prototype for a building system that can be deployed across NYCHA’s underdeveloped land holdings and throughout the State.

Technical attribute summary: Modular, PV, VRF, ERV, USB outlets, Mt. Sinai health study (CHP for DHW).
Creekview Apartments
Canandaigua, NY

Early Design

$1,000,000 Award

Baldwin Real Estate Development Corp.
Sustainable Comfort

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC</th>
<th>Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>12</td>
<td>2</td>
<td>New</td>
<td>93,668</td>
<td>93,668</td>
<td>RG&E</td>
<td>NYSE G</td>
<td>Finger Lakes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF - GSHP</td>
<td>ERV</td>
<td>GSHP</td>
<td>3" polyiso panels</td>
<td>Yes</td>
<td>Suburban</td>
<td>Yes</td>
<td>No</td>
<td>ERI</td>
<td>PHIUS+ 2015, EPA ENERGY STAR, DOE Zero Energy Ready</td>
<td>LMI</td>
</tr>
</tbody>
</table>

CreekView Apartments Phase II is the continuation of the development of a high performance, passive house community in Canandaigua. Building upon the efforts of the recently completed Phase I which is certified to PHIUS+ 2015, Phase II looks to take the lessons learned from Phase I to reach full Net-Zero energy, continuing to drive the cost effectiveness of high-performance building. The project will reach Net-Zero via on site solar PV in combination with a common ground source heat pump loop serving VRF heat pump units for heating, cooling, and ground source water to water heat pumps for hot water heating, combined with the same passive house levels of insulation enjoyed in Phase I. These strategies are not only repeatable, but able to be widely employed across the state.

Technical attribute summary: PV, GSHP coupled to VRF, GSHP-coupled dhw, EV, insulated foundation system, 'all-in' rental model for major utilities -allowing owner to capture economic benefits associated with high performance buildings and systems.
The project is targeting LEED Gold certification and is currently scoring 73.5 LEED Homes credits. The design team plans to incorporate several innovative strategies to promote whole building environmental well-being, sustainable site development, water savings, energy efficiency, materials selection, and indoor environmental quality. It will be well connected to public transportation and amenities that are easily accessible and within walking distance providing an opportunity for an active lifestyle and an excellent complement to the local community.

Technical attribute summary: Smart buildings/monitoring focused, all LED lighting, lighting controls in all common spaces (including bi-level and occupancy sensors), daylighting along main circulation, all energy star qualified appliances, photovoltaic panels providing power to community facility, electric heat pump/ VRF heating and cooling throughout building, R-16 continuous stone wool insulation at all above grade exterior walls facilitated by standoff clips supporting brick relieving angles at brick and composite sub framing at metal cladding (also reducing thermal bridging), R-12 continuous foundation insulation, R-30 average roof insulation as well as high efficiency UPVC windows and window walls.
Perdita Flats
Ithaca, NY

Under Construction
$70,560 Award

Perdita Flats Development, LLC,
STREAM Collaborative

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>New</td>
<td>3,528</td>
<td>3,528</td>
<td>NYSEG</td>
<td>NA</td>
<td>Southern Tier</td>
<td>No</td>
<td>?</td>
</tr>
</tbody>
</table>

Space Conditioning | Ventilation | DHW | Building Envelope | All Electric | Urban or Suburban | Net Zero | Mixed Use | Performance Path | Other 3rd party certs. | Occupancy |
---|---|---|---|---|---|---|---|---|---|---|---|
Minisplit-ASHP | ERV | ASHP w/ CO2 | R-45 for exterior wall, R-60 for roof, triple-pane windows | Yes | Urban | Yes | No | ERI | ENERGY STAR v3.1 | Market Rate |

Perdita Flats is a three-story, four-unit zero energy residential building constructed on an empty corner lot in Ithaca, New York. Using an integrated design approach, Perdita Flats incorporates passive, renewable, resilient, and sustainable solutions to demonstrate all that is possible with available commercial technology and best building strategies. The space conditioning and dhw will use a very low global warming impact systems and strategies, and use only electricity to take advantage of the clean electric grid in Upstate New York. The rest of the electricity use will be provided by renewables annually, so the building will be zero energy. We believe the system choices and strategies in this project will reduce GWP to minimal.

Technical attribute summary: Unique ground heat exchange proposed to pre-condition fresh air ventilation along with energy recovery ventilation after then. Further, this air will be heated CO2 refrigerant Sanden ASHP and cooled and dehumidify by a dehumidifier. There will be mini electric baseboards in the apartments to be used for as supplement or back-up. DHW will be provided only by CO2 refrigerant Sanden ASHP. All electric, Solar PV, presented as simple building geometry, optimum WWR, reflective white interior wall paint, wedging windows for more daylight, low-cost/replicable, market-rate.
Zero Place
New Paltz, NY

Late Design
$750,000 Award

Net-Zero Development, LLC
Integral Building & Design, Inc.

