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Deaths attributed to exposure to excessive natural cold (X31) (underlying or contributing cause of death or both), to hypothermia (T68) (contributing cause of death), or to both, according
to the International Classification of Diseases, 10th Revision.

2Deaths attributed to exposure to excessive natural heat (X30) (underlying or contributing cause of death or both), to heat stroke or sunstroke (T67) (contributing cause of death), or to
both, according to the International Classification of Diseases, 10th Revision.

3Deaths attributed to floods (X38), cataclysmic storms (X37), or lightning (X33) (underlying or contributing cause of death or both), according to the International Classification of Diseases,
10th Revision.

SOURCE: CDC/NCHS, National Vital Statistics System, 2006-2010.

Figure 1. Crude death rates for weather-related mortality, by age: United States, 2006-2010

Berko J, Ingram DD, Saha S, Parker JD. Deaths attributed to heat, cold, and other weather events in the United States,
2006— 2010. National health statistics reports; no 76. Hyattsville, MD: National Center for Health Statistics. 2014.



Timing Matters

Table 4. Average mortality effects of the first heat wave in a summer versus later heat waves (1987-2005).

Average percentage

of heat waves that Average effect of heat waves (95% Pl)
Hegion were first in season First in season Not first in season
National (n=43) 40% 2.04% (3.06 to /7.06%)] 2.65% (1.14 to 4.18%)
Northeast (n=7) 40% 11.08% (4.05 to 18.58%) 3.45% (—1.16 to 8.28%)
Midwest (n=12) 38% 2.29% (1.76 to 8.94%)] 0.42% (2.46 to 8.46%)
South (n= 19 38% 3.29% (0.12 to 6.56%)] 0.68% (—1.60 to 3.02%)

The heat wave effect is the increase in nonaccidental mortality risk for heat wave days compared with non-heat wave
days, controlling for daily temperature [the added heat wave effect described by Hajat et al. (2006)].

Anderson, G Brooke, and Michelle L Bell. 2009. Weather-related mortality: how heat, cold, and heat waves affect mortality in
the United States. Epidemiology. 20(2):205-13. doi: 10.1097/EDE.Ob013e318190ee08
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Anderson, G Brooke, and Michelle L Bell. 2009. Weather-related mortality: how heat, cold, and heat waves affect mortality

in the United States. Epidemiology. 20(2):205-13. doi: 10.1097/EDE.0b013e318190ee08



Place Matters
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Anderson, G Brooke, and Michelle L Bell. 2011. Heat Waves in the United States: Mortality Risk during Heat Waves and
Effect Modification Environmental Health Perspectives. 119: 210-218. doi:10.1289/relationships.temperature-mortality.



Place Matters
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FIGURE 1. Temperature-mortality relative risk functions for 11 US cities, 1973—1994. Northern cities: Boston, Massachusetts; Chicago, lllinois;
New York, New York; Philadelphia, Pennsylvania; Baltimore, Maryland; and Washington, DC. Southern cities: Charlotte, North Carolina; Atlanta,
Georgia; Jacksonville, Florida; Tampa, Florida; and Miami, Florida. "C = 5/9 X ('F — 32).

Curriero, F. C., et al. (2002). Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol,
155(1), 80-87.
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Greenhouse-gas emissions from human activity
Gigatons of CO2 equivalents
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Frumhoff et al. 2007.
Confronting Climate Change
In the U.S. Northeast:
Science, Impacts, and
Solutions. Synthesis report of
the Northeast

Climate Impacts Assessment
(NECIA). Cambridge, MA:
Union of Concerned
Scientists (UCS).

FIGURE 12: Increases in Extreme Heat in Northeast Cities
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The number of days over 90°F in large northeastern
cities is projected to increase in the coming decades
until, by late-century, some cities could experience
nearly an entire summer of such days under the higher-
emissions scenario. Projections under this scenario also
show a dramatic increase in the currently small number
of days over 100°F (as depicted in the inset boxes).

lower emissions Il higher emissions
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Bay Area Monitor, 2017 http://bayareamonitor.org/summer-in-the-city-seeking-relief-from-urban-heat-islands/
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FIGURE 1. Urban and rural temperature anomalies (5 year means) for 50 large U.S. metropolitan regions over the period of
1957—2006. These data are updated from an earlier analysis covering the period of 1951—2000 (77) and include first-order weather
stations from GHCN (v2). Each urban station is paired with three proximate rural stations. Urban and rural stations were selected
based on population thresholds and night light intensities and have been fully corrected for standard inhomogeneities, with the
exception of an urban correction. Note that average anomalies computed for years following 2002 reflect less than five years of
observations (79). These data were obtained from the NASA Goddard Institute of Space Studies. For a complete description of this
analysis, see ref 17.

Stone, Brian. 2009. Land Use as Climate Change Mitigation. Environmental Science & Technology 43: 9052—-9056.
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HEAT INDEX DAILY VARIABILITY (SUMMER)
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Introduce yourself.

How does the problem of
thermal vulnerability matter to
your organization?

5 minutes



What programmatic gaps stand in
the way of addressing the
problem of thermal vulnerability?

What information would be usetul
for improving these programs to
address thermal vulnerabpility?

10 minutes



What technological or
programmatic innovations coulo
help address thermal vulnerability
in the community?

What role could your organization
play in those innovations?

10 minutes



,, Thanks!

M zoehamst@buffalo.edu

LA Peter.Wilson@erie.gov
egwalker97@gmail.com

Funded by National Science Foundation Smart & Connected
7 Communities Award # 1737617, and the UB RENEW Institute

community-resilience-lab.com
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