GENERIC IN-USE TEST PROTOCOL FOR NONROAD EQUIPMENT

Prepared for

THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Albany, NY

Barry Liebowitz Project Manager

Prepared by

SOUTHERN RESEARCH INSTITUTE ADVANCED ENERGY & TRANSPORTATION TECHNOLOGIES DIVISION Morrisville, NC

Tim Hansen Project Manager

AGREEMENT # 8958

SOUTHERN RESEARCH

Legendary Discoveries. Leading Innovation.

Final

NOTICE

This report was prepared by Southern Research Institute in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

ABSTRACT

Although new technologies have facilitated the development of improved portable emissions monitoring systems (PEMS), widely-accepted procedures for using PEMS to determine in-use nonroad equipment emissions performance are lacking. Variability in duty cycle, ambient conditions, site-specific operations, and other factors make comparisons between isolated test campaigns difficult. New control strategies (such as aftermarket devices, engine operating algorithms, inspection and maintenance programs, etc.) are coming to market, but vendors, regulators, equipment fleet operators, and other stakeholders recognize a pressing need for repeatable and comparable approaches to evaluating their effectiveness. Implementation of this generic protocol and the associated site-specific protocols provide the required consistent approach. It specifies test organization, instruments, and procedures which will yield quantified performance results of known accuracy.

KEY WORDS

PEMS ISS in-use nonroad on-highway emissions control strategy emissions control device duty cycle fleet engine control module mechanically-controlled engine

ACKNOWLEDGMENTS

Development of this protocol required ideas and concepts provided by numerous stakeholders. Southern Research Institute wishes to acknowledge the contributing organizations, including the New York State Department of Conservation, New York State Energy Research and Development Authority, U.S. Environmental Protection Agency Office of Transportation and Air Quality, Ecopoint, Inc., Emisstar LLC, Environment Canada, and John Deere and Company.

LIST OF ACRONYMS AND ABBREVIATIONS

A-h	Ampere-hour	ISS	integrated filter or bag
CAR	corrective action report		sampling system
CFR	Code of Federal Regulations	LFE	laminar flow element
CH ₃	methyl radical	NDIR	non-dispersive infrared
CH_4	methane	NDUV	non-dispersive ultraviolet
C_3H_8	propane	NIST	National Institute of Standards
CLD	chemilumenescence detector		and Technology
CO	carbon monoxide	NMHC	non-methane hydrocarbons
CO_2	carbon dioxide	NO _X	nitrogen oxides
CVS	constant volume sampling	NTE	not to exceed
DPF	diesel particulate filter	NYSERDA	New York State Energy
DQO	data quality objective		Research and Development
ECM	engine control module		Authority
EGR	exhaust gas recirculation	O_2	oxygen
FID	flame ionization detector	PAM	portable activity monitor
FS	full scale	PEMS	portable emissions monitoring
g/bhp-h	grams per brake horsepower		system
	hour	ppm	parts per million
g/dscm	grams per dry standard cubic	ppmv	parts per million by volume
-	meter	QCM	quartz crystal microbalance
g/gal	grams per gallon	RH	relative humidity
g/h	grams per hour	RPM	revolutions per minute
g/run	grams per run	TEOM	tapered element oscillating
gal/bhp-h	gallons per brake horsepower		microbalance
0 1	hour	THC	total hydrocarbons
gal/run	gallons per run	TPM	total particulate matter
gph	gallons per hour	ULSD	ultra-low sulfur diesel
hp	horsepower	VDC	volts direct current
r	r - · · · ·	σ_{n-1}	sample standard deviation
		UI-1	pro sumaira ao nation

TABLE OF CONTENTS

л ДТ	PLICABILITY	2
	OPE	
3.1.	TEST CAMPAIGN OUTLINE	
NO	NROAD EQUIPMENT, CONTROL STRATEGY, AND HOST SITE	
	ECTION	
4.1.		
4.2.		
4.3.		
	4.3.1. Nonroad Equipment Fleet, Fuel, and Support Services	
	4.3.2. <u>Host Site Operations and Other Resource Requirements</u>	4-4
DU	ГҮ CYCLES	
5.1.	HOST SITE OPERATIONS EVALUATION	
5.2.	SIMPLE CYCLE DEVELOPMENT	
5.3.		
	5.3.1. In-Use Operations Logging	
	5.3.2. Operations Analysis	
	5.3.3. Design Synthesized Duty Cycle	
	5.3.4. Validate Synthesized Duty Cycle	
5.4.		
	5.4.1. <u>General Cycle Criteria</u>	
	5.4.2. <u>Site-Specific Cycle Criteria</u>	
<i>с с</i>	5.4.3. <u>Documentation</u>	
5.5.	IN-USE DUTY CYCLES	
	5.5.1. <u>Nonroad Equipment Dispatching Procedures</u>	
TES	ST PROCEDURES	6-1
6.1.	PREPARATION	
	6.1.1. <u>PEMS Integration</u>	
	6.1.2. <u>ISS Integration</u>	
6.2.		
	6.2.1. <u>PEMS Control Strategy Tests</u>	
	6.2.2. <u>ISS Control Strategy Tests</u>	
6.3.		
6.4.		
6.5.		
6.6.	INSTRUMENT SPECIFICATIONS, CALIBRATIONS, AND PERFORMANCE CHECKS	6.1/
	6.6.1. Instrument Specifications	
	6.6.2. Calibrations and Performance Checks	
	FA QUALITY AND ANALYSIS	
7.1.	CONTROL STRATEGY PERFORMANCE TESTS	

Final

9.0	REF	ERENCES	9-1
8.0	KEP	ORTS	8-1
0.0	DED		0.4
	7.5.	DATA QUALITY	7-7
		7.4.2. <u>TPM Emissions</u>	
		7.4.1. <u>Gaseous Emissions</u>	7-6
	7.4.	EMISSIONS MEASUREMENT METHOD COMPARISONS	
	7.3.	EXTENDED INTERVAL TESTS	
	7.2.	IN-USE EMISSIONS TESTS	
		Analysis	
		7.1.4. Control Strategy Engine and Operational Performance Impact	
		7.1.3. Control Strategy Cost Analysis	
		Duty Cycles	
		7.1.2. Emissions Reductions and Fuel Consumption Changes for In-use	
		Synthesized Duty Cycles	
		7.1.1. Emissions Reductions and Fuel Consumption Changes for	

LIST OF FIGURES

Figure 3-1Test Campaign Flow Diagram3-5Figure 5-1Synthesized Duty Cycle Development Path5-4Figure 6-1Example PEMS Installation6-4Figure 6-2PEMS Exhaust Pipe Adaptor and ISS Sample Fitting Locations6-5Figure 6-3Example ISS and Pump Box Installation on a Sweeper6-6Figure 6-4Upstream and Downstream Sample Locations6-8

LIST OF TABLES

Table 3-1Test Types3-1Table 3-2Measurement Systems and Test Parameters3-2Table 6-1Test Phase Summary6-1Table 6-2Test Measurements6-15Table 6-3PEMS and ISS Specifications6-16Table 6-4Recommended Calibrations and Performance Checks6-17Table 8-1Reported Results List8-1

APPENDICES

AITENDICES

Appendix A:	Site-Specific Protocol Outline	A1
Appendix B:	Field Data Forms	B1
	Analytical Procedures	
11	5	

vi

Page

Page

Page

SUMMARY

The New York State Energy Research and Development Authority (NYSERDA) sponsored this project to assess the performance of air pollutant emission control strategies which can be applied to existing nonroad equipment fleets.

The internal combustion engines that power nonroad equipment are significant sources of air pollution in the U.S. Such equipment is coming under more stringent emissions regulations as the population and environmental impacts increase. Their in-use emissions and fuel consumption are not generally known, however, because laboratory dynamometer tests of the engines alone have been the basis for regulatory certification. Laboratory dynamometer tests generally employ a limited series of steady-state or transient modes which may not accurately reflect the duty cycles actually seen by a particular piece of equipment in the field [1, 2]. Consequently, the U.S. Environmental Protection Agency has modified the Title 40 Code of Federal Regulations (CFR) 86 on-highway vehicle emissions regulations to incorporate in-use testing [3]. The agency also has promulgated Title 40 CFR 1065 in-use testing regulations for new nonroad equipment and engines [4], which form the basis for the test methods outlined in this protocol.

In-use testing is also valuable for existing fleets because test results can:

- show the relationship between the laboratory certification and actual field performance
- determine the emissions and fuel consumption performance differences between vehicles of different ages and duty cycles
- facilitate the development and quantify the performance of retrofit control devices or emissions control strategies
- assist in emissions inventory development through more representative emission factors

In-use emissions, fuel consumption, and nonroad equipment performance evaluations are now possible because of the advent of portable emissions monitoring systems (PEMS) and portable integrated bag- or filter-sampling systems (ISS). PEMS include constant-volume sampling equipment for gaseous emissions or partial flow proportional dilution sampling systems for gaseous and particulate emissions. Both types of PEMS withdraw a partial flow sample from the exhaust gas stream and provide real-time data. Most portable ISS incorporate a partial flow proportional dilution sampling systems for TPM emissions. ISS produce emissions results which are integrated over an entire test run and cannot provide real-time data.

November 2007

Protocols which drive consistent use of these new techniques are few and treat only isolated aspects of inuse testing. For example, some protocols have not discussed the procedural and analytical differences between PEMS (real-time) and ISS (integrated) test results.

This NYSERDA project addresses the lack of in-use testing consistency through the development of this generic protocol. The protocol provides overall test campaign designs, procedures for developing simple, synthesized, and in-use duty cycles, instrument specifications, step-by-step test procedures, and analytical techniques. The associated site-specific protocols will provide information about individual test sites, nonroad equipment, control strategies, and other details unique to a particular test campaign. Proper implementation of the protocol and associated site-specific protocols will allow the assessment of control strategy performance, in-use emissions, extended interval performance trends, and comparisons between different types of emissions measurement equipment.

1.0 INTRODUCTION

Nonroad equipment emissions under real field conditions may vary considerably from those seen during laboratory testing [1, 2]. Regulators, engine manufacturers, and control strategy developers have expressed an increasing need for in-use emissions testing data which would facilitate new designs, estimate impacts from fleet aging and retrofit options, enhance regulatory compliance activities, or to meet other needs. This protocol is intended to provide a consistent in-use testing approach while nonroad equipment is performing actual work under simple, synthesized, or in-use duty cycles.

Portable emissions monitoring systems represent a significant evolution in testing technology because of their ability to measure emissions on a real-time basis. This allows correlation of emissions performance with instantaneous engine or equipment operating parameters under actual field conditions. In contrast, ISS acquire integrated emissions samples for later analysis while the equipment is working in the field over a complete test run. Both systems may be used in conjunction with simple or synthesized duty cycles, while in-use duty cycles generally require PEMS.

A test campaign should be governed by two documents: this *generic protocol* which describes overall testing concepts, and a *site-specific protocol* which addresses individual test details. The generic protocol provides:

- scope of nonroad equipment, control strategies, fuels, measurement parameters, testing equipment, and test types
- procedures for developing simple, synthesized, and in-use duty cycles for use in the field
- PEMS, ISS, and other instrument specifications
- step-by-step procedures for control strategy performance tests, in-use emissions tests, extended interval performance tests, and measurement method comparison tests
- analytical techniques
- reporting requirements

The generic protocol meets stakeholder requirements for flexibility because it allows selection and implementation of various techniques in response to individual test objectives. For example, one test series may seek to quantify control strategy effects as compared to baseline performance while a second may intend only to measure emissions. Each would implement the appropriate sections of the protocol. Although the two campaigns would require different resources, their results would be comparable because of the generic protocol's unified structure.

The testing concepts discussed here could be extended to other transportation sectors such as marine, locomotive, stationary, or on-highway vehicles with suitable modifications. For example, the in-use duty cycle and test procedures could be used to acquire emissions data which meets EPA "not to exceed" (NTE) testing requirements for on-highway vehicles.

2.0 APPLICABILITY

This protocol is applicable to any diesel-fueled nonroad equipment powered by mechanically-controlled engines or electronically-controlled engines equipped with engine control modules (ECM). Engines may be naturally aspirated, turbocharged, or equipped with exhaust gas recirculation-equipped (EGR). All tested equipment should be representative of the fleet of interest.

Nonroad equipment may include, but is not limited to, mobile vehicles, such as:

- excavators
- rubber-tired loaders
- crawler tractors or dozers

or stationary equipment, such as:

- generators
- compressors
- air-conditioning refrigeration units

and can include construction, agricultural, commercial / industrial, logging, or similar applications.

Certain procedures contained in this protocol may be adaptable for evaluations of other equipment categories such as airport ground support, lawn and garden maintenance, recreational vehicles, marine, locomotive, pleasure craft, or other fuel types such as propane, gasoline / methanol blends, and natural gas. Assessment of this generic protocol's applicability beyond the categories specified above will require additional research.

Horsepower (hp) ranges between approximately 5 and 2000 are reasonable, but practical limitations apply because of PEMS, ISS, or other test equipment features and capacities. For example, exhaust gas volumetric flow rates, fuel consumption, torque, ECM outputs, logged engine parameters, or ambient conditions must be within the PEMS, ISS, or auxiliary sensor capacities.

Site-specific protocols may require special considerations depending on engine size. For example, engines larger than approximately 1500 hp may require custom-engineered exhaust gas volumetric flow rate

measurements. Smaller single- or two-cylinder engines may require temporarily-installed plenums to attenuate exhaust gas pulsations.

Allowable fuels are those intended for spark- or compression-ignition engines, including:

- nonroad diesel fuel (approximately 2500 to 3000 parts per million [ppm] sulfur by weight)
- current specification on-highway diesel fuel (capped under EPA regulation at 500 ppm sulfur)
- ultra-low sulfur diesel (capped under EPA regulation at 15 ppm sulfur in October, 2006; ULSD)
- biodiesel blends (typically B5 or B20 with 5 percent and 20 percent biodiesel, respectively)
- gasoline
- hydrogen
- diesel fuel / water emulsions
- diesel fuels which incorporate additives such as fuel-borne catalysts, lubricity, or cetane enhancers

This protocol excludes other fuels because of the limitations of current PEMS technology. Compressed natural gas, liquified natural gas, and propane contain significant amounts of methane. Methane is an important greenhouse gas, but which current PEMS can quantify it only as total hydrocarbons. Fuel with added ethanol or oxygenates, such as gasahol or E-diesel, can produce aldehyde emissions. Test personnel must recalibrate currently-available PEMS to measure such emissions, and this is generally impractical in a field setting.

The nonroad equipment design must allow PEMS or ISS installation, along with the required support equipment such as gas cylinders, exhaust pipe adaptors, and storage battery or generator power supply. The installation should not constrain the nonroad equipment during its normal operation or while performing simple cycles or synthesized duty cycles. This means that the site-specific protocol must specify the appropriate mounting adaptors, brackets, shrouds, or other physical modifications as needed. For example, equipment which undergoes extensive motion during typical operations, such as excavators or loaders, represent significant PEMS or ISS installation challenges.

3.0 SCOPE

This section outlines the scope of the various types of test campaigns (Table 3-1) and summarizes the measurement systems, methods, and test parameters required for each test type (Table 3-2). Any or all test types could be performed during a given test campaign, and the tables should serve as planning tools. For example, a TPM emissions control strategy performance test will require baseline and candidate tests (see Table 3-1). A PEMS TPM accessory, integrated filter samples from an ISS, or a suitable standalone analyzer will be required to determine the TPM emissions (see Table 3-2). Note that while ISS are more readily available than PEMS for measuring TPM emissions at present, the test results are integrated over an entire test run. This generally limits ISS to simple cycles or synthesized duty cycles because in-use duty cycles are uncontrolled. The integrated results would not be repeatable which would prevent meaningful analysis.

The tables include multiple options for some determinations or measurement systems, such as fuel consumption. Test personnel should select the option(s) which are appropriate to the project and specify them in the site-specific protocol.

Table 3-1. Test Types					
Type Description Units					
Control strategy emissions and fuel consumption performance	 Difference between baseline and candidate emissions and fuel consumption PEMS real-time data for gaseous emissions ISS integrated filter data, PEMS accessory, or other standalone instrumentation for TPM Simple, synthesized, or in-use duty cycles (PEMS) Simple or synthesized duty cycles (ISS) 	lb/run gal/run lb/hr			
In-use evaluations	PEMS real-time emissions and fuel consumption data				
Extended interval emissions and fuel consumption performance	 Emissions and fuel consumption trends based on initial and final sets of real-time PEMS test runs separated by an extended interval (usually 6 months). Performance trend consists of the difference between the initial and final test series. Simplified qualitative tests are also possible. Simple, synthesized, or in-use duty cycles Initial and final test run duty cycles must be the same type 	Statistical significance, % change, and confidence interval ^b			
Emissions method comparisons	Difference between two emissions measurement systems integrated over the same test run series				
multiplied by exhaust gas mechanically-controlled e	p-h) data will be available for ECM-equipped engines. Surrogat volumetric flow, may be appropriate for baseline / candidate cor ngines (see §8.2). Let at least three test runs for each condition.				

Table 3-2. Measurement Systems and Test Parameters				
Paran		Measurement System	Units	
	CO	PEMS real-time data from simple, synthesized, or in-use	ppmv	
Gaseous	CO ₂	duty cycles ISS bag sample integrated over entire simple,	g/run	
Emissions	NO _X		g/h	
	THC	synthesized, or in-use duty cycle test run and analyzed at portable bench	g/gal g/bhp-h ^a	
Particulate Emissions	TPM	 PEMS real-time data from TPM accessory such as tapered element oscillating microbalance, quartz crystal microbalance, light scattering devices, laser-induced incandescence, etc.^b ISS particulate filter integrated over test run and analyzed gravimetrically 	g/run g/dscf g/dscm g/gal g/bhp-h ^a	
Unregulated Emissions	Speciated TPM (Examples) Gaseous	 Standalone TPM analyzer ISS samples analyzed for PAH by SW-846, Method 8270c, methylene chloride and acetone extract [5] ISS samples analyzed for organic carbon / elemental carbon by NIOSH Method 5040 [6] ISS samples partitioned by cascade impactor, cyclone, etc. for PM_{2.5} or other size fractions and analyzed gravimetrically PEMS real-time data from TPM accessories for size distribution, number^{b,c} ISS samples analyzed for speciated metallic particulate from fuel additives vanadium emissions from vanadium / titanium catalysts PEMS and ISS accessories or modifications for quantification of: nitrogen dioxide emissions such as those from indoor 	g/run g/dscf g/dscm g/gal g/bhp-h ^a	
	emissions (Examples)	 vehicles ammonia (CH₃) slip or cyanuric acid (HNCO) emissions from urea selective catalytic NO_X reduction systems Weight change quantification in a removable day tank. 	g/h g/gal g/bhp-h ^a	
	Gravimetric	Data are integrated over an entire test run. Real-time differential mass flow measurements taken		
Fuel	on Volumetric	from two coriolis-type flow meters. Fuel consumption is the difference between engine supply and return mass flow.	lb/run gal/run	
Consumption		Real-time positive displacement, temperature- compensated volumetric flow meter which measures makeup flow into the engine fuel supply and return loop.	lb/hr gal/hr gal/bhp-h ^a	
	Carbon balance	Real-time exhaust gas carbon concentration correlated with exhaust gas (or inlet air) flow rate and fuel carbon content. See Title 40 CFR §1065.15 (c) (3) (ii), Title 40 CFR §86.1342 (g) for more information.		
Control Strategy First Cost		 Site-specific data collection on the following: Capital equipment Support equipment Inventoried spares Inventoried reagents and supplies Purchased tooling, brackets, options, nonroad equipment modifications 	\$	

Parameter	Measurement System	Units
	 In-house fabricated tooling, brackets, options, nonroad equipment modifications Installation and implementation labor 	
	• Nonroad equipment downtime for control strategy installation and implementation	
	 Training expenses for technicians, operators 	
	 Site-specific data collection on the following: Routine maintenance labor, parts Major maintenance labor, parts 	
Control Strategy Operating Cost	• Daily reagents, supplies, fuel or electric surcharges, etc.	\$
	 Daily downtime for refilling reagents, regeneration, etc. Overhaul labor, parts, core replacement, disposal 	
Control Strategy Operating Impacts ^d	 Site-specific data collection on the following: Nonroad equipment performance changes as horsepower, brake-specific fuel consumption and net fuel consumption differences between baseline and candidate Scheduling or dispatch impacts as the time required for routine maintenance, major maintenance, training, control strategy regeneration, reagent refreshment, modified fueling practices, oil change intervals, potential problems caused by cold or hot weather, etc. 	\$ or hours
multiplied by exhaust gas vol mechanically-controlled engi ^b Real-time TPM methods are this writing [7] but test person protocols.) data will be available for ECM-equipped engines. Surrogate umetric flow, may be appropriate for baseline / candidate com- nes (see §8.2). under development. Comparability with laboratory results is j nnel may evaluate the available methods while developing site nay be questionable because of widely varying dilution [8], no	parisons on problematic a -specific

to consist of management and dispatcher business data, anecdotal discussions, etc. Data are likely

Assessments of control strategy impacts on engine life or durability is beyond the scope of this protocol. Such assessments are possible, however, and should be developed in close collaboration with the control strategy and engine manufacturer. For example, a durability assessment could include dimensional or surface inspection of critical engine components on a fleet of vehicles after extended operating intervals. Comparison of the inspection results with those expected from an untreated engine fleet, based on the manufacturer's specifications and experience, could yield an assessment of durability impacts.

TEST CAMPAIGN OUTLINE 3.1.

A given test campaign may include any or all of the determinations listed in §3.1. Test personnel should complete tasks in a logical order to yield consistent results. Figure 3-1 shows a generalized work flow

diagram which outlines a control strategy performance evaluation. All flow diagram tasks appear in this generic protocol; the site-specific protocols will treat certain items (such as individual duty cycle specifications, the design for PEMS mounting brackets, etc.) in more detail.

The control strategy evaluation outlined in the figure requires the following:

- select the nonroad equipment and control strategy in conjunction with its feasibility and the availability of a suitable host site (see §4.0)
- develop the duty cycle for the site-specific protocol (see §5.0)
- prepare for testing, including site coordination, test equipment installation, and operator duty cycle training (see §6.1), specify, select, and install sampling equipment
- perform baseline tests (see §6.2)
- implement the control strategy; break in, or degreen if necessary
- perform candidate tests
- analyze and report the data (see §7.0 and §8.0)

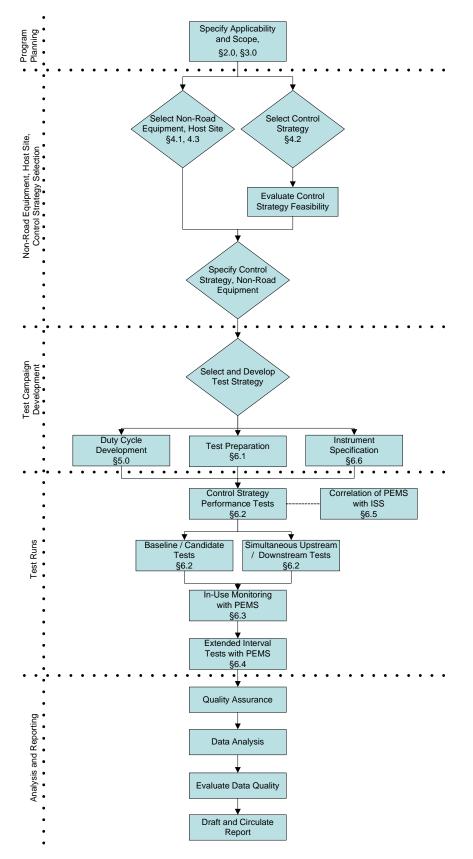


Figure 3-1. Test Campaign Flow Diagram

[Blank Page]

November 2007

4.0 NONROAD EQUIPMENT, CONTROL STRATEGY, AND HOST SITE SELECTION

In-use tests require significant stakeholder participation. These include nonroad equipment operators or fleets, field testing facilities, control technology venders, installers, and others. Other required resources include the individual nonroad equipment or control strategies to test. Appropriate selection of these major stakeholders and test components will profoundly affect the success of any test campaign. This section discusses guidelines for selecting nonroad equipment, control strategies, and host sites.

The steps in the nonroad equipment, control strategy, and host site selection process interact with each other. Every test campaign should select the nonroad equipment, the control strategy (if applicable), and host site early in the site-specific protocol development. For example, the selected host site must be able and willing to participate with the appropriate operators, facilities, and other resources. Each site-specific protocol should explicitly list the resources required. The host site should review it and provide comments prior to testing. Appendix B provides sample field data forms for nonroad equipment, host site, and control strategy selection.

4.1. NONROAD EQUIPMENT SELECTION

The nonroad equipment selected for testing must be "representative" of the population of interest to each test campaign. The site-specific protocol should discuss the features and criteria which determine if the selected equipment is representative. Equipment age, fleet purchasing practice, time since the last major overhaul, state of repair, or other considerations may all affect the population of interest and the resulting selection. The site-specific protocol should therefore provide detailed data about the selected piece such as manufacturer, model, year, engine type, displacement, rated power (or engine / ECM calibration), drive train (torque converter, hydrostatic, manual transmission), accessories, implements, etc.

Some example selection criteria are (depending on the test campaign objectives):

- a qualified technician should certify that the selected machine and any modifications or repairs to the engine, exhaust, drive train, hydraulic, electrical, or other systems conform to the manufacturer's specifications and are in good working order
- outlier machines, either under- or over-performing or with significant aftermarket modifications to the engine, exhaust, drivetrain, hydraulic, electrical, or other systems (unless the modifications are part of an acceptable retrofit design) should not be selected as representative of a fleet of vehicles

- all attachments, implements, or accessory equipment must meet the manufacturer's specifications except for minor repairs, adjustments, or modifications which do not affect performance unless the evaluation of such modifications is a test campaign objective
- site representatives should install a new air filter immediately prior to testing
- the ECM, if equipped, must have no trouble codes flagged which reflect improper engine operations, emissions, or fuel consumption
- mechanically-controlled engine configurations should allow for the installation of the proper sensors and equipment (such as engine speed, exhaust gas flow, and exhaust gas temperature sensors)
- test personnel should review and report the machine's dispatch and maintenance records for routine and unscheduled work
- torque converters should meet manufacturer's specifications during a full torque stall engine revolutions per minute (RPM) check, if applicable

Interviews with site personnel, equipment operators, or pretest screening of groups of nonroad equipment will contribute to the selection of representative machines.

4.2. CONTROL STRATEGY SELECTION

This section discusses control strategy selection criteria. Selected control strategies should typically be those with some degree of market penetration and maturity, although prototypes and development models may be tested under special circumstances.

Control strategy implementation must be feasible for the selected piece of nonroad equipment. Test personnel should plan to coordinate feasibility determinations early in the site-specific protocol development in conjunction with the control strategy provider. Installation of some control strategies will not be feasible on some types of equipment or at certain host sites due to exhaust temperature profiles, flow rates, physical configuration, or other factors. Some feasibility analysis considerations include:

- specification of limitations on the overall changes in exhaust backpressure, exhaust temperature, and other engine parameters to prevent negative impacts on equipment
- acquisition of real-time exhaust temperature profiles during normal in-use operations to ensure that the selected control strategy will operate properly
- review of physical, ambient and exhaust temperature, fuel specification, or other requirements for control strategy installation and operation
- determination of installation or implementation requirements such as brackets, electrical services, etc.

- review of site-specific ambient temperature or other environmental constraints (such as fugitive dust) and their potential impacts on control strategy performance
- development of a break-in or degreening procedure
- documentation of the control strategy's potential ancillary effects, such as power loss, operator visibility impairment, etc.
- documentation of proper engine, nonroad equipment, and control strategy operations after installation

Once test personnel select the nonroad equipment and associated control strategy, the site-specific protocol should summarize:

- selected control strategy manufacturer, model, and operating principles
- step-by-step implementation, installation, operating, and maintenance instructions
- recommended duty cycles, idling period restrictions, or other limitations
- refueling, recharging, regeneration, or other specialized procedures
- limitations on engine crankcase pressure, exhaust back pressure, and exhaust temperatures
- general requirements for break-in or degreening, often specified as 25 to 125 hours of normal operations [18], and step-by-step procedures where necessary
- anticipated performance impacts on the selected nonroad equipment

All control strategy evaluations should include validation by a qualified technician or manufacturer's representative that it is operating correctly prior to testing.

4.3. HOST SITE SELECTION

Host site selection is crucial to the success of any test campaign executed under this protocol. This subsection discusses host site resource requirements and selection criteria. Resources may be provided by different parties as specified in the site specific protocol.

Test personnel are responsible for ensuring that all parties are aware of their roles, responsibilities, and resource requirements as part of the site-specific protocol development.

4.3.1. Nonroad Equipment Fleet, Fuel, and Support Services

The host site should plan to make the selected nonroad equipment available for testing, either from their fleet or from rental or leasing agents. The host site (or equipment lessor) should have a written equipment maintenance program and evidence showing compliance with that plan. Test personnel should work with the host site to ensure that facilities, personnel, and resources are provided for equipment maintenance and control strategy implementation. For example, data collection for control strategy feasibility studies should occur during normal in-use service.

Performance testing may require that the equipment be withdrawn from normal in-use service for:

- installation and removal measurement instruments, sensors, and dataloggers
- installation and removal of control strategy parts and accessories
- duty cycle development test runs and operator training
- baseline and candidate testing for control strategy evaluations under simple and synthesized duty cycles (see §6.2)
- data downloads and measurement instrument maintenance during in-use evaluations (see §6.3)
- initial and final extended interval tests with PEMS (see §6.4)
- emissions measurement equipment comparisons (see §6.5)

Fuel should meet the minimum specifications listed in Title 40 CFR §86.113 unless the site-specific protocol requires other formulations such as bio-diesel or water / fuel emulsions. Site-specific protocols may require ULSD or other fuels in response to individual test campaign requirements or local regulations. This protocol recommends that the fuel holding tank be emptied and cleaned prior to filling with the test fuel lot to ensure consistent fuel properties. The fuel supplier should plan to provide a certified fuel analysis or the site-specific protocol may require an independent analysis. All fuel for baseline / candidate control strategy evaluations, if applicable, should come from a common lot.

4.3.2. Host Site Operations and Other Resource Requirements

Testing will involve three types of operations, depending on the objectives:

- simple cycles
- synthesized duty cycles
- in-use duty cycles (during normal service)

November 2007

Sufficient normal in-use operating hours should be available for control strategy feasibility data collection, break-in or degreening, simple or synthesized duty cycle development, and test runs as specified in the site-specific protocol.

It is likely that simple or synthesized duty cycle tests will require a designated area, pit, working face, or pile which will allow close control of nonroad equipment performance, material properties, or other considerations. For example, a rubber-tired loader test may specify that a given gravel or sand pile be manipulated as part of a duty cycle. Test personnel will collaborate with host site representatives to develop the unique details for each test campaign which will be presented in the site-specific protocols.

The host site should have a sufficient number of duty cycles available for a given test campaign. See §5.0 for a discussion of how long a typical duty cycle may last.

A single nonroad equipment operator should be made available for duty cycle training and all simple or synthesized duty cycle test runs. Ideally, the same operator should plan to conduct all baseline and candidate control strategy test runs.

[Blank Page]

5.0 DUTY CYCLES

This generic protocol is intended for use with "simple cycles," "synthesized duty cycles," or "in-use duty cycles" during normal service. Duty cycles are detailed descriptions of the nonroad equipment maneuvers during testing.

Nonroad equipment maneuvers may be described as individual "events" such as backing, travel forward, bucket extension, digging, etc. Composite events consist of a combination of individual events over varying time periods. A rubber-tired loader, for example, may combine simple forward travel, reverse travel, bucket extension, tilting, and lifting events over a repeatable time period into a single "load bucket" composite event. A simple duty cycle is an arbitrary arrangement of simple or composite events of specified duration performed in sequence under controlled conditions (such as at an artificial gravel pile, designated working face, etc.).

A complete simple cycle could include a series of composite events or short simple cycles. The simple cycle definition for a loader could be described as "load truck", and include several "load bucket" events. This would be appropriate when the duration for the individual events is too short for adequate testing or sampling.

A synthesized duty cycle is a specified series of events, performed under controlled conditions, which are based on in-use equipment maneuvers as logged at the host site. The synthesized duty cycle is intended to reproduce the in-use events found at the host site but in a quantifiable and repeatable manner over a controlled time frame.

An in-use duty cycle consists of the nonroad equipment's normal duties performed at its usual work location according to its normal schedule and process capacity. In-use duty cycles are uncontrolled except to allow for routine emissions testing equipment calibrations, QA / QC checks, or data downloads.

This section:

- provides procedures for researching and logging in-use duty cycles at the host site
- presents simple, synthesized, and in-use duty cycle development and validation principles
- describes cycle criteria development
- specifies duty cycle documentation

Duty cycle development, cycle criteria definition, duty cycle validation, in-use evaluations, and test runs will require monitoring and logging the following engine parameters at 1 Hz [see Table 1 of §1065.915]:

- engine speed, RPM
- intake air or exhaust gas flow rate or surrogate (optional if engine torque, bhp, or fuel consumption are available)
- exhaust temperature at the turbocharger or exhaust manifold outlet (T_{turb}), degrees Fahrenheit (°F) or degrees Celsius (°C)
- exhaust temperature at the muffler or silencer outlet (T_{out}), ^oF or ^oC (optional)
- measured engine torque, percent maximum torque (derived from ECM), or bhp (derived from ECM), if available
- fuel consumption by direct measurement or carbon balance

A suitable dedicated datalogger or ruggedized laptop computer with the required signal conditioners, software, and interface can directly acquire and record the necessary data from most ECM-equipped engines. Mechanically-controlled engines will need temporarily-installed sensors. All sensors should meet the specifications listed in §6.6.

Once duty cycles are developed based on host site operations, test personnel will define cycle criteria which, if met during testing, will help minimize run-to-run variability.

The following subsections discuss host site operations evaluation, duty cycle development procedures, cycle criteria, and documentation.

5.1. HOST SITE OPERATIONS EVALUATION

Host site operations will drive the choice between simple, synthesized, or in-use duty cycles and the subsequent duty cycle development process. Some of the duty cycle issues that host site managers, dispatchers, operators, and test personnel should discuss are:

- reason for the selected nonroad equipment's purchase and its primary mission or function
- primary, secondary, and tertiary duties and average number of hours per day for each
- materials handled or processes implemented
- special considerations, such as:
 - o material condition (sizing, moisture content)
 - o sources of variability and how to minimize them during testing

November 2007

- Final
 - existing in-use maneuvers and events which could be specified under a simple or synthesized duty cycle

Some ECM-equipped machines may accommodate the temporary installation of a portable activity monitor (PAM). The PAM could be used to develop simple cycles or synthesized duty cycles.

Once consensus is reached regarding the selected equipment's most-used functions and maneuvers, test personnel will, with site assistance, define typical events, including idling and shutdowns. Event definitions may consist of a single action (simple event) or multiple actions in series (composite event). For example, short and long duration backing maneuvers will likely require separate simple event definitions. Similarly, "raise and dump load" could be a composite event description for a rubber-tired loader. These events, when pieced together and performed in sequence, should fully describe any observed duty cycle. They will also serve as the components for simple and synthesized duty cycles. Appendix B7 provides a log form.

5.2. SIMPLE CYCLE DEVELOPMENT

A simple cycle consists of an arbitrary series of simple or composite events performed in sequence. Duty cycle developers should use the events defined in §5.1 to develop the simple cycle in consultation with host site personnel. The simple cycle should:

- be representative of a typical work activity, such as several load and dump repetitions for a loader
- last between 1/4 and 1 hour to allow a reasonable number of test runs during a typical day
- be repeatable as determined by the appropriate cycle criteria

Test personnel should dispatch the nonroad equipment to perform the simple cycle while logging the engine parameters listed in §5.0. The operator should perform several simple cycles as a warmup exercise. Then, the simple cycle should be performed until at least three repetitions of each event have been logged. This will ensure that the proposed duty cycle is actually feasible. Also, analysts will use each event's maximum, minimum, mean, and sample standard deviation (σ_{n-1}) for each parameter to develop cycle criteria described in §5.4.

5.3. SYNTHESIZED DUTY CYCLE DEVELOPMENT

Development efforts for synthesized duty cycles have ranged from simple observation, video-taping, and interviewing techniques [9, 10, 11] to complex statistical analysis of data logged during normal revenue service [12, 13, 14]. The techniques strive to digest real-world operations into representative duty cycles for use either in the field or the laboratory. This protocol specifies methods that are reasonably simple for field applications and help ensure that the synthesized duty cycles:

- represent actual operations at the host site or typical nonroad equipment usage
- are repeatable, with as little variation from run to run as is possible, as documented by appropriate cycle criteria

Test personnel will implement the following procedure to develop the synthetic duty cycles for use under this protocol. Appendix B provides field data forms while Figure 5-1 provides a conceptual schematic.

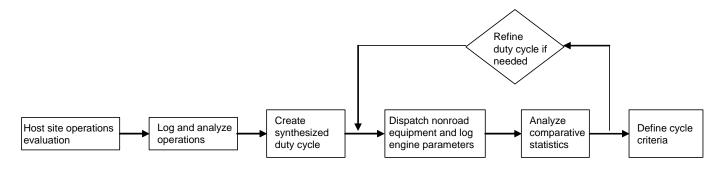


Figure 5-1. Synthesized Duty Cycle Development Path

5.3.1. <u>In-Use Operations Logging</u>

Test personnel will log the nonroad equipment engine parameters listed in §5.0 during at least three normal in-use operations periods. Operations logging period duration may vary, but should generally be longer than one hour in order to fully characterize the equipment functions.

Test personnel will observe and document normal operations events or record the test vehicle during at least one full normal operations period with a video camera. These observations should be synchronized with the nonroad equipment datalogger timestamp for later analysis.

5.3.2. **Operations Analysis**

Analysts will first compare the visual observations with the event list developed prior to the operations logging (see §5.1), confirm the list definitions, or revise them as needed. The analysis will then proceed as follows (see Appendix B for the appropriate log forms):

- 1. Identify each event and its type as it occurs in sequence.
- 2. Determine the elapsed time for each event "i" as: $t_{elapsed,i} = t_{end,i} t_{start,i}$
- 3. Record RPM, exhaust gas flow, T_{turb} , T_{out} , percent power (ECM-equipped engines), torque (ECM-equipped engines), or any other logged parameter for each event as maximum, minimum, mean, and σ_{n-1} .
- 4. Calculate the descriptive statistics for each logged operations period:
 - o frequency as the number of times event "i" occurs
 - o number proportion as the frequency for event "i" divided by the total number of events
 - \circ mean and σ_{n-1} for $t_{elapsed,i}$ for those events which occur more than three times each

 \circ time proportion as the sum of $t_{elapsed,i}$ for each event divided by the duration of the operations period

5.3.3. Design Synthesized Duty Cycle

Duty cycle developers will develop a synthesized duty cycle consisting of a series of events associated with specified elapsed times for each event. Duty cycle developers should use the analysis developed in §5.3.2 as source material. The synthesized duty cycle should represent all the logged and analyzed events, but over a shorter time frame. It should include the most important events logged in similar frequency and elapsed time proportions.

Duty cycle developers may, however, wish to select certain types of events, such as the highest-emitting or most frequent, for some test campaigns, such as control strategy developmental work. The site-specific protocol must clearly explain the rationale for such special duty cycles.

Most synthesized duty cycles should last from one half to one hour (similar to simple cycles). This will facilitate the efficient performance of numerous test runs and aid the statistical analysis. Longer duty cycles may be necessary, however, to fairly represent host site operations or to collect sufficient TPM loading on ISS sample filters.

Duty cycle developers should consult with host site personnel to establish:

- feasible duty cycle development and test locations
- availability of suitable materials and methods to control their properties
- a reasonable event sequence
- required support activities, specialized facilities and scheduling

For example, rubber-tired loader duty cycles may require establishment of a working face or pile from which to operate. If the duty cycle involves frequent lifting and dumping with the bucket high, as with truck loading, a pair of support trucks and a stacker may be required to receive the material and place it back on the pile. Also, simple hand compaction tests, ambient condition monitoring, moisture controls, or mixing practices may be necessary to ensure that sand or aggregate pile properties do not vary excessively. Site-specific protocols should discuss the appropriate procedures.

5.3.4. Validate Synthesized Duty Cycle

Once developed, test personnel will dispatch the nonroad equipment to perform the synthesized duty cycle while logging the parameters described in §5.0. Analysts should compare the resulting synthesized duty cycle data with that from the three operations periods logged according to §5.3.1 and will refine the duty cycle if necessary. The comparison tools are:

Descriptive Statistics

The mean and σ_{n-1} for elapsed time, RPM, intake air flow, exhaust gas flow, T_{turb} , T_{out} , or other appropriate logged parameters for each event should be within ± 5.0 percent of the mean σ_{n-1} seen during the three normal operations logging periods for that event.

Wilcoxon Rank-Sum Test

The Wilcoxon Rank-Sum test [15] provides a non-parametric statistical assessment of whether the data logged during normal operations and that logged during the synthesized duty cycle come from the same population. This reasonably simple test indicates whether, for example, the exhaust gas flow rate observed during a synthesized duty cycle run truly represents that observed during normal operations. Appendix C provides the procedures, and analysts should apply the test to each of the logged parameters.

5.4. CYCLE CRITERIA

Test campaigns which use simple or synthesized duty cycles must incorporate methods which show that each test run accurately reproduced the specified duty cycle. This will reduce run-to-run variability and minimize confidence intervals, such as during baseline / candidate control device evaluations. This

protocol therefore specifies the development of cycle criteria which test personnel will apply to each event after each test run. If all test run events meet their respective cycle criteria, the run may be deemed valid.

General cycle criteria apply to all test campaigns, locations, and nonroad equipment types. Site-specific cycle criteria use data logged during the duty cycle development process as a basis.

5.4.1. General Cycle Criteria

General duty cycle criteria are as follows:

- §86.1330 (e) suggests ambient air pressure should not vary more than 1 "Hg for all test runs. Site-specific protocols may require tighter limits, especially when control strategy or fuel consumption effects are expected to be small. This is because a 1" Hg air pressure change can cause an approximately 0.3 % change in engine efficiency [19].
- test run ambient air temperatures must be within ± 10 °F of the mean for all test runs if the mean is < 80 °F, or within ± 5 °F if the mean is ≥ 80 °F
- elapsed time for each event must be within ± 5.0 % of the mean observed during simple cycle development (see §5.2) or that specified in the synthesized duty cycle (see §5.3).
 Test personnel should strive for tighter elapsed time tolerances, if possible.
- mean exhaust temperature over the test run must be within ± 5.0 % of the mean observed during simple cycle development (see §5.2) or that specified in the synthesized duty cycle (see §5.3). Exhaust temperature criteria must be set for each test vehicle model, as different vehicles will have different exhaust temperature characteristics.

Test personnel should schedule control strategy evaluations, which involve baseline / candidate test runs, during seasons that can reasonably be expected to fulfill these criteria. This will minimize the impact of ambient condition changes. If, for example, a control strategy requires a 3-month break-in period, late spring and early fall may be the best times to schedule testing. Site-specific protocols should address these issues.

5.4.2. <u>Site-Specific Cycle Criteria</u>

Site-specific cycle criteria consist of definitions and numerical targets for each event as observed during testing.

A valid test run will meet the elapsed time cycle criteria and each of the site-specific cycle criteria. Appendix B9 provides a log form. The elapsed time cycle criteria is that each event observed during testing should be within \pm 5 percent of the mean elapsed time for that event recorded during duty cycle development. Time cycle criteria will be largely influenced by the driver of the test vehicle and the test vehicle itself. Time cycle criteria should therefore be set for each driver / test vehicle combination during the test campaign.

Site-specific cycle criteria definitions may consist of individual parameters or combinations. Definitions will vary depending on the test campaign and the nonroad equipment. For example, RPM multiplied by fuel consumption (obtained from direct measurements or ECM data) produces a signal that is reasonably proportional to torque. This could serve as a cycle criteria definition. If fuel consumption is not available, RPM multiplied by T_{out} or RPM multiplied by an exhaust gas surrogate ($\sqrt{\Delta P}$) could serve as cycle criteria.

Sections 5.2 and 5.3.2 specified logging of each parameter over at least three repetitions of each event for both simple and synthesized duty cycles. The cycle criteria target value for each event observed during testing should be:

$$\left(X_{development,i} - 1.7(\sigma_{n-1,development,i})\right) \le X_{run,i} \le \left(X_{development,i} + 1.7(\sigma_{n-1,development,i})\right)$$
Eqn. 5-1

where:

$$\begin{split} X_{development,i} &= cycle \ criteria \ mean \ value \ for \ event \ i \ observed \ during \ duty \ cycle \\ & development \\ \sigma_{n-1,development,i} &= cycle \ criteria \ \sigma_{n-1} \ for \ event \ i \ observed \ during \ duty \ cycle \ development \\ X_{run,i} &= cycle \ criteria \ mean \ value \ for \ event \ i \ observed \ during \ the \ test \ run \end{split}$$

This σ_{n-1} range implies that the mean cycle criteria value for each event, as observed during testing, must be within approximately ± 10 percent of the mean value observed during duty cycle development.

5.4.3. Documentation

The site-specific protocol duty cycle documentation will include:

- working face, pile, or other detailed test location description
- material properties or process loading monitoring and control procedures

- event descriptions and nonroad equipment settings (such as gear selection, throttle position, etc.)
- event sequence, including elapsed times
- general procedures and instructions, such as:
 - o strive to perform each event as consistently as possible
 - o do not attempt to "catch up" or "slow down" to meet a particular elapsed timestamp

Appendix B provides a sample documentation form.

5.5. IN-USE DUTY CYCLES

In-use duty cycles should incorporate the normal revenue service expected of the nonroad equipment at the host site. Test personnel should first evaluate the host site operations as described in §5.1. Participants will then develop a consensus description of the in-use duty cycle. The description should accurately reflect normal in-use service.

5.5.1. <u>Nonroad Equipment Dispatching Procedures</u>

Although tests which incorporate in-use duty cycles should be conducted during regular day-to-day operations, some modifications may be necessary to accommodate testing. All in-use evaluations, unless the site-specific protocol states otherwise, should:

- have similar overall time durations, exclusive of zero / span checks and battery changes (at least six hours is recommended)
- incorporate battery changes and PEMS warmup procedures if necessary
- allow for an initial, final, and interim PEMS analyzer zero and span checks during the evaluation period

The nonroad equipment under test may be conditioned either of two ways prior to testing:

• "cold start"

 \circ shut down the equipment and let the engine lubricant, coolant, and control strategy components cool to between 20 °C and 30 °C [§1065.530 (a) (1) (i)]. Do not start the engine or move the equipment under power until the test run commences.

"hot start"

 \circ dispatch the equipment for a minimum warmup period of in-use service, then shut it down for a 20-minute "soak" period [§1065.530 (a) (1) (ii)]

Test personnel should plan how the PEMS operator will rendezvous with the equipment to conduct zero and span checks and data downloads. Battery capacity and PEMS power requirements will also require consideration. Dispatchers, the equipment operator, and test personnel should develop the appropriate procedures for inclusion in the site-specific protocol.

6.0 TEST PROCEDURES

Projects may incorporate, but are not limited to, the following types of performance tests:

- control strategy performance tests (with PEMS or ISS)
- in-use duty cycle emissions monitoring with PEMS (or ISS as noted in Table 6-1)
- extended interval emissions tests with PEMS
- emissions measurement method comparisons (between PEMS, ISS, or other systems)

Control strategy performance tests are also intended to collect nonroad equipment operational performance, performance impacts, control strategy cost, and maintenance data.

This section discusses preparation and step-by-step procedures for each type of test. The concluding subsection provides the required instrument and analyzer specifications. A test campaign may require consideration of any or all of the concepts. Table 6-1 shows how each major test parameter (see Section 3.0) applies to the performance test types.

Table 6-1. Test Phase Summary					
Test Type					
Parameter		Preparation	Control Strategy Performance Tests	In-Use Evaluations	Extended Interval Tests
Duty Cycle Type	Simple or Synthesized		\checkmark		\checkmark
	In-Use			✓	\checkmark
Measurement	PEMS		\checkmark	\checkmark	~
Instrument	ISS		\checkmark	(✓ ^{<i>a</i>})	
	CO		\checkmark	\checkmark	~
Gaseous Emissions	CO_2		\checkmark	\checkmark	\checkmark
Gaseous Emissions	NO _X		\checkmark	✓	\checkmark
	THC		\checkmark	\checkmark	\checkmark
Particulate	TPM		\checkmark	◆ ^b	*
Emissions	Speciated TPM		•		•
Fuel Consumption Carbon balance			\checkmark	~	\checkmark
Control strategy emissions performance			\checkmark	•	•
Control Strategy Capital Cost		✓			
Control Strategy Operating & Maintenance Costs			\checkmark		◆ ^{<i>c</i>}
Control Strategy Operating and Maintenance Impacts			\checkmark		◆ ^{<i>c</i>}
Long term emissions and fuel consumption performance			¢d		\checkmark

Table 6-1. Test Phase Summary		
	Test Type	
\checkmark = Standard Test		

= Standard Test
= Optional Test

^{*a*}Two ISS operating simultaneously upstream and downstream of a control strategy may be used during in-use evaluations

^bIn-use evaluations may include real-time PM emission monitoring, depending upon available instrumentation.

^{*c*}Test personnel will acquire operational and maintenance cost data over the entire period between initial and final extended interval testing for control strategy extended interval tests.

^{*d*}An extended interval test consists of an initial test run series followed by a final test run series after an extended interval (usually 6 months). The candidate test runs for a control strategy performance test could serve as the initial test runs for an extended interval test. Comparison with the final test runs would allow an assessment of control strategy performance changes over the extended interval.

All test campaigns require development of a site-specific protocol. Site-specific protocols will note considerations which are unique to a particular campaign, control strategy feasibility findings, duty cycle descriptions, site coordination issues, personnel, lines of responsibility, and other essential items.

All test campaigns should nominate a field team leader. This individual should be responsible for:

- initial and ongoing site relations
- coordinating daily activities
- declaring the start and end for each test run
- reviewing analyses and quality assurance checks during testing
- scheduling additional test runs as needed

The field team leader should maintain a signed daily test log which will supplement field log forms and electronically-gathered data.

All Appendix B log forms should be signed and dated before submittal to the field team leader. Electronic data should be copied at the end of each test run and stored in different locations, with at least one copy to be retained by the field team leader.

Test personnel should archive all data for at least two years or in accordance with their organization's standard operating procedures.

6.1. **PREPARATION**

This section discusses preparation for a control strategy performance test. This type of test is the most complicated because they require feasibility evaluations, integration with the selected nonroad equipment,

Final

baseline verses candidate test runs, cost collection, and other activities. They also require installation of ISS or PEMS onto the nonroad equipment and they may require duty cycle development. In general, test personnel should plan to:

- closely coordinate with the host site
- choose the appropriate nonroad equipment and control strategy for the test
- develop PEMS (and ISS, if necessary) handling, logistical, and operating procedures as needed
- develop and document simple, synthesized, or in-use duty cycles with the appropriate datalogger, ECM data, and auxiliary sensors
- install, setup, synchronize, calibrate, and operate the PEMS (and ISS) for baseline tests
- integrate the control strategy onto the nonroad equipment
- install, setup, synchronize, calibrate, and operate the PEMS (and ISS) for candidate tests

Test personnel should first perform the nonroad equipment, control strategy, and site selection processes discussed in §4.0. Prior to testing, maintenance personnel should ensure that the selected nonroad equipment is operating properly. The equipment configuration should be as consistent as is possible for all test runs, especially for baseline / candidate control strategy evaluations. Record the inlet air restriction, exhaust gas restriction, and the control setting (on, off, or automatic) for the major parasitic loads (lights, air-conditioning, heater, fan clutch) in Appendix B15. The selected nonroad equipment may have additional parasitic loads, such as a continuously-operating hydraulic pump / motor combination, which should be set to operate consistently during all test runs.

Test personnel should then develop the appropriate duty cycles (see §5.0) and acquire test instruments, sensors, and equipment (see §6.6).

Test participants should perform as many control strategy implementation and cost collection (see §3.3) steps as possible prior to baseline testing. They should not, however, install equipment that may impact the nonroad equipment's baseline performance until baseline tests are complete.

6.1.1. <u>PEMS Integration</u>

PEMS will generally require location and temporary installation of:

- PEMS, mounting brackets, hold-downs
- external sensors (usually magnetic ambient temperature / RH unit)

- external global positioning system antenna
- exhaust pipe adaptor
- heated sample line and hangers
- computer control system
- ECM communications cable and connectors (if used)
- gas cylinder caddy
- 24 volts direct current (VDC) deep-cycle battery power supply

Integration requirements will vary, depending on the particular PEMS and the selected nonroad equipment. The site-specific protocol should include estimates for labor, materials, and equipment downtime. Figure 6-1 provides a photograph of an example PEMS installation for reference.

Figure 6-1. Example PEMS Installation

Test personnel should install the unit in the operator's cab or under a protective shelter. The location must allow proper clearances for machine operations and minimize exposure to damage. If installed in the operator's cab, proper venting is required for the PEMS exhaust gases.

Exhaust pipe adaptor

Many PEMS use an exhaust pipe adaptor to acquire exhaust flow rate data and gas samples. All engine exhaust should therefore be routed through a single exhaust pipe. The site-specific protocol will denote the required PEMS exhaust pipe adaptor size. Some nonroad equipment may be too large for the available exhaust pipe adaptors or have multiple exhaust pipes. In this case, the site-specific protocol will develop

other strategies for acquiring real-time exhaust flow data and gas samples such as temporarily installing a pitot tube. ΔP pressure sensors, and suitable datalogger.

If possible, test personnel should install the adaptor at the end of a pipe section which is at least ten diameters downstream of the closest disturbance (elbow, flange, etc.) as shown in Figure 6-2. Entries in Appendix B-15 should document the upstream and downstream disturbances, especially for TPM tests. The adaptors weigh approximately two to five pounds, depending on size. Additional bracing may be required for support and to reduce vibration.

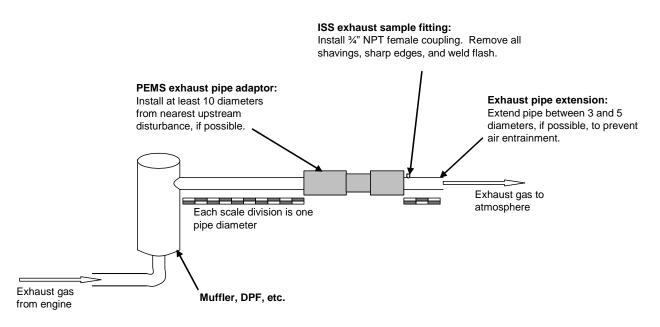


Figure 6-2. PEMS Exhaust Pipe Adaptor and ISS Sample Fitting Locations

PEMS power supply

Most PEMS require significant amounts of operating power. The nonroad equipment under test may be able to provide a portion of that power, but this should not exceed 1.0 percent of its equivalent engine bhp [§1065.910 (d) (1) (iii)]. Separate power supplies are preferred. Many PEMS will require a separate 24 VDC battery power supply. Hold-down, support bracket, and handling equipment designs must account for battery size and heavy weights. Test personnel should select battery capacity which will limit battery discharge to 50 percent of the nameplate ampere-hour (A-h) rating to avoid short battery lifespans.

6.1.2. <u>ISS Integration</u>

Major ISS system components may include:

- ISS dilution tunnel, probe, heated umbilical
- pump box for sampling and dilution air pumps
- sample bag container
- sample filter body
- heated sample line
- 110 VAC generator power supply
- laminar flow element (LFE) for intake air flow measurements
- exhaust pipe sample fitting

Figure 6-3 shows an example ISS and pump box installed and ready for testing. The 110 VAC generator is out of view at the rear of the test vehicle. Test personnel usually suspend the sample bag container (not shown) from any convenient point.

Figure 6-3. Example ISS and Pump Box Installation on a Sweeper (photo courtesy of Environment Canada)

Intake air flow measurement

ISS testing must include methods to measure either intake air or exhaust gas flow rates. A PEMS exhaust pipe adaptor may function with a ISS. Some tests, however, may incorporate both PEMS and ISS. In this case, the PEMS exhaust pipe adaptor will occupy that position on the nonroad equipment. This means that the ISS instruments must acquire intake air flow rates with a LFE and air filter assembly installed at engine intake air plenum. LFE size will depend on the nonroad equipment selected for testing. Test personnel should plan to specify the appropriate flanges, adaptors, and sensor line routing in the site-specific protocol.

Note that the existing air filter or any replacement must meet or exceed all manufacturer's specifications. If the LFE incorporates its own intake air filter, test personnel should review the filter specifications or conduct an inlet air filter restriction test. The inlet air restriction should be less than halfway between the value seen with a new air filter alone and the maximum value specified by the engine manufacturer [§86.1330 (f) (1) (i)], generally less than 15 "H₂O.

Test personnel should plan to leave the LFE air filter assembly and elements, if used, in place throughout any baseline / candidate control strategy evaluation.

6.2. CONTROL STRATEGY PERFORMANCE TESTS

Control strategy performance tests will consist of at least three baseline and three candidate test runs performed under simple or synthesized duty cycles. Test personnel may perform more test runs in order to:

- show a statistically significant difference between the baseline and candidate conditions
- refine the confidence interval on the difference

The number of baseline test runs is a function of sampling variability (or σ_{n-1} of the test results), and the control strategy performance. Duty cycles, operators, and significant ambient condition changes can all affect sampling variability. The number of candidate test runs should at least equal the number of baseline test runs.

Control strategy tests may incorporate either ISS or PEMS, depending on individual test campaign requirements. ISS results are integrated over the entire test run while PEMS data is real-time. Note that control strategy tests may also incorporate ISS / PEMS comparisons.

In general, control strategies intended to reduce TPM require testing with ISS. Site-specific protocols may employ PEMS, however, as real-time TPM instruments become available. The PEMS data should be correlated with simultaneous ISS results, collected over the same simple cycle or synthesized duty cycle, as outlined in §6.5.

Control strategies such as diesel particulate filters (DPF) incorporate regeneration cycles which will affect duty cycles and testing schedules. The site-specific protocol should include procedures for determining the DPF operating state and whether to test just before, just after, at other times, or how to capture all events with respect to regeneration. For example, one duty cycle may produce mean exhaust temperatures which are too low for DPF regeneration while those seen during a second duty cycle might be sufficiently high for long enough periods. In this case, it may be necessary for test runs to incorporate both duty cycles into a longer integrated duty cycle.

Site-specific protocols may specify that testing occur in the following order:

- baseline test runs prior to installation of the control strategy
- control strategy installation, break-in, or degreening
- candidate test runs

Suitable sampling location choices can represent baseline and candidate conditions, respectively, on nonroad equipment with existing control strategies. Figure 6-4 shows an example. Upstream ("baseline") and downstream ("candidate") tests can utilize a single PEMS or ISS over simple cycles or in-use duty cycles. Test personnel would switch the sampling probe between the two locations depending on the desired test condition. Two PEMS or ISS, with their sampling probes installed on the upstream and downstream locations simultaneously, could provide performance data during the same test runs. Also, this is the only configuration that would provide meaningful results for ISS used under in-use duty cycles.

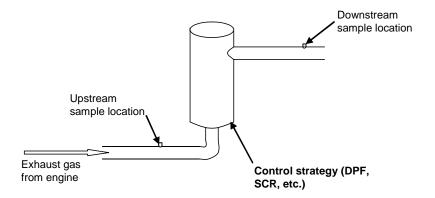


Figure 6-4. Upstream and Downstream Sample Locations

6.2.1. PEMS Control Strategy Tests

Baseline Test Runs

- 1. Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly.
- 2. Synchronize all clocks to the PEMS datalogger timestamp or to GPS time, if available.
- 3. Start the nonroad equipment and dispatch it to perform one complete simple or synthesized duty cycle for warmup. Immediately begin a 20-minute "soak" period, either at low idle or with the

machine shut down, as specified in the site-specific protocol. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.

- Energize the PEMS for its specified warmup period. Use power mains for PEMS warmup to avoid depleting the batteries. Conduct PEMS initial zero and span checks. Perform at least one NMHC contamination check per test day. Collect ambient air samples for background CO, CO₂, NO_x, TPM, or THC correction.
- 5. Switch PEMS to battery power supply without interruption.
- 6. Start PEMS sampling.
- 7. Start the nonroad equipment and operate the engine at midrange idle for 30 seconds. Reduce engine speed to low idle for 10 seconds. Accelerate the engine to full speed (rpm) for 2 seconds to create a spike in the logged data file. Reduce the engine speed to low idle for 5 seconds and immediately start the test run. This operating profile will provide readily recognizable data patterns which will help later analysis.
- 8. Immediately dispatch the nonroad equipment to perform one complete simple or synthesized duty cycle.
- 9. Immediately begin a 20-minute soak period (at low idle if the PEMS is connected to the vehicle battery or shut down) during data download and post-run checks. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.
- Inspect the PEMS sample line, in-line filter housings, and other components upstream of the analyzers for condensed moisture. Invalidate the test run if moisture is present. Conduct PEMS final zero and span checks.
- 11. Review cycle criteria (3 complete cycles needed to develop cycle criteria; see §5.4) to establish the run's validity. This step may be completed later, depending on cycle duration and workloads.
- 12. Repeat steps 5 through 11 until 3 valid test runs are complete.
- 13. Calculate the mean and confidence interval on the results for each parameter (see §7.1). Conduct additional test runs if the confidence interval is a significant fraction of the expected performance.
- 14. Note: connect the PEMS to the power mains and exchange the PEMS batteries as needed without interruption to avoid having to repeat its warmup period. The site-specific protocol should specify the appropriate interval.

Candidate Test Runs

- 15. Implement, degreen, or break in the control strategy according to procedures in the site-specific protocol (typically 25 to 125 hours [18]).
- 16. Certify proper operation of the control strategy and nonroad equipment as specified in the sitespecific protocol.
- 17. Conduct candidate test runs according to the baseline test run procedures (steps 1 through 12) except that the number of candidate test runs should at least equal the number of baseline runs.

- Calculate and report the mean and confidence interval on the difference between the baseline and candidate results according to procedures in §7.1. Conduct additional candidate test runs (up to 6) if necessary.
- 19. Collect control strategy cost, performance, and user's information (see Appendix B3, B4).

6.2.2. ISS Control Strategy Tests

ISS and PEMS control strategy evaluations are generally equivalent.

Baseline Test Runs

- 1. Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly.
- 2. Synchronize all clocks to the ISS datalogger timestamp or GPS time, if available.
- 3. Energize the ISS analyzer bench for at least $\frac{1}{2}$ hour warmup period.
- 4. Collect and analyze an integrated ISS bag sample of the ambient air. It will serve as the background sample for ambient pollution concentration corrections.
- 5. Start the nonroad equipment and dispatch it to perform one complete simple synthesized duty cycle for warmup. Immediately begin a 20-minute "soak" period, either at low idle or with the machine shut down, as specified in the site-specific protocol. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.
- Perform ISS tunnel leak check, collect NMHC and TPM (as needed) tunnel blank and background samples at least once per day. Analyze ISS gaseous samples immediately or during the following test run.
- 7. Start ISS sampling and immediately dispatch the nonroad equipment to perform one complete simple or synthesized duty cycle.
- 8. Stop ISS sampling and inspect sample train, sample bag, and filter housings for condensed moisture. Invalidate the test run if moisture is present.
- 9. Recover and inspect TPM filters (if used) for condensed moisture. Invalidate the test run if moisture is present. Store TPM filters under refrigeration or in a cooler until analyzed.
- 10. Immediately begin a 20-minute soak period (at low idle if the ISS is connected to the vehicle battery, or shut down) during data download and post-run checks. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.
- 11. Analyze ISS gaseous samples immediately. Perform all applicable zero, span, and drift checks.
- 12. Review the TPM filter face temperature log (if used; see Table 6-4) and cycle criteria (3 complete cycles needed to develop cycle criteria; see §5.4) and to establish the run's validity. Cycle criteria review may be completed later, depending on cycle duration and daily workloads.
- 13. Forward the TPM filters for gravimetric or additional analysis (see Table 3-2.)

- 14. Repeat steps 8 through 13 until 3 valid test runs are complete.
- 15. Calculate the mean and confidence interval on the results for each parameter (see §7.1). Conduct additional test runs if the confidence interval is a significant fraction of the expected control strategy performance.

Candidate Test Runs

- 16. Implement, degreen, or break in the control strategy according to procedures in the site-specific protocol (typically 25 to 125 hours [18]).
- 17. Control strategy vendor, technician, or authorized personnel to certify proper operation of the control strategy and nonroad equipment.
- 18. Conduct candidate test runs according to the baseline test run procedures (steps 1 through 13) except that the number of candidate test runs should at least equal the number of baseline runs.
- 19. Calculate the mean and confidence interval on the difference between the baseline and candidate results according to procedures in §7.1 Conduct additional test runs (up to 6) if necessary.
- 20. Collect control strategy cost, performance, and user's information (see Appendix B3, B4).

6.3. IN-USE EVALUATIONS

In-use evaluations will consist of PEMS monitoring under in-use duty cycles and will allow emissions assessments under real world conditions.

In-use evaluations could also be configured to yield a different type of control strategy performance evaluation than that described in §6.2. The following test schedule would yield two independent control strategy performance assessments:

- conduct baseline test runs under a synthesized duty cycle
- conduct baseline in-use evaluation
- conduct candidate test runs under a synthesized duty cycle
- conduct candidate in-use evaluation

Step-by-step in-use test procedures are as follows:

- 1. Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly.
- 2. Synchronize all clocks to the PEMS datalogger timestamp or GPS clock.

- 3. Energize the PEMS for its warmup period, if necessary. Use power mains for PEMS warmup to avoid depleting the batteries.
- 4. Switch PEMS to battery power supply without interruption. Conduct PEMS initial zero and span checks. Perform at least one NMHC contamination check per test day.
- 5. Start PEMS sampling.
- 6. Check the site-specific test plan and §5.5.1 regarding "cold start" or "hot start" procedures. Start the nonroad equipment and dispatch it to normal in-use service with the appropriate cold or hot start procedure.
- Conduct zero and span checks as needed. The frequency of these interim checks depends on PEMS performance and stability characteristics. Test operators should begin with hourly checks, but this period may be modified as needed.
- 8. Exchange batteries at the time(s) noted in the site-specific protocol. Note that if power mains are unavailable or if the battery exchange cannot be made without interruption, conduct another warmup period, zero, and span check prior to continuing the test run.
- 9. Continue testing until the planned in-use period has elapsed, not including zero and span checks or PEMS warmup periods (6 hours is recommended).
- 10. Collect control strategy cost, performance, and user's information (see Appendix B3, B4).

6.4. EXTENDED INTERVAL TESTS

Extended interval tests are intended to assess nonroad equipment or control strategy performance trends. They consist of a series of initial PEMS test runs followed by an extended interval of normal in-use service, typically at least 6 months. Tests conclude with a series of final PEMS test runs.

Extended interval tests may employ simple cycles, synthesized duty cycles, or in-use duty cycles as long as the initial test techniques and duty cycles match those used for the final test series. For example, a control strategy candidate series could serve as the initial test series for an extended interval test. Comparison of the final and initial test series results would show how the control strategy performs over time. Test personnel may opt to remove the control strategy to return the nonroad equipment to its baseline configuration and conduct additional test runs, or conduct additional test runs upstream of the control device. This may be particularly valuable if the extended interval tests show significant positive or negative changes from the initial test series.

Some control strategies may be amenable to simplified extended interval performance assessments. For example, a blackened tailpipe or black spots on the outlet face of a DPF indicate a failure while a clean outlet face is a strong indication that the control efficiency remains high. Although such assessments are

qualitative rather than quantitative, site-specific protocols may incorporate them in conjunction with the control strategy performance tests described in §6.2.

Ambient temperatures should be as close as possible between the initial and final test series. Judicious choice of season, based on local weather conditions, may dictate the test schedule. The site-specific protocol should address this issue.

The nonroad equipment operator should be the same for the initial and final test series.

Step-by-step procedures are as follows:

- Perform at least three initial test runs with PEMS according to §6.2.1. Use steps 1 through 14 for nonroad equipment without control strategies. Use steps 15 through 17 for control strategy extended interval tests.
- Calculate the mean and confidence interval on the results. Perform additional test runs (up to 6) to refine the confidence interval if necessary. This especially applies if the confidence interval is a significant fraction of expected control strategy performance.
- 3. Dispatch the nonroad equipment to normal in-use service for the specified extended interval.
- 4. Collect the operations data specified in the site-specific protocol at least monthly.
- 5. At the end of the extended interval, perform final test runs. The number of final test runs should at least match the number of initial test runs. Use the same duty cycle and PEMS. The nonroad equipment operator should also be the same for synthesized duty cycle tests.
- Calculate and report the mean and confidence interval on the difference between the initial and final test run series according to procedures in §7.1.Conduct additional final test runs (up to 6) if necessary.
- 7. Collect control strategy cost, performance, and user's information (see Appendix B3, B4).

6.5. EMISSIONS METHOD COMPARISONS

Emissions measurement method comparisons consist of at least three test runs which incorporate each method operating simultaneously under a simple or synthesized duty cycle. Test personnel may conduct up to six test runs in conjunction with control technology evaluations if desired. This section uses the comparison between a ISS and a PEMS as an example.

- 1. Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly.
- 2. Synchronize all clocks to the PEMS datalogger timestamp or GPS clock.

- 3. Energize the ISS analyzer bench for at least $\frac{1}{2}$ hour warmup period.
- 4. Start the nonroad equipment and dispatch it to perform one complete simple or synthesized duty cycle for warmup. Immediately begin a 20-minute "soak" period, either at low idle (if the PEMS or ISS is connected to the vehicle battery) or with the machine shut down, as specified in the site-specific protocol. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.
- Perform ISS tunnel leak check, collect NMHC and TPM (as needed) tunnel blank and background samples at least once per day. Analyze ISS gaseous samples immediately or during the following test run.
- 6. Energize the PEMS for the warmup period, if necessary. Use power mains for PEMS warmup to avoid depleting the batteries. Perform initial zero, span checks.
- 7. Switch PEMS to battery power without interruption. Start PEMS sampling
- 8. Start the nonroad equipment and operate the engine at midrange idle for 30 seconds. Reduce engine speed to low idle for 10 seconds. Accelerate the engine to full speed (rpm) for 2 seconds to create a spike in the logged data file. Reduce the engine speed to low idle for 5 seconds and immediately start the test run. This operating profile will provide readily recognizable data patterns which will help later analysis.
- 9. Start ISS sampling and immediately dispatch the nonroad equipment to perform one complete simple or synthesized duty cycle.
- 10. Stop ISS sampling and inspect ISS sample train, sample bag, and filter housings for condensed moisture. Invalidate the test run if moisture is present.
- Immediately begin a 20-minute soak period (at low idle or shut down, as above) during data download and post-run checks. Follow the manufacturer's recommendations regarding turbocharger cooling if the engine is shut down.
- 12. Perform PEMS final zero, span, and drift checks.
- 13. Analyze ISS gaseous samples immediately. Perform all applicable zero, span, and drift checks.
- 14. Review cycle criteria (3 complete cycles needed to develop cycle criteria; see §5.4) to establish the run's validity.
- 15. Repeat steps 8 through 13 until 3 valid test runs are complete.
- 16. Calculate the mean and confidence interval on the difference between ISS and PEMS results for each parameter according to the procedures in §7.4.
- 17.

6.6. INSTRUMENT SPECIFICATIONS, CALIBRATIONS, AND PERFORMANCE CHECKS

The emissions and performance determinations described in this protocol require numerous contributing measurements, sensors, instruments, analytical procedures, and dataloggers. This section provides general

specifications which, if met, will help ensure repeatability within a test campaign and comparability with other programs.

Instrumentation and sensor selection depends on whether test personnel are determining control strategy feasibility, developing duty cycles, or conducting test runs. If the engine is ECM-equipped, test personnel should plan to confirm the communications protocol (SAE J1939, J1708 / J1587, or proprietary) and datalogging feasibility prior to testing. Engines without feasible ECM communications will require temporary installation of auxiliary sensors for the parameters suggested in Table 6-2 and a suitable datalogger. The appropriate brackets, fittings, equipment supports, and enclosures should also be considered during test planning.

Table 6-2. Test Measurements					
	EC	M-Equipped		Mechanically-	Controlled
Parameter or Sensor	Control Strategy Feasibility and Duty Cycle Development	PEMS and ISS Emissions Testing	SAE J1939, J1708 / J1587 SPN ID # (reference)	Control Strategy Feasibility and Duty Cycle Development	PEMS and ISS Emissions Testing
Percent load	+	*	92		
Net brake torque	+	*	93		
Turbocharger boost pressure ^{<i>a</i>}	+	*	102		\checkmark
Exhaust gas temperature (T _{out})	+	*	173	\checkmark	*
Speed (RPM)	+	*	190		*
Air inlet pressure	+	*	106	*	*
Exhaust gas backpressure	+	*	131	\checkmark	\checkmark
Barometric pressure (P _{bar})	+	*	171		*
Ambient temperature (T_{amb})	+	*			*
Turbocharger exit temperature (T_{turb})					
Pollutants (CO, CO_2 , NO _X , THC, TPM if used)		*			*
Exhaust gas flow rate		*			*
Exhaust gas flow rate surrogate: high range ΔP				\checkmark	\checkmark
Exhaust gas flow rate surrogate: low range ΔP				\checkmark	
Supply fuel flow ^{<i>a</i>}					
Return fuel flow ^{<i>a</i>}					
 + ECM output to standale * Recorded by PEMS date √ Dedicated sensor output 	talogger	alogger			

Table 6-2. Test Measurements					
	EC	M-Equipped		Mechanically-Controlled	
Parameter or Sensor	Control StrategySAE PEMS andControl J1939,PEMS and StrategyFeasibility and Duty Cycle DevelopmentISSJ1708 / ISSFeasibility and Duty Cycle ID# (reference)PEMS and Strategy				
 Manually recorded from temporarily-installed gauge prior to testing 					
^{<i>a</i>} If used					

6.6.1. Instrument Specifications

Analytical instruments, such as those used for emissions, fuel consumption, and other determinations should employ the detection principles listed in Title 40 CFR 1065 [4], §1065.201 through §1065.295. Table 6-3 lists the accuracy specifications recommended for use with this protocol. The specifications generally conform to Table 1 of §1065.915. The ISS anticipated to be used for in-use testing has many similarities to laboratory-based constant volume sampling (CVS) systems. This protocol, therefore, adopts several of the CVS system specifications listed in Table 1 of §1065.205 and applies them to the ISS. Instrument specifications and detection principles may differ from those listed here if the test report explicitly identifies the differences and the reasons for them.

Table 6-3. PEMS and ISS Specifications					
Parameter	Logging Frequency	Accuracy	Repeatability		
Engine speed	1 Hz	5.0 % of point or 1.0 % of \max^{a}	2.0 % of point or 1.0 % of max		
Torque estimator, BSFC	1 Hz	8.0 % of point or 5.0 % of max	2.0 % of point or 1.0 % of max ^{b}		
Pressure transducers	1 Hz	5.0 % of point or 5.0 % of max	2.0 % of point or 0.5 % of max		
Ambient barometric pressure	6 second	0.07 "Hg (250 Pa)	0.06 "Hg (200 Pa)		
Temperature transducers $(T_{turb}, T_{out}, T_{amb})$	1 Hz	1.0 % of point or 5.0 °C	0.5 % of point or 2.0 °C		
Dewpoint / RH ^c (if used)	6 second	5.0 °F	2.0 °F		
Exhaust flow	1 Hz	5.0 % of point or 3.0 % of max	2.0 % of point		
Instrumental analyzer concentration	1 Hz	4.0 % of point	2.0 % of point		
Fuel flow (if used) d	1 Hz	2.0 % of point or 1.5 % of max	1.0 % of point or 0.75 % of max		
ISS only					
Instrumental analyzer conc.	1 Hz	2.0 % of point	1.0 % of point		
Gravimetric TPM balance	n/a ^e	0.1 % (see §1065.790)	0.5 μg		

	Table 6-3. PEMS and ISS Specifications					
Parameter	Logging Frequency	Accuracy	Repeatability			
Main flow rate						
Dilution air flow rate	2 Hz					
Sample flow rate	2 NZ	$1.0 \% FS^{f}$	n/a			
Differential pressure (if						
used)						
""max" refers to the maxin	^a "max" refers to the maximum value expected during testing.					
			ause §1065.915(b)(5)(i) regulations			
requiring this on nonroad	engines are no	t effective until 2010.				
^c relative humidity (RH)						
			eterminations from removable day			
			umetric makeup flow into a closed			
diesel engine fuel circulati	diesel engine fuel circulation loop, or 4) other methods of direct fuel consumption measurement. Note that					
the supply and return flow meters must be extremely accurate (generally better than \pm 0.2 %) to achieve						
this specification for differential flow at low fuel consumption rates.						
^{<i>e</i>} Not applicable (n/a)						
^f Full scale (FS)						

Data acquisition systems must be capable of logging all parameters at the intervals specified in Table 6-3 or more frequently. Analog to digital conversion resolution must be sufficient to show less than ± 0.05 percent change in any logged value (11-bit or better). The logged values (after analog to digital conversion) should form the basis for all instrument calibration analysis.

6.6.2. <u>Calibrations and Performance Checks</u>

Table 6-4 lists recommended calibration intervals and performance checks as discussed in 40 CFR 1065 [4]. Note that test personnel should perform some performance checks, such as leak checks, analyzer zero and spans, etc. before and after each test run while others may be performed either in the field or laboratory. The 40 CFR 1065 references provide step-by-step procedures.

Tab	Table 6-4. Recommended Calibrations and Performance Checks						
System or Parameter	Description / Procedure	Description / Procedure Frequency					
Engine speed	11-point linearity check	At purchase / installation	§1065.307 (d); (e) (1)				
Pressure transducers							
Temperature							
transducers (T _{turb} ,	NIST-traceable ^{<i>a</i>} calibration	Within 12 months	§1065.315				
T_{out}, T_{amb}							
Dewpoint / RH							
Exhaust flow			§1065.330				
All instrumental	11-point linearity check	Within 12 months	§1065.307 (d); (e) (6)				
analyzers	11-point inleanty check	Within 12 months	§1005:507 (d), (c) (0)				
CO ₂ (NDIR	H ₂ O interference	Within 12 months	§1065.350				
detectors) ^b	1120 interference	Within 12 months	ş1005.550				

air flow measurement deviceleak check (ΔP stable for 15 seconds at 3 "H2O)Once per test dayGas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.920Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run§1065.925, §1065.935	Tat	ble 6-4. Recommended Calib	rations and Performance	Checks
ParameterCO_NDIR detectors)CO_N_H_O interferencePropane (C,H_a) calibration (C,H_a) calibration (C,H_a) methyl radical (CH_a) response optimization C,H_a / methyl radical (CH_a) response factor check $$1065.360$ (b) $$1065.360 (c)$ Hydrocarbons (FID)'C,H_a / CH_n response factor check Oxygen (O_2) interference check $$1065.360$ (c)NOxC,H_a / CH_n response factor check $$1065.370$ NOxCO_2 and H_2O quench (CLDy' interference (NDUV detectors)' $$1065.370$ NOxCO_response (ricronium dioxide detectors) $$1065.372$ NOxCO_response (ricronium dioxide detectors) $$1065.376$ NOx(PEMS with chillers for sample moisture removal)within 12 monthsNOx(PEMS with chillers for sample moisture removal)\$1065.376PEMSComparison against laboratory CVS systemWithin 6 months or immediately prior to departure for field testsPEMSZero / span analyzers (zero $\le \pm 2.0$ % of span, span $\le \pm$ test run or as needed during in use concentration)/\$1065.925, \$1065.935PEMSDifferential pressure line leak check (≤ 2.0 % of span, span $\le \pm$ test contors $$1065.657$ NMHC contamination check (≤ 2.0 % of span, span $\le \pm$ test run or as needed during in use test run\$1065.920ISSComparison against laboratory CVS systemAt purchase / installationsISSComparison against laboratory CVS systemAt purchase / installationsISSComparison against laboratory CVS systemAt purchase / installations <th>e e</th> <th>Description / Procedure</th> <th>Frequency</th> <th>Reference</th>	e e	Description / Procedure	Frequency	Reference
Propane (C;H_g) calibration FID response optimization (C;H_g/ methyl radical (CHg) response factor check $\frac{1065,360 (b)}{81065,360 (c)}$ Hydrocarbons (FID) ^c $C;H_g / CH_1$ response factor check $\frac{1065,360 (b)}{81065,360 (c)}$ Oxygen (O_2) interference check $C;J_{H_g} / CH_1$ response factor check $\frac{1065,360 (b)}{81065,360 (c)}$ NOx $C;J_{H_g} / CH_1$ response factor check $\frac{1065,360 (c)}{81065,370}$ NOx CO_2 and H _i O quench (CLD) ^d $\frac{1065,370}{81065,370}$ NOx CO_2 and H _i O quench (CLD) ^d $\frac{1065,370}{81065,370}$ NOxCom-methane hydrocarbons (NMHC) and H ₂ O interference (NDUV detectors) $\frac{1065,374}{1005,376}$ NOxChiller NO ₂ penetration (PEMS with chillers for sample moisture removal) $\frac{1065,376}{1000,100,100,100,100,100,100,100,100,10$		•		
FID response optimization C,H ₄ / methyl ratical (CH,) response factor determination C,H ₄ / CH, response factor determination CD theck CO sygen (O ₂) interference check CO sygen (O ₂) interference (CLD) ⁴ $$1065.360$ (c)NOxCO, and H ₂ O quench (CLD) ⁴ \$1065.370NOxNon-methane hydrocarbons (NHC) and H ₂ O interference (NDUV detectors) ⁴ \$1065.372NOxChiller NO, penetration (PEMS with chillers for sample moisture removal)Within 12 months interference and departure for field testsNOxComparison against laboratory CVS systemAt purchase / installation; after major evaluations\$1065.920 modificationsPEMSComparison against laboratory CVS systemAtt purchase / installation; after major evaluations\$1065.657NoHIC contamination check ($\leq \pm 4.0$ %) ⁴ After each test run evaluations\$1065.657Exhaust gas or intake air flow measurement deviceDifferential pressure line laboratory CVS systemOnce per test day installation; after major installation; after major so concentration or ≤ 2 ppmV)ISSComparison against laboratory CVS systemAt purchase / installation; after major modificationsExhaust gas or intake air flow measurement deviceDifferential pressure line lack check (AP stable for 15 seconds at 3"H ₂ O)At purchase / installation; after major modificationsISS	CO (NDIR detectors)			
Hydrocarbons (FID)' $\begin{array}{c} C_3H_8 / methyl radical (CH_3) \\ response factor \\ check \\ \hline Oxygen (O_2) interference \\ check \\ \hline Oxygen (O_2) and H_Q quench \\ (CLD)'^d \\ \hline Non-methane hydrocarbons \\ (NMHC) and H_Q \\ interference (NDUV \\ detectors)' \\ \hline \end{array} $ $\begin{array}{c} S1065.360 (d) \\ \hline S1065.360 (e) \\ \hline S0 8178-1, §8.8.3 (sec Table 2 of §1065.370 \\ \hline \\ S1065.370 \\ \hline \end{array} $ NO_x $\begin{array}{c} CO_2 \text{ and } H_Q \text{ quench} \\ (CLD)'^d \\ \hline \\ Non-methane hydrocarbons \\ (NMHC) and H_Q \\ interference (NDUV \\ detectors)' \\ \hline \end{array} $ $\begin{array}{c} S1065.372 \\ \hline \\ \$1065.372 \\ \hline \\ \$1065.376 \\ \hline \\ \$1065.378 \\ \hline \\ \$1065.920 \\ \hline \\ modifications \\ \hline \\ s1065.920 \\ modifications \\ \hline \\ s1065.920 \\ modifications \\ \hline \\ s1065.920 \\ \hline \\ \hline \\ \ \\ \extrumer analyzer (zero Before and after each test run as needed during in-use evaluations \\ \$1065.657 \\ \hline \\ \ \\ \extrumer analyzer (drift cach test run cas needed test hyme analyzers (zero Before and after each test run as needed during in-use evaluations \\ \hline \\ \ \\ \extrumer analyzer (s (zero Aright cach test run cas needed test hyme analyzers (zero Sero Hauston analyzer (s (zero Aright cach test run cas needed test hyme analyzer (s (zero Aright cach test run cas needed test hyme analyzer (s (zero Aright cach test run test run cas needed to concentration or \le 2 \text{ pmv})\$ 1065.657 \\ \hline \\ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
Hydrocarbons (FID) ^c Tresponse factor check $$1065.360 (d)$ CH_{i} / CH _i response factor check $0xygen (O_{2})$ interference check $$1065.360 (e)$ NO_{X} CO_{2} and H ₂ O quench (CLD) ^d $$1065.370$ NO_{X} CO_{3} and H ₂ O quench (CLD) ^d $$1065.370$ NO_{X} $Non-methane hydrocarbons(NHC) and H2Ointerference (NDUV)$1065.372NO_{X}CO_{2} and H2O quench(CLD)d$1065.372NO_{X}CO_{2} and H2O quench(CLD)d$1065.372NO_{X}No_{1} response (zirconiumdixide detectors)$1065.374NO_{X}Chiller NO_{2} penetration(PEMS with chillers forsample moisture removal)$1065.376NO_{X}OoneverterefficiencyWithin 12 monthsdeparture for field testsNO_{X}Comparison againstlaboratory CVS systemconcentration/$1065.920Zero / span analyzers (zero\leq \pm 2.0 % of span, span \leq \pmd.0 % of cal gasconcentration r \leq 2 pmv)S1065.925, $1065.935PEMSDifferential pressure lineleak check (\Delta P shale forlaboratory CVS systemOnce per test dayS1065.925 (h)Exhaust gas or intakeair flowmeasurement deviceDifferential pressure lineleak check (\Delta P shale forlaboratory CVS systemOnce per test dayOnce per test dayS1065.920ISSComparison againstlaboratory CVS systemAt purchase /installation; after majormodificationsISSComparison againstlaboratory CVS systemAt purchase /installation; $				§1065.360 (c)
Hydrocarbons (FID)*determination C,H_8 / CH_3 response factor check $$1065.360$ (e) (S0 8178-1, §8.8.3 (see Table 2 of §1065.1010)NOxCO2 and H2O quench (CLD)*S1065.370NOxCO2 and H2O quench (CLD)*\$1065.370NOxNo-methane hydrocarbons (NMHC) and H2O interference (NDUV detectors)*\$1065.372NOxAmmonia interference and NO2 response (zirconium dioxide detectors)\$1065.374NOxChiller NO2 penetration (PEMS with chillers for sample moisture removal)\$1065.376NOxComparison against laboratory CVS systemWithin 12 months installation; after major modificationsPEMSComparison against 4.0 % of cal gas concentration of check ($\leq \pm 4.0$ %)*S1065.920PEMSDifferential pressure line laboratory CVS systemBefore and after each test run or as needed during in-use evaluationsPEMSComparison against laboratory CVS systemAfter each test run installation; after major modificationsPEMSComparison against laboratory CVS systemAfter each test run installation; after major modificationsPEMSComparison against laboratory CVS systemAfter each test run installation; after major modificationsPEMSComparison against laboratory CVS systemAfter each test run isstallation; after major modificationsPEMSDifferential pressure line lask ($\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration or ≤ 2.0 % of span, span $\leq \pm$ 4.0 % of cal gas concentration //At purchase / installation; after major modi				
$\begin{array}{c c c c c c } \hline C_{3}H_{8} / CH_{1} response factor check \\ \hline Oxygen (O_{2}) interference check \\ \hline CO_{2} and H_{2}O quench \\ (CLD)^{d} \\ \hline CO_{2} and H_{2}O quench \\ (CLD)^{d} \\ \hline Non-methane hydrocarbons \\ (NMHC) and H_{2}O \\ interference (NDUV \\ detectors)^{d} \\ \hline Mommonia interference and \\ NO_{2} response (zirconium \\ dioxide detectors) \\ \hline Chiller NO_{2} penetration \\ (PEMS with chillers for sample moisture removal) \\ \hline NO_{2} to NO converter \\ efficiency \\ \hline Comparison against \\ laboratory CVS system \\ \hline Nothex (cal gas concentration)^{\prime} \\ \hline Perform analyzers (zero explanation of expected of cal gas concentration of expected of each concentration of expected of explanation of expected of each concentration of each concent each concentration of each concentration of each concent concentration of each concent concentration of each concent test run each concentration of each concent each concentration of each concent c$				§1065.360 (d)
$PEMS = \begin{bmatrix} 1 & 1 & 1 & 1 \\ Oxygen (O_2) interference check \\ Oxygen (O_2) interference check \\ (CLD)d \\ (CLD$	Hydrocarbons (FID) ^c			
$PEMS = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$				§1065.360 (e)
$PEMS = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		Oxygen (O_2) interference		ISO 8178-1, §8.8.3 (see
$PEMS = \begin{bmatrix} CO_2 and H_2O quench \\ (CLD)' \\ Non-methane hydrocarbons (NMHC) and H_2O interference (NDUV detectors)' \\ Ammonia interference and NO_response (zirconium dioxide detectors) \\ Chiller NO_2 penetration (PEMS with chillers for sample moisture removal) \\ NO_2 to NO converter efficiency \\ Comparison against laboratory CVS system \\ Zero / span analyzers (zero \leq \pm 2.0 \% of span, span \leq \pm 4.0 \%)'sNMHC contaminationcheck (\leq 2.0 \% of expectedconcentration)' \\ Exhaust gas or intakeair flowmeasurement device \\ ISS \\ Comparison againstlaboratory CVS system \\ ISS \\ Comparison againstlaboratory CVS system \\ Comparison againstlaboratory CVS systeminstallation; after majormodificationsPerform analyzer driftcheck (\leq 2.0 \% of expectedconcentration) After each test run check (\leq 2.0 \% of expectedconcentration or \leq 2 ppmv)Conce per test dayinstallation; after majormodificationsstallation; after majormodificationsstallation; after majormodificationsstallatorsstallation; after majormodificationsstallation; after majormodificationsstallator; after majormodificationsstallation; afte$				
$\begin{array}{c c} CLD)^{d'} & \qquad $				
NOxNon-methane hydrocarbons (NMHC) and H2O interference (NDUV) detectors)* $\$1065.372$ NOxAmmonia interference and NO _x response (zirconium dioxide detectors) $\$1065.374$ NOxChiller NO, penetration (PEMS with chillers for sample moisture removal) $\$1065.376$ NOxChiller NO, penetration (PEMS with chillers for sample moisture removal) $\$1065.376$ NO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field tests $\$1065.378$ Zero / span analyzers (zero $\le \pm 2.0 \%$ of span, span $\le \pm$ d. 6 (s $\le 4.0 \%$)*Before and after each test run or as needed during in-use $\$1065.925$, $\$1065.935$ PEMSZero / span analyzer drift check ($\le 2.0 \%$ of expected concentration)/After each test run $\$1065.925$, $\$1065.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Statl Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925$, $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925$, $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925$, $\$1065.925$				\$1065.370
$PEMS = \begin{bmatrix} (NMHC) and H_2O \\ interference (NDUV \\ detectors)' \\ Ammonia interference and \\NO_2 response (zirconium dioxide detectors) \\ Chiller NO_2 penetration (PEMS with chillers for sample moisture removal) \\ NO_2 to NO converter efficiency \\ Comparison against laboratory CVS system \\ Zero / span analyzers (zero exclusion or \leq 2 ppmV) \\ Exhaust gas or intakeair flow measurement device \\ ISS \\ ISS \\ Comparison againstlaboratory CVS system \\ ISS \\ Comparison againstlaboratory CVS system \\ Differential pressure lineleak check (\Delta P stable for15 seconds at 3 "H_2O) \\ ISS \\ Comparison againstlaboratory CVS system \\ ISS \\ Comparison againstlaboratory CVS system \\ Differential pressure lineleak check (\Delta P stable for15 seconds at 3 "H_2O) \\ ISS \\ Comparison againstlaboratory CVS system \\ Differential pressure lineleak check (\Delta P stable for15 seconds at 3 "H_2O) \\ ISS \\ Comparison againstlaboratory CVS system \\ Differential pressure lineleak check (\Delta P stable for15 seconds at 3 "H_2O) \\ ISS \\ Comparison againstlaboratory CVS system \\ Zero / span analyzers (zero\leq \pm 2.0 \% of span, span \leq \pm 4.0 \% of cal gasconcentration f field tests \frac{At purchase /}{modifications} \\ Kall Method 2, \\Wethout the field mathematical test run (Stable for the stable for laboratory CVS system \\ Installation; after major modifications \\ Kall Method 2, \\Wethout the field mathematical test run \\ Stable for laboratory CVS system \\ Installation; after major modifications \\ Stable for laboratory CVS system \\ Method 2, \\Wethout the field mathematical test run \\ Stable for laboratory CVS system \\ Method 2, \\Wethout the field mathematical test run \\ Stable for laboratory CVS system \\ Method 2, \\Wethout the field mathematical test run \\ Stable for stable for and after each test run \\ Stable for laboratory CVS system \\ Method 2, \\Wethout the field mathematical test run \\ Stable for laboratory CVS system \\ Method 2, \\Wethout the field mathematical test run \\ Stable for stable for and$				
NOxAmmonia interference (NDUV detectors)'Within 12 monthsNOxAmmonia interference and NO2 response (zirconium dioxide detectors)Within 12 monthsNOx(PEMS with chillers for sample moisture removal)Within 6 months or immediately prior to departure for field testsNO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field testsZero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) /*Before and after each test run or as needed during in-usePEMSDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H_2O)Once per test day installation; after major modificationsExhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H_2O)Once per test day installation; after major modificationsISSComparison against laboratory CVS systemAt purchase / installation; after major modificationsZero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) /*At purchase / istallation; after	NO_X			
Image: constraint of the example o				§1065.372
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$PEMS = \frac{NO_2 response (zirconium dioxide detectors)}{Chiller NO_2 penetration (PEMS with chillers for sample moisture removal)} Within 12 months NO_x (PEMS with chillers for sample moisture removal) Within 6 months or immediately prior to departure for field tests Comparison against laboratory CVS system modifications Zero / span analyzers (zero \leq \pm 2.0 % of span, span \leq \pm 4.0 %) of cal gasExhaust gas or intake air flow measurement deviceStatust gas or intake air flow measurement deviceStatust gas or intake \frac{1}{2 \text{ Comparison against laboratory CVS system}} = \frac{1}{2 \text{ Comparison against concentration}} = \frac{1}{2 \text{ Comparison against laboratory CVS system}} = \frac{1}{2 \text{ Comparison against concentration}} = \frac{1}{2 \text{ Comparison against laboratory CVS system}} = \frac{1}{2 \text{ Comparison against laboratory CVS system}} = \frac{1}{2 Comparison against concentratio$				
$PEMS = \begin{bmatrix} \frac{dioxide detectors)}{Chiller NO_{2} penetration} \\ PEMS with chillers for sample moisture removal} \\ NO_{2} to NO converter efficiency \\ PEMS \\ \hline \begin{array}{c} Comparison against laboratory CVS system \\ \leq \pm 2.0 \% of span, span \leq \pm \\ 4.0 \% of cal gas \\ concentration \prime \\ expression deteck (\leq \pm 4.0 \%)^{\ell} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Within 12 months \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Within 6 months or immediately prior to \\ immediately prior to \\ departure for field tests \\ \hline \\ At purchase / \\ installation; after major \\ modifications \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Within 6 months or immediately prior to \\ departure for field tests \\ \hline \\ At purchase / \\ installation; after major \\ modifications \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ concentration or \leq 2 ppmv) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ Simple removal \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ concentration or \leq 2 ppmv) \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ concentration or \leq 2 ppmv) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ concentration or \leq 2 ppmv) \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ concentration or \leq 2 ppmv) \\ \hline \end{array} \\ \hline \begin{array}{c} Simple removal \\ For an analyzer (zero \\ \\ \hline \end{array} \\$				\$1065.374
NOxChiller NO2 penetration (PEMS with chillers for sample moisture removal)Within 12 monthsNOxNO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field tests $\$1065.376$ NO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field tests $\$1065.378$ PEMSComparison against laboratory CVS systemAt purchase / installation; after major during in-use evaluations $\$1065.920$ PEMSZero / span analyzers (zero $\le \pm 2.0 \%$ of span, span $\le \pm$ 4.0 % of cal gas concentration) /Before and after each test run or as needed during in-use evaluations $\$1065.925$, $\$1065.925$ PEMSPerform analyzer drift check ($\le \pm 4.0 \%$) ⁸ After each test run concentration f $\$1065.657$ NMHC contamination check ($\le 2.0 \%$ of expected concentration or ≤ 2 ppmv)Once per test day modifications $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day installation; after major modifications $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ ISSComparison against laboratory CVS system				0
NOx(PEMS with chillers for sample moisture removal) $\$1065.376$ NO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field tests $\$1065.378$ PEMSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ PEMSZero / span analyzers (zero $\le \pm 2.0 \%$ of span, span $\le \pm$ 4.0 % of cal gas concentration) /Before and after each test run or as needed during in-use evaluations $\$1065.925$, $\$1065.935$ PEMSZero / span analyzer drift check ($\le \pm 4.0 \%$) %After each test run or evaluations $\$1065.657$ NMHC contamination check ($\le 2.0 \%$ of expected concentration or ≤ 2 ppmv)Once per test day measurement device $\$1065.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Statl Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / isstallation; after major modifications $\$1065.925$, $\$1065.920$			Within 12 months	
Sample moisture removal)Within 6 months or immediately prior to departure for field testsNO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field testsPEMSComparison against laboratory CVS systemS1065.378Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration)^fBefore and after each test run or as needed during in-use\$1065.925, \$1065.935PEMSZero / span analyzer drift check ($\leq \pm 4.0$ %)sAfter each test run s1065.657\$1065.925, (1065.935)Perform analyzer drift check (≤ 2.0 % of expected concentration or ≤ 2 ppmv)Once per test day\$1069.925 (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Stacl Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications\$1065.920, \$1065.920, \$1065.935ISSComparison against laboratory CVS systemBefore and after each test run\$1065.925, \$1065.935	NO _x			\$1065.376
NO2 to NO converter efficiencyWithin 6 months or immediately prior to departure for field tests $\$1065.378$ PEMSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ PEMSZero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0 % of cal gas concentration)^{I}Before and after each test run or as needed during in-use evaluations $\$1065.925$, $\$1065.935$ PEMSDeform analyzer drift check ($\leq \pm 4.0 \%$) ^g After each test run $\$1065.657$ NMHC contamination check ($\leq 2.0 \%$ of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for laboratory CVS systemOnce per test day installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Stacl Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$, $\$1065.920$, $\$1065.920$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925$, $\$1065.935$ Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration/IAt purchase / installation; after major modificationsISSComparison against laboratory CVS systemBefore and after each test run $\$1065.925$, $\$1065.935$				0
$PEMS = \begin{bmatrix} efficiency & Infineduately proto to departure for field tests \\ departure for field tests \\ At purchase / installation; after major modifications \\ Stock of cal gas \\ concentration)^f & Stock of cal gas \\ concentration)^f & Stock of cal gas \\ concentration)^f & Stock of cal gas \\ concentration f & Stock of cal gas \\ Stock of cal gas or intake \\ air flow \\ measurement device \\ ISS \\ ISS \\ \hline \begin{array}{c} Comparison against \\ laboratory CVS system \\ ISS \\ \hline \\ Comparison against \\ laboratory CVS system \\ \hline \\ Stock of cal gas \\ concentration f & Stock of cal gas$			Within 6 months or	
$\frac{ effectively }{ effectively } = \frac{ effectively }{ effective$			immediately prior to	§1065.378
$PEMS = PEMS = \begin{bmatrix} Comparison against laboratory CVS system \\ laboratory CVS system \\ \hline Status (2ero / span analyzers (2ero) \\ \leq \pm 2.0 \% of span, span \leq \pm \\ 4.0 \% of cal gas \\ concentration)^{f} \\ \hline Status (2ero / span analyzer drift \\ check (\leq \pm 4.0 \%)^{g} \\ \hline Perform analyzer drift \\ check (\leq \pm 4.0 \%)^{g} \\ \hline NMHC contamination \\ check (\leq 2.0 \% of expected \\ concentration or \leq 2 ppmv) \\ \hline \\ Exhaust gas or intake \\ air flow \\ measurement device \\ \hline \\ ISS \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		efficiency		
PEMSlaboratory CVS systemInstallation, after major modifications $\$1065.920$ PEMSZero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0 % of cal gas concentration) /Before and after each test run or as needed during in-use evaluations $\$1065.925, \1065.935 PEMSPerform analyzer drift check ($\leq \pm 4.0 \%$) %After each test run (\$1065.657) $\$1065.925, \1065.935 Perform analyzer drift check ($\leq 2.0 \%$ of expected concentration or ≤ 2 ppmv)Once per test day Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day Once per test day Once per test day Once per test day Stallation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Stacl Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920, \$1065.920, \$1065.935$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925, \$1065.935, \$1065.935, \$1065.935, \$1065.935, \$1065.935, \$1065.925, \$1065.935, \$1065.925, \$1065.925, \$1065.935, \$1065.935, \$1065.935, \$1065.935, \$1065.935, \$1065.925, \$1065.935, \$1065.935, \$1065.925, \$1065.935, \$1065.935, \$1065.925, \$1065.93$		Comparison against	At purchase /	
PEMSTemperatureInformation and reach test 2.0 % of span, span $\leq \pm$ 4.0 % of cal gas concentration) ^f Before and after each test run or as needed during in-use evaluations§1065.925, §1065.935PEMS $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) ^f After each test run evaluations§1065.925, §1065.935Perform analyzer drift check ($\leq \pm 4.0$ %) ^g After each test run once per test day concentration or ≤ 2 ppmv)\$1065.925, §1065.935Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day Once per test day s8.140 CFR 60 Appendix A Method 2, "Determination of Stacl Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.925, §1065.935Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) ^f Before and after each test run§1065.925, §1065.935			installation; after major	§1065.920
PEMS $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0 % of cal gas concentration) ftest run or as needed during in-use evaluations $\$1065.925, \1065.935 PEMSPerform analyzer drift check ($\leq \pm 4.0 \%$) gAfter each test run $\$1065.657$ NMHC contamination check ($\leq 2.0 \%$ of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.925, \1065.935 Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) fAfter each test run $\$1065.925, \1065.935		laboratory CVS system	modifications	
PEMS 4.0% of cal gas concentration) fduring in-use evaluations $\$1065.923$, $\$1005.923$, $\$1005.923$, $\$1005.933$ Perform analyzer drift check ($\le \pm 4.0\%$) gAfter each test run $\$1065.657$ NMHC contamination check ($\le 2.0\%$ of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day 40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\le \pm 2.0\%$ of span, span $\le \pm$ 4.0% of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$		Zero / span analyzers (zero	Before and after each	
PEMS 4.0% of cal gas concentration) fduring in-use evaluationsPerform analyzer drift check ($\leq \pm 4.0\%$)%After each test run $\$1065.657$ NMHC contamination check ($\leq 2.0\%$ of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day 40 CFR 60 Appendix A Method 2, "Determination of Stacl Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\leq \pm 2.0\%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$		$\leq \pm 2.0$ % of span, span $\leq \pm$	test run or as needed	81065 925 81065 935
$\frac{2 \operatorname{concentration}^{p}}{\operatorname{Perform analyzer drift}} = \frac{2 \operatorname{concentration}^{p}}{\operatorname{Perform analyzer drift}} = \frac{2 \operatorname{concentration}^{p}}{\operatorname{After each test run}} = \frac{1000 \operatorname{S}^{100}}{\operatorname{S}^{1000}} = \frac{1000 \operatorname{S}^{1000}}{\operatorname{S}^{1000}} = \frac{1000 \operatorname{S}^{1000}}{\operatorname{S}^{10$	DEMO	4.0 % of cal gas	during in-use	§1005.925, §1005.955
check $(\leq \pm 4.0 \%)^g$ After each test run§1065.657NMHC contamination check $(\leq 2.0 \% \text{ of expected}concentration or \leq 2 ppmv)Once per test day§1069.925 (h)Exhaust gas or intakeair flowmeasurement deviceDifferential pressure lineleak check (\Delta P stable for15 seconds at 3 "H2O)Once per test day40 CFR 60 Appendix AMethod 2,"Determination of StackGas Velocity AndVolumetric Flow Rate"§8.1ISSComparison againstlaboratory CVS systemAt purchase /installation; after majormodifications§1065.920Zero / span analyzers (zero\leq \pm 2.0 \% of span, span \leq \pm4.0 \% of cal gasconcentration) fBefore and after eachtest run§1065.925, §1065.935$	PEMS	concentration) ^{f}	evaluations	
$\frac{ }{ } \frac{ }{ $		Perform analyzer drift	After each test run	\$1065.657
check (≤ 2.0 % of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)At purchase / installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$		check ($\leq \pm 4.0 \%$) ^g	After each test fun	§1065.657
check (≤ 2.0 % of expected concentration or ≤ 2 ppmv)Once per test day $\$1069.925$ (h)Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)At purchase / installation; after major modifications40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" $\$8.1$ ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$				
concentration or ≤ 2 ppmv)40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemOnce per test day40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications\$1065.920Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run\$1065.925, \$1065.935		check (≤ 2.0 % of expected	Once per test day	§1069.925 (h)
Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day40 CFR 60 Appendix A Method 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.920Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run§1065.925, §1065.935				
Exhaust gas or intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test dayMethod 2, "Determination of Stack Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.920Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run§1065.925, §1065.935		11 7		40 CFR 60 Appendix A.
Exhaust gas of intake air flow measurement deviceDifferential pressure line leak check (ΔP stable for 15 seconds at 3 "H2O)Once per test day"Determination of Stack Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications\$1065.920Zero / span analyzers (zero $\leq \pm 2.0$ % of span, span $\leq \pm$ 4.0 % of cal gas concentration) fBefore and after each test run\$1065.925, \$1065.935	Enhangt og sint-1	Differential survey 1		
measurement device15 seconds at 3 "H2O)Gas Velocity And Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.920Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) fBefore and after each test run§1065.925, §1065.935			0	"Determination of Stack
Ineasthement device15 seconds at 5 $H_2(0)$ Volumetric Flow Rate" §8.1ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications§1065.920Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) fBefore and after each test run§1065.925, §1065.935			Once per test day	Gas Velocity And
ISSComparison against laboratory CVS systemAt purchase / installation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\le \pm 2.0 \%$ of span, span $\le \pm$ 4.0% of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$	measurement device	15 seconds at 5 H_2O		Volumetric Flow Rate",
ISSComparison against laboratory CVS systeminstallation; after major modifications $\$1065.920$ Zero / span analyzers (zero $\le \pm 2.0 \%$ of span, span $\le \pm$ 4.0% of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$				§8.1
Isslaboratory CVS systemInstallation, after major modifications $\$1065.920$ Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) fBefore and after each test run $\$1065.925$, $\$1065.935$		Comparison against	At purchase /	
Zero / span analyzers (zero $\leq \pm 2.0 \%$ of span, span $\leq \pm$ 4.0% of cal gas concentration) ^f Before and after each test run $\$1065.925, \1065.935 After each test run	ISS			§1065.920
$ \leq \pm 2.0 \% \text{ of span, span} \leq \pm 4.0 \% \text{ of cal gas} concentration}^{f} $ Before and after each test run $ \$1065.925, \$1065.935 $			modifications	
4.0 % of cal gas concentration)test run $$1065.925$, $$1065.935$ $4.0 %$ of cal gas concentration) $$f$		Zero / span analyzers (zero		
$\frac{4.0\% \text{ of cal gas}}{\text{concentration}}^{f}$			Before and after each	81065 925 81065 925
$\frac{\text{concentration})^f}{\text{After each test run}}$			test run	§1005.725, §1005.955
After each test run				
			After each test run	
Inspect sample lines, filter n/a housings, and sample bags n/a		Inspect sample lines, filter		n/a

housings, and sample bags

Tal	ole 6-4. Recommended Calib	rations and Performance (Checks
System or Parameter	Description / Procedure	Frequency	Reference
	for visible moisture (none is allowed)		
	Perform analyzer drift check $(\leq \pm 4.0 \%)^{g}$		§1065.657
	NMHC background check and dilution tunnel blank TPM background check and dilution tunnel blank Dilution tunnel leak check	Once per test day	§1065.667 or ISS standard operating procedure
	Sample bag leak check (< 0.5 % of normal system flow rate)		§1065.345
	TPM filter face temperature (not to exceed 47 °C or 117 °F)	continuously during sampling	§86.1310-2007 (b) (6) (E) (v)
Fuel flow	11-point linearity check	At purchase (coriolis meters only); within 6 months or immediately prior to departure for field tests (turbine or gear meters)	§1065.307 (d); (e) (3)
TPM gravimetric	NIST-traceable calibration	Within 12 months	n/a
balance	Reference sample weights	Within 12 hours of filter weighings	§1065.390
ISS main, dilution, and sample flow rates	11-point linearity check	Within 12 months	§1065.307 (d); (e) (4)
^b non-dispersive infrare ^c flame ionization detec ^d chemilumenescence d ^e non-dispersive ultra v ^f Table 1 of §1065.915 reference methods spec value. ^g §1065.550(b)(1) allow	tor (FID) etector (CLD)	e unclear. Most Title 40 CF 0 % of the analyzer span. T ween the raw and drift-corre	This protocol adopts that cted brake-specific

[Blank Page]

7.0 DATA QUALITY AND ANALYSIS

This section outlines general data analysis procedures for each type of test and data quality requirements for all tests. Appendix C supplements the discussion with statistical concepts and equations.

7.1. CONTROL STRATEGY PERFORMANCE TESTS

Section 6.2 specifies a minimum of three baseline test runs followed by the same number or more (typically up to six) candidate test runs. Site-specific protocols may require simple cycles, synthesized duty cycles, or in-use duty cycles. Note that ISS will generally provide TPM results (if required) while PEMS will provide gaseous emissions results.

7.1.1. Emissions Reductions and Fuel Consumption Changes for Synthesized Duty Cycles

Analysts should first examine the data set for outliers (such as mean emission rates or other parameters) for each test run. They should consider removing those that meet criteria described in ASTM E178-02 [21] prior to further analysis. More than three test runs are generally necessary for this. Analysts should then, for each parameter (CO, CO_2 , NO_x , THC, TPM, fuel consumption):

- calculate the mass emissions (g/run) mean and σ_{n-1} for all baseline and candidate test runs
- calculate the fuel-specific emission rate (g/gal) mean and $\sigma_{n\text{-}1}$ for all baseline and candidate test runs
- calculate the brake-specific emission rate mean (g/bhp-h) and σ_{n-1} for all baseline and candidate test runs, if torque or horsepower data are available from an ECM
- calculate the difference between the baseline and candidate mean results
- evaluate the statistical significance of the difference
- calculate the 95-percent confidence interval on the difference

Appendix C provides the statistical analysis equations and procedures. These include Student's T test for statistical significance, the F test for evaluating similarity of variance, and the error value calculation for the 95 percent confidence interval.

Brake-specific results require engine brake horsepower, but ECM power data is often in terms of percent maximum torque at a given engine speed. In this case, analysts must:

- obtain the maximum torque / RPM specifications from the engine manufacturer
- multiply the ECM percent torque by the manufacturer's specified maximum torque at the reported ECM engine speed for each data entry
- calculate bhp as [17]:

$$bhp = \frac{2\pi Frn}{33000}$$
 Eqn. 7-1

where:

bhp = brake horsepower
Fr = brake torque (force multiplied by radius), lb-ft
n = engine speed, RPM

Note that some parameters and their products, such as RPM times exhaust standard volumetric flow, can serve as a surrogate for engine power in brake-specific emission calculations. Site-specific protocols may develop and implement such surrogates during analysis as needed.

7.1.2. Emissions Reductions and Fuel Consumption Changes for In-use Duty Cycles

Analysts should use the data reduction and statistical procedures described in §7.1 and Appendix C for baseline and candidate tests. Assume, for example, that in-use data analysis identifies an operating event, such as loaded reverse travel for a rubber-tired loader, as being a significant contributor to overall emissions. The control strategy performance, then, is the difference between the mean baseline and candidate results for that event. Analysts should:

- identify at least three separate operating events with similar parameters (mean duration, RPM, exhaust temperature, exhaust gas flow, ECM outputs, etc.) that occur during both baseline and candidate testing
- calculate the baseline and candidate mean emission rate and σ_{n-1}
- calculate the difference between the baseline and candidate results
- evaluate the statistical significance of the difference
- calculate the 95-percent confidence interval on the difference

7.1.3. Control Strategy Cost Analysis

Analysis of control strategy costs consists primarily of summing and reporting the data collected in Appendix B3. Costs should be separated into the following general categories:

- capital purchases
- shop-made modifications, specialty items
- downtime (or demurrage), installation, and training labor
- operating materials, supplies, and reagents
- operating labor

7.1.4. <u>Control Strategy Engine and Operational Performance Impact Analysis</u>

Some test campaigns may acquire credible brake horsepower data, either from an ECM or through direct measurements. If so, analysts may calculate the difference between the baseline and candidate horsepower and fuel consumption, normalized to brake horsepower. This approach requires caution, however, when using ECM data if ECM accuracy is not well-established.

If ECM data are suspect or not available, performance impacts may be calculated and reported as the difference in mean fuel consumption between baseline and candidate conditions as observed during simple or synthesized duty cycles. For in-use duty cycles, performance impacts reported as the fuel consumption difference between baseline and candidate conditions over a consistent time period (per shift, per day, etc.) may be meaningful. Performance impacts may also include operator or dispatcher anecdotal information.

Performance impacts should also include an assessment of potential problems from extremely cold or hot ambient conditions, scheduling changes, labor, or downtime required for:

- routine and major maintenance
- training and operator certification
- regeneration or reagent refreshment
- modified fueling, engine oil change, filter change, or other intervals

Some control strategies, such as shore-powered active DPFs, may have off-line emissions during regeneration or other impacts which also should be quantified as described in the site-specific protocols.

November 2007

7.2. IN-USE EMISSIONS TESTS

This section discusses application of basic descriptive statistics, but analysts should be open to other possibilities depending on the circumstances of a particular test campaign. Appendix C provides additional analytical concepts such as methods for identifying in-use events. For example, repeatable in-use events could be used as the basis for control strategy performance evaluations.

In-use emissions and fuel consumption data analysis should be adaptable to the transient conditions seen during field testing. For example, fuel