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>1</td>
<td>4</td>
<td>New</td>
<td>63,320</td>
<td>54,860</td>
<td>Central Hudson</td>
<td>Central Hudson</td>
<td>Mid Hudson</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSHP</td>
<td>ERV</td>
<td>GSHP</td>
<td>ICF</td>
<td>Yes</td>
<td>Urban</td>
<td>Yes</td>
<td>Yes</td>
<td>ERI</td>
<td>DOE Zero Energy, EPA ENERGY STAR Homes, Indoor airPLUS, USGBC LEED</td>
<td>Market Rate</td>
</tr>
</tbody>
</table>

Zero Place will provide an affordable model to accelerate the construction of mixed-use, zero-energy buildings. This project integrates a host of innovative energy efficiency technologies including thermal enclosure enhancements, renewable heating/cooling systems, heat-recovery ventilation and an advanced solar electric system designed to generate enough power to meet the building’s annual energy needs. Critically, the Zero Place team is committed to providing an open framework for others to replicate and improve upon their success. It is both the hope and intention to make these buildings a mainstream standard throughout New York.

Technical attribute summary: GSHP for space conditioning utilizing a common ground loop coupled to unitary Water-to-Air HP units. The common loop will also be coupled to Water-to-Water HP units and thermal storage tanks for the central DHW system to serve the entire building. The common loop is powered by a central pump station consisting of two high efficiency, variable speed circulators. The ventilation consists of unitary ERV’s with fresh air distributed through the HVAC ductwork. The renewable energy consists of a set of high output Solar PV arrays on roof and solar awnings. Thermal enclosure consists of ICF Walls, Spay Foam slabs and roof areas, and High-R fenestration. Resilient construction strategies for long-term durability. All-in rental model, smart building controls, display monitors to (anonymously) share consumption, CO2-activated demand-controlled ventilation, Heat Pump clothes dryers, induction cooktops, (20) EV car charging stations plus e-bike charging stations. Market-rate with and 5 affordable housing units.
Westgate Apartments
Rochester, NY

Early Design
$1,000,000 Award

Providence Housing Development Corp
SWBR Architecture, Engineering & Landscape Architecture, D.P.C

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1</td>
<td>4</td>
<td>New</td>
<td>81000</td>
<td>81000</td>
<td>RG&E</td>
<td>RG&E</td>
<td>Finger Lakes</td>
<td>No</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minisplit - ASHP</td>
<td>ERV</td>
<td>ASHP w/ CO2</td>
<td>R-12.6 cont Zip with R21 cavity wall</td>
<td>R-70 Roof</td>
<td>Yes</td>
<td>Urban</td>
<td>Yes</td>
<td>No</td>
<td>PHIUS</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Westgate Apartments is a single new construction, infill apartment building proposed at the southwest corner of Chili Avenue and Brooks Avenue in the Town of Gates developed by Providence Housing. This affordable transit-oriented development (TOD) will be constructed to Passive House (PHIUS+ 2018) standards and will be used as training grounds for contractors throughout the region. To reduce energy use and carbon emissions the project team has included increased insulation levels, high-efficiency mechanical systems, innovative Sanden DHW, energy recovery ventilation, solar photovoltaics (PV), densification, electrification, and possible on-site electric car sharing.

Technical attribute summary; ASHP for space conditioning, ERV, innovative Sanden CO2 dhw system, induction cooktop, PV (combination of on-site and off-site arrays to cover at least 60% of projected loads, possibly up to NZE), on-site electric car-share with EV charging stations, all-in rental model with smart building controls, energy monitoring and display.
Engine 16
New York, NY

Late Design
$197,010 Award

223 East 25th Street LLC
Baxt Ingui Architects

Engine 16 is a special building with a rich history. The design celebrates and extends the architectural features while adapting a new use as a multifamily residential building with a community facility. This alone makes for an interesting building, but as a certified Passive House with renewables, Engine 16 becomes a potential beacon project. New York City is overwhelmed with buildings similar in scale and use, making this a perfect exemplary project to share the systematic approach that Baxt Ingui Architects and their consultants have implemented on 15 Passive rowhouses. Our goal is to collaborate with NYSERDA in this effort to replicate the adaptive reuse process and help educate others on resilient, energy efficient building strategies.

Technical attribute summary: Exceptional design of an adaptive re-use / gut rehab, ASHP for HVAC, ERV, HP for dhw, PV, induction cooktop, smart buildings controls, market-rate.
The Woodycrest project is building upon The Bluestone Organization’s experience with low energy intensity and advanced clean energy buildings to refine a model of low-income housing that is beneficial for the people who live in it, the developers that own and operate it, the public funding which finances it and the environment in general. Scaling up the core Passive House strategies of airtightness, robust panelized thermal envelope and energy recovery and pairing with advanced VRF air source heat pumps and on-site solar PV electricity generation in a nine story 45 unit high rise setting, the project is setting the stage for future efficient developments in the tight confines on New York City’s small lots and strict code restrictions.

Technical attribute summary: VRF, ERV, EV, panelized ICF, PV, lower cost & replicable.
The Tree of Life Development in Jamaica, Queens is the latest development project by The Bluestone Organization (Bluestone). Tree of Life is a 12-story affordable, mixed income, mixed-use residential and community facility building. It will include 174 affordable rental units, 9,600 gross square feet owned and operated by the First Jamaica Community and Urban Development Corporation, a not-for-profit organization providing community service programs in Jamaica, and 15,400 square feet to be leased and operated as a health care facility to a not-for-profit operator. The building has achieved PHIUS pre-certification and is currently under construction. Based on the energy model, the building’s source energy is 3,824 kWh/person/year, a 38% improvement over the PHIUS requirement.

Technical attribute summary: PV, VRF, ERV, (CHP for DHW), panelized ICF, AeroBarrier, lower cost & replicable.
First and foremost, this project at 669 St Marks Avenue is a real estate venture by a European developer who saw the potential for a sound investment in Brooklyn: a place that is densely populated, well-served by amenities and services. In addition, the developer’s attitude that a well-designed and highly energy efficient building is already business as usual in Europe helped power Cycle Architecture’s two Certified Passive House Designers to meet pre-certification standards for a Passive House certification on this project currently seeking approvals from authorities on this 9 unit multifamily residential building.

Technical attribute summary: Unique but replicable urban infill project, focus on resilient design, healthy/safe/comfortable living environment, manufactured & panelized clip-on façade, VRF, ERV, EV, PV, battery storage, market-rate.
Street Smart
Brooklyn, NY

Early Design
$89,260 Award

369 Manhattan
ZH Architects

369 Manhattan Avenue is a four-unit multi-family building that reclaims an open parking lot and transforms the lives of its residents and its neighbors. It will be beautiful, because no one wants to live or work in an ugly building. It will be comfortable, healthy, and quiet to live in. It will be constructed from common building materials, using common construction methods, and populated with state of the art, off the shelf building materials and components. It will be Passive House certified, consuming 90 percent less energy to heat and cool than a normal code compliant building. It will be durable and low maintenance, constructed to last 100 years. It will be cost effective to run, economical to maintain, and it will be a place people will want to live in. But most importantly 369 Manhattan Avenue will be a teacher, helping people become aware of the benefits of a new type of building that is economical to build, easy to replicate, desirable to live in, and transformative in its efficiency and resource use.

Technical attribute summary: PV, CO2 dhw, VRF, ERV, induction cooktop, HP clothes dryers, panelized rain screen, foam glass foundation fill/insulation.
The Seventy Six Phase 1

Albany, NY

Early Design

$658,020 Award

South End Development
Garrison-Architects

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>1</td>
<td>8</td>
<td>New</td>
<td>156,159</td>
<td>94,499</td>
<td>Nat Grid</td>
<td>Nat Grid</td>
<td>Capital Region</td>
<td>Yes</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSHP</td>
<td>ERV</td>
<td>Solar Thermal</td>
<td>Modular</td>
<td>Yes</td>
<td>Urban</td>
<td>Yes</td>
<td>Yes</td>
<td>PHIUS</td>
<td>PHIUS, Living Building Challenge Water Petal, ILFI Zero Energy</td>
<td>Affordable (60%)</td>
</tr>
</tbody>
</table>

The Seventy-Six complex is in schematic design. Phase 1 is part of a larger 3 Phase Masterplan for the redevelopment of the block as the first major new project being done in Albany’s South End. The project aims for ground-breaking sustainable performance and breathtaking futuristic design that shows that green building can be engaging, creative, healthy, and exciting. The project team is made up of leaders in the green building movement with over 20 years experience specific to sustainable, net zero, modular housing and a long commitment to Passive House and Architecture 2030 goals.

Technical attribute summary: Modular, PV, ASHP, GSHP, ERV, solar thermal
515 East 86th Street

New York, NY

Under Construction
$500,000 Award

Carrera RS, LLC
Arquitectonica New York, P.C.

Technical Attribute Summary
- Exterior envelope includes use of AAC blocks and panelized rain screen façade and EIFS, VRF & ERV, condensing clothes dryers. IAQ, CO2 monitoring identified as feature. Exceptionally detailed presentation of costs for critical components indicates a willingness to share financial details. Majority market-rate project with 25% of units identified as ‘affordable’, serving low- and middle-income renters.

The 515 East 86th Street Project
- **Project Details:** 140 unit, 140,000 square foot apartment building under construction in the Upper East Side of New York City that is designed to the Passive House standard. Using integrated project delivery along with passive design principles and efficient mechanical systems, the project will achieve significant energy savings and high occupant comfort while overcoming inherent design hurdles, all without compromising the architectural design intent. It is projected to produce 0.0010 tCO2eq/gsf.yr, significantly lower than the recently created carbon cap targets for NYC for 2024, 2030, and 2050.

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>1</td>
<td>22</td>
<td>New</td>
<td>139,412</td>
<td>139,412</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>ERV</td>
<td>Center condensing natural gas-boiler</td>
<td>AAC block, panelized rain screen façade and EIFS</td>
<td>No</td>
<td>Urban</td>
<td>No</td>
<td>Yes</td>
<td>PHI</td>
<td>PHI</td>
<td>Market Rate & Affordable</td>
</tr>
</tbody>
</table>

The 515 East 86th Street project is a 140 unit, 140,000 square foot apartment building under construction in the Upper East Side of New York City that is designed to the Passive House standard. Using integrated project delivery along with passive design principles and efficient mechanical systems, the project will achieve significant energy savings and high occupant comfort while overcoming inherent design hurdles, all without compromising the architectural design intent. It is projected to produce 0.0010 tCO2eq/gsf.yr, significantly lower than the recently created carbon cap targets for NYC for 2024, 2030, and 2050.

Technical attribute summary: Exterior envelope includes use of AAC blocks and panelized rain screen façade and EIFS, VRF & ERV, condensing clothes dryers. IAQ, CO2 monitoring identified as feature. Exceptionally detailed presentation of costs for critical components indicates a willingness to share financial details. Majority market-rate project with 25% of units identified as ‘affordable’, serving low- and middle-income renters.
Linden Boulevard will provide 160 units to low-income residents in Brooklyn. If awarded funding through the NYSERDA Buildings of Excellence program, Linden Boulevard Phase II will achieve total electrification through the use of highly efficient, low carbon emitting mechanical strategies. Heating and cooling will be provided to tenants and common spaces through Variable Refrigerant Flow heat pump (VRF), with heat recovery. Ventilation for common spaces will be supplied through Energy Recovery Ventilators (ERVs). Most notably, the domestic hot water system will be an all-electric four-part plan consisting of solar thermal, air cooled hot water electric heat pumps, geothermal water cooled electric heat pump, and domestic water pre-heating, utilizing waste heat from the VRF system.

Technical attribute summary: VRF, ERV, unique dhw: HP’s, coupled with solar thermal, VRF heat recovery, ground coupled loop and solar thermal array with HW storage.
Round 2
The Rise
Brooklyn, NY

Early Design
$1,000,000 Award

The Rise Owner LLC - Xenolith Partners LLC
Magnusson Architecture and Planning PC

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>1</td>
<td>7</td>
<td>New</td>
<td>65,071</td>
<td>65,071</td>
<td>ConEd</td>
<td>NatI Grid</td>
<td>NYC</td>
<td>Yes</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>ERV</td>
<td>ASHP</td>
<td>Rooftop gardens, Stonewool wall & roof insulation, foamglass underslab</td>
<td>Yes</td>
<td>Urban</td>
<td>No</td>
<td>No</td>
<td>PHI Classic</td>
<td>PHI Classic EGC 2020, WELL Certification by earning 2020 EGC cert.</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Proposer’s Summary: The Rise is a fully electric, mixed-use building with supportive and affordable housing for justice-involved families. The development is designed to Passive House and Enterprise Green Communities standards, and as part of the Governor’s Vital Brooklyn Initiative, it will offer cost-effective solutions that reduce energy consumption, improve health, and build resilience in Brownsville, Brooklyn. Featuring state of the art heat pump water heaters for domestic hot water, VRF heat pumps for heating and cooling, energy recovery ventilators, solar PV system for on-site energy generation, smart building monitoring, rooftop gardens, a greenhouse, and green roofs and walls, The Rise will promote sustainable living and help the industry advance towards a low carbon future.

Technical attribute summary: ASHP (VRF), Solar PV, ERV, centralized ASHP DHW, electric dryer, electric cooktop, smart buildings controls.
Proposer’s summary: PathStone’s proposed Baird Road Apartments is a 76-unit apartment building for seniors as a part of a larger development in Perinton, NY. Using air source heat pumps, shared ERVs, shared heat-pump water heaters, and roof-mounted solar, the project is designed to be fossil fuel free. The project achieves Net-Zero energy through PHIUS+2018, and features health and wellness through Enterprise Green Communities 2020 and WELL Certification. Additionally, the project prioritizes the use of low carbon materials and emphasizes resiliency with the inclusion of battery storage for demand control and backup systems. The project achieves this with no up-front out-of-pocket costs to the developer, and superior long-term financial benefits.

Baird Road Apartments
Perinton, NY

Early Design
$1,000,000 Award

PathStone Corporation
Sustainable Comfort

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>1</td>
<td>2</td>
<td>New</td>
<td>74,196</td>
<td>74,196</td>
<td>RG&E</td>
<td>RG&E</td>
<td>Finger Lakes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>ERV</td>
<td>CO2</td>
<td>ASHP ASHP</td>
<td>All Electric</td>
<td>Urban or Suburban</td>
<td>Net Zero</td>
<td>Mixed Use</td>
<td>Performance Path</td>
<td>Other 3rd party certs.</td>
<td>Occupancy</td>
</tr>
</tbody>
</table>

ASHP: Heat Pump
ERV: Energy Recovery Ventilation
CO2: CO2 ventilation

Perinton, NY
Bethany Terraces Senior Houses
Brooklyn, NY

Early Design
$810,400 Award

RiseBoro Community Partnership
Paul A. Castrucci, Architect PLLC

Proposer’s summary: Bethany Terraces is a proposed, all-electric affordable housing building that will be a model for the Passive House + Renewables approach to Net Zero Capable buildings. Building on the team’s considerable experience with low energy buildings, the project will realize deep energy and carbon reductions, provide a healthy and comfortable interior environment with dramatic architectural connection of social spaces to exterior gardens, and be inherently resilient. Harnessing the benefits of modular construction, the project will be economical to construct and replicable throughout New York State. The monitoring and marketing for the project will help the team disseminate the strategies for future projects.

Technical attribute summary: Modular, ASHP (VRF), ASHP DHW linked with water source HP, ERV, Solar PV, smart buildings controls – including ventilation controls
Proposer’s summary: Court Square is a ‘super-tall’ mixed use building containing thirty-eight floors of luxury condominium dwelling units, nine floors of core and shell office space, a future city library and future retail space. The project embodies sustainable luxury re-imagined to meet today's energy and climate based challenges and serves a leading example of how all of the above can be realized seamlessly together. The project will fully electrify its HVAC and DHW systems with water-source heat pumps and heat pump boilers for the residential space and heat-recovery VRF units for the offices. A combination of both may/will be used for retail/library spaces. The project will certify as LEED Gold under MFR protocol and will incorporate induction cooktops, heat pump dryers and smart learning thermostats in all residential units. The project is actively studying the implementation of view smart tinting windows, smart lighting controls integrated with thermostats, window shades/associated infrastructure and hybrid heat pumps to continue to optimize energy performance.

Proposed Technical attribute summary: Air source heat pump, heat pump clothes dryer, induction cooktop, Solar PV, ASHP central boiler
DeKalb Commons - St. Nicks
Brooklyn, NY

Early Design
$1,000,000 Award

St. Nicks Alliance
Magnusson Architecture and Planning

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>2</td>
<td>8</td>
<td>New</td>
<td>86,610</td>
<td>86,610</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>Yes</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>ERV</td>
<td>HP-based DHW</td>
<td>Open-joint rain screen over continuous stone/mineral wool above-grade, foam-glass aggregate below grade insulation.</td>
<td>Yes</td>
<td>Urban</td>
<td>Possibly</td>
<td>No</td>
<td>PHIUS</td>
<td>Green Communities Criteria, PHIUS, Energy Star Multi-family</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Proposer’s summary: This project incorporates the most replicable, attractive, and effective strategies to provide a project with near net zero operational energy, on-site generation, innovative embodied carbon reduction measures across multiple material sectors, decarbonization and full electrification, actionable management tools, healthy living and resiliency in the affordable housing sector. Supported by an experienced team of designers, consultants, verifiers, engineers, and tradespeople with Passive House Certifications and expertise, nonprofit community developers St. Nicks Alliance and Bedford Stuyvesant Restoration Corporation brings forth a pair of buildings called Dekalb Commons, which will serve as an exemplary project for replicable and healthy decarbonization with useful data points for tracking, including between the two buildings themselves, serving as an example for both affordable and market-rate buildings seeking to produce the emerging generation of truly sustainable communities. Aiding in this effort, NYSERDA’s partnership in this project will elevate the work of quantified sustainability from cradle to cradle at a critical moment for the affordable-housing sector.

Technical attribute summary: Solar PV, Air Source Heat Pump, Electric Cooktops, HP-based DHW
Linden Boulevard III

Proposer's summary: Linden Boulevard Phase III is currently in the early design phase. It will be 8-stories with 156 affordable residential units. The building lot is located within walking distance of public transportation and numerous amenities. With a gross floor area of 144,858 square feet, tenants will be provided many common facilities including: a community room, supportive services meeting rooms, a playroom, a common laundry room, bicycle storage, and an outdoor terrace courtyard accessible by all tenants. In conjunction with Buildings of Excellence, the building is pursuing Enterprise Green Communities.

Linden Boulevard Phase III will be financed through the New York City Housing Development Corporation (HDC) and the Department of Housing Preservation & Development's (HPD) Extremely Low-and Low-Income Affordability Program (ELLA), as well as the NYC 15/15 Rental Assistance Program.

Linden Boulevard III will be an efficient, zero carbon emitting and sustainable building. The project team is ecstatic to be a part of such an innovative building that will advance energy efficiency in New York City's built environment and provide residents with a healthy, safe, and comfortable living environment. If awarded, the Buildings of Excellence funding will greatly contribute to the innovative, efficient design strategies. Without the funding and due to financial constraints for affordable housing, certain strategies may have to be reconsidered.

Early Design

$1,000,000 Award

Radson Development
Magnusson Architecture and Planning PC

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or Gut Rehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>REDC</th>
<th>DEC Env. Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>1</td>
<td>8</td>
<td>New</td>
<td>155,212</td>
<td>143,712</td>
<td>ConEd</td>
<td>ConEd</td>
<td>NYC</td>
<td>No</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>Balanced Ventilation</td>
<td>ASHP</td>
<td>PH-level exterior envelope, sunshades, mineral wool exterior wall insulation (no foams)</td>
<td>Yes</td>
<td>Urban</td>
<td>No</td>
<td>No</td>
<td>ASHRAE</td>
<td>Green Communities Criteria</td>
<td>LMI</td>
</tr>
</tbody>
</table>

Proposer's summary: Linden Boulevard Phase III is currently in the early design phase. It will be 8-stories with 156 affordable residential units. The building lot is located within walking distance of public transportation and numerous amenities. With a gross floor area of 144,858 square feet, tenants will be provided many common facilities including: a community room, supportive services meeting rooms, a playroom, a common laundry room, bicycle storage, and an outdoor terrace courtyard accessible by all tenants. In conjunction with Buildings of Excellence, the building is pursuing Enterprise Green Communities.

Linden Boulevard Phase III will be financed through the New York City Housing Development Corporation (HDC) and the Department of Housing Preservation & Development's (HPD) Extremely Low-and Low-Income Affordability Program (ELLA), as well as the NYC 15/15 Rental Assistance Program.

Linden Boulevard III will be an efficient, zero carbon emitting and sustainable building. The project team is ecstatic to be a part of such an innovative building that will advance energy efficiency in New York City's built environment and provide residents with a healthy, safe, and comfortable living environment. If awarded, the Buildings of Excellence funding will greatly contribute to the innovative, efficient design strategies. Without the funding and due to financial constraints for affordable housing, certain strategies may have to be reconsidered.

Brooklyn, NY
Solara Luxury Apartments Phase III
Rotterdam, NY

Late Design
$750,000 Award

Bruns Realty Group
Black Mountain Architecture

Proposer’s summary: Solara Apartments Phase III in Rotterdam, NY represents an evolution of market-rate, low-carbon, net zero energy housing, using conventional materials and technologies. The design reduces embodied carbon through responsible and climate resilient material and assembly specifications such as cellulose insulation, concrete with a high percentage of fly ash, and low-carbon wallboard. The design radically reduces operational energy use through extensive air sealing, air source heat pumps for heating and cooling, energy recovery ventilation, and solar hot water. Photovoltaic solar panels offset 100% of Solara’s electric use on an annual basis. Solara demonstrates that low-carbon market-rate multifamily buildings provide an enhanced living environment without sacrificing comfort or convenience.

Technical attribute summary: ASHP, Solar thermal DHW w ASHP back-up, ERV, Solar PV, Smart Buildings Controls, HP clothes dryers, electric ENERGY STAR appliances, EV charging stations

<table>
<thead>
<tr>
<th># of Dwellings</th>
<th># of Buildings</th>
<th># of stories</th>
<th>New or GutRehab</th>
<th>Total SF</th>
<th>Residential SF</th>
<th>Electric Utility</th>
<th>Gas Utility</th>
<th>Redc</th>
<th>DEC Env.Justice</th>
<th>Downtown Revitalization Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>3</td>
<td>3</td>
<td>New</td>
<td>92,484</td>
<td>92,484</td>
<td>Nat1 Grid</td>
<td>Nat1 Grid</td>
<td>Capital Region</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Conditioning</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Building Envelope</th>
<th>All Electric</th>
<th>Urban or Suburban</th>
<th>Net Zero</th>
<th>Mixed Use</th>
<th>Performance Path</th>
<th>Other 3rd party certs.</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>ERV</td>
<td>HP Solar Thermal</td>
<td>Switched from poly iso and spray foam insulation to 100% cellulose; use of low-carbon concrete</td>
<td>Yes</td>
<td>Suburban</td>
<td>Yes</td>
<td>No</td>
<td>ANSI/RESNET (ER0)</td>
<td>ENERGY STAR Certified Homes; design based on PH standards - providing WUFI- Passive and PHPP modeling; IndoorAir Plus;</td>
<td>Market Rate</td>
</tr>
</tbody>
</table>
Proposer’s summary: The Seventy-Six Complex, in the Early Stage of Schematic Design, has been a dream of the South End Development (SED) team for decades. This proposal addresses Building C, a 77,609 gross square foot seven-floor mixed-use structure with 89% residential program and 69 dwelling units including studio, one- two-and three-bedroom units, duplexes, and adaptive re-configuration design to provide flexibility for future uses. The majority of units (>60%) will be designated affordable housing. Building C is part of a four-building masterplan for this block, bounded by 2nd Avenue & Krank Street. The project brings ground-breaking triple net zero sustainability, resiliency, and beauty to the deserving South End community. As a proof of concept, this project demonstrates that conscious building can be regenerative, creative, healthy, integrated, and inspiring. By pushing the envelope of what a building can be and the purpose it can serve, The Seventy-Six Complex adds high-performance affordable housing and mixed-use community resources in a replicable and quickly delivered model.

Proposer’s summary: Hudson Hill will prove itself to be a true Building of Excellence by furthering markets for highly efficient, low-carbon building materials and technologies. With a fully electric, wood-framed design, the project will increase adoption of heat pump water heater technology and exemplify novel insulation materials such as sheep’s wool. A robust and airtight thermal envelope with triple-pane windows, along with a large rooftop solar array, will reify the achievability of efficiency and deep energy savings in affordable housing, while also providing safe, secure, and quality residences to an underserved community in the City of Yonkers.

Technical attribute summary: Solar PV, Air Source Heat Pump, ERV, HPWH, ENERGY STAR Appliances, Electric Dryers, Electric Cooktop, modest EV charging
Great Oaks Mixed Use Eco-Park
Albany, NY

Early Design
$1,000,000 Award

Rosenblum Development Corporation
Re:Vision Architecture

Proposer's summary: Building 150 will be constructed at RDC's Great Oaks Office Park, which is ideally situated in an urban-adjacent location on the border of the City of Albany and Town of Guilderland in New York’s Capital Region. Great Oaks is currently comprised of three office buildings in a natural, park-like setting that are impeccably maintained to retain a first-class appeal inside and out. The proposed +/-160,000 sqft., five-story mid-rise building will provide 96 residential units and robust amenity space including a café/market space, fitness center, indoor bicycle storage, and elevated courtyard. Tenants of Building 150 will also enjoy access to the park’s groomed trail, picnic areas, immediate mass transit, and walkability to shopping, dining and other conveniences. By maximizing onsite solar PV and the prescribed benefits from planned Passive House (PHIUS+ 2018) and PHIUS+ Source Zero certifications, Building 150 will achieve lower embodied carbon, superior comfort, net-zero energy use, and resiliency for future climate hurdles. Particularly relevant post-COVID-19, the air-tight envelope coupled with continuous filtered ventilation makes Building 150 more resilient to airborne disease. Furthermore, the new residential development activates underutilized landscape and parking areas while maintaining the current level of green space, which comprises over 30% of the property.

Cooper Park Commons – Building 2
Brooklyn, NY

Early Design
$1,000,000 Award

Maspeth Manager LLC
Steven Winter Associates

Cooper Park Commons Building 2, a 100% affordable housing development, will be a leading example of sustainability and energy efficiency. In an effort to minimize the carbon emissions of the building, the design team is committed to achieving LEED for Homes v4 Gold and Passive House Classic certifications. As a result of Building 2’s focus on sustainable design, it will not only achieve energy cost savings over a typical new-construction affordable housing development, but will also provide enhanced indoor air quality, comfort, health, and resiliency for the tenant community. The project team is committed to pursuing these design features in a cost-efficient manner and maximizing the operating expense savings they yield. The project will also utilize a broad array of funding sources that are available for mixed-use developments such as this. This will create a financially replicable model for sustainable affordable housing developments. By successfully achieving LEED v4 Gold and Passive House standards and incorporating strategies for top-tier maintenance and operation, the team believes this will be a model project for enhancing sustainability at other community-driven campus-style developments.

Proposer’s summary: Cooper Park Commons Building 2, a 100% affordable housing development, will be a leading example of sustainability and energy efficiency. In an effort to minimize the carbon emissions of the building, the design team is committed to achieving LEED for Homes v4 Gold and Passive House Classic certifications. As a result of Building 2’s focus on sustainable design, it will not only achieve energy cost savings over a typical new-construction affordable housing development, but will also provide enhanced indoor air quality, comfort, health, and resiliency for the tenant community. The project team is committed to pursuing these design features in a cost-efficient manner and maximizing the operating expense savings they yield. The project will also utilize a broad array of funding sources that are available for mixed-use developments such as this. This will create a financially replicable model for sustainable affordable housing developments. By successfully achieving LEED v4 Gold and Passive House standards and incorporating strategies for top-tier maintenance and operation, the team believes this will be a model project for enhancing sustainability at other community-driven campus-style developments.

Technical attribute summary: Solar PV, VRF, Standard Electric Exhaust Dryers, Conduction Cooktops
Colonial II Apartments Revitalization

Rome, NY

Early Design
$1,000,000 Award

Beacon Communities Development, LLC.
New Ecology, Inc.

Proposer’s summary: Beacon is proposing to redevelop the Colonial II building, with plans which surpass the standards for carbon reduction and energy efficiency set by the first project and push the building towards net zero energy and net zero carbon. Like Colonial I, this gut renovation project will involve establishment of a tighter thermal envelope, addition of LED light fixtures, installation of high-efficiency equipment, and thermostat upgrades in each apartment. The renovated Colonial II will also feature heating and cooling service from on-site geothermal wells connected to individual ground source heat pumps, individual energy recovery ventilators to provide fresh air and exhaust stale air, central heat pump hot water heaters with a recirculation loop, and a vast solar photovoltaic array to cover 98% of the annual electricity production in the building.

Technical attribute summary: Gut rehab, GSHP, Solar PV meeting 98% of annual energy use, ERV, CO2 HP DHW, electric ENERGY STAR appliances
West Side Homes

Buffalo, NY

Early Design
$363,620 Award

Buffalo Neighborhood Stabilization Company, Inc
Sustainable Comfort

Proposer’s summary: The Buffalo Neighborhood Stabilization Company Inc (BNSC), the housing development arm of PUSH Buffalo, proposes to develop 15 units of housing on Buffalo’s West Side that is targeting certification with Passive House Institute US (PHIUS), and pursuing the NYSERDA Low Rise New Construction Program Tier III Net Zero certification, 2020 Enterprise Green Communities, and WELL Building Certification. By coordinating housing and sustainability work, West Side Homes addresses both human and ecosystem health, creates a resilient project that addresses future heat, precipitation, and drought events, and uses renewable energy sources to avoid increased greenhouse gas emissions.

Technical attribute summary: Panelized walls w/Zip Sheathing, polyiso & cellulose; GSHP, ERV, Solar PV, battery storage, net zero energy, electric dryers and stoves, smart buildings energy management
Johnson Park Green Community Apartments

Utica, NY

Early Design
$1,000,000 Award

Rockabill
SWBR

Proposer’s summary: The new residential development consists of three buildings ideally situated around the Johnson Park Center Green in Utica, New York. With duplex/townhome, garden, and loaded corridor apartment style housing typologies, Johnson Park Green Community will have a space apt for every type of occupant and household, particularly the vulnerable population living below area median income. The three buildings will utilize similar thermal envelope components and mechanical systems, but will highlight the specific application of these standardized and prefabricated systems to varying building/housing typologies. This approach and process will serve useful for future projects looking to successfully achieve Passive House certification standards to a variety of building types while adhering to cost constraints. The project will serve as a Passive House tool kit for inner-city medium-density affordable housing development.

ASHP Space Conditioning System Types

- **Minisplit**
 - One Condenser – One Line Out – One Head
 - <65 kbtu/hour

- **Multisplit**
 - One Condenser – Multiple Lines Out – Multiple Heads
 - <65 kbtu/hour

- **VRF**
 - Multiple Condensers – Multiple Lines Out – Multiple Heads
 - >65 kbtu/hour
Ventilation System Types

• Heat Recovery Ventilation (HRV)
 - Exchanges heat between inside and outside air

• Energy Recovery Ventilation (ERV)
 - Exchanges heat between inside and outside air
 - Limits humidity exchanged between inside and outside
GSHP Systems Explained

• Heat pump system that uses geothermal energy to control loop temperature
 - Temperatures underground are naturally consistent
 - Geothermal energy cools water loop in the summer and heats water loop in the winter
• Various loop types may be used
• Provides space and water heating
• Extremely efficient solution
Solar Thermal Explained

• Collect thermal energy from the sun to heat water
• Often require a backup system
ASHP DHW System Types

- **Unitary Heat Pump Water Heater**
 - Heat pump above storage tank
 - Requires enough space to access heat from the air and
 - Will not perform efficiently if in a cold location
 - If sufficient space is not available, units may be ducted
 - Utilize refrigerants

- **CO2 Heat Pump Water Heater**
 - Heat pump installed separate from the storage tank (2 piece system)
 - CO2 Refrigerant which functions efficiently across a wide temperature range and has a low global warming potential when compared with other refrigerants
Manufactured Envelope Systems

- **Structural Insulated (SIPS) Panels**
 - Premanufactured panels
 - Foam sandwiched between structural exterior sheathing

- **Insulated Concrete Form (ICF)**
 - Foam blocks are connected and filled with concrete
 - Panels can be pre-filled with concrete and delivered to site
Offsite Construction Modular

- Modular Construction
 - Offsite volumetric construction
 - Modules can be constructed as shell only or incorporate levels of finishing
Offsite Construction Panelized

- Manufactured panels with varying degrees of finishing
 - Electrical and mechanical connections
 - Windows and doors
 - Drywall
 - External barriers
Appendix D – Understanding the Data

All project data included is **preliminary** and **subject to change**. As projects progress, data will be updated and shared on NYSERDA’s Building of Excellence web page.

- Project information stage is a reference to completeness of project submittals.
- Where projects claimed incremental cost within a range, the high end of that range was selected for analysis.
- “Incremental Cost” is defined as the dollar amount differential to a project’s budget related to carbon neutral and net zero construction practices when compared to that project’s stated baseline construction code per the developer submitted data.
- Building of Excellence project baseline construction code is defined as the NYS Energy Conservation Construction Code (ECCC) for the year that the project was permitted.
- Incremental cost values have been provided by the project teams as estimates related to their understanding of the project baseline.
- Incremental cost % after incentives and tax credits is calculated:
 $$\text{% Incremental Cost} = \frac{(\text{estimated incremental cost \$} - \text{anticipated NYSERDA incentive \$} - \text{anticipated project tax credits \$})}{\text{estimated building cost \$}}$$
- Where % incremental cost is negative, incentives and tax credits exceed the dollar amount of estimated incremental cost.
- Cost and incremental cost data being collected for Buildings of Excellence projects is preliminary and based on project estimates.
- All Buildings of Excellence projects utilize Electrified Space Conditioning despite being identified as not all electric.
- Energy Costs identified are pulled from project model values – NOT building measurements.
- Where provided, Low to Moderate Income (LMI) Tax Abatements have been excluded from this analysis.
- If a field is blank the project has not yet provided that information to NYSERDA.
Reminder!

Cost data is updated monthly on the Buildings of Excellence Winners page
Thank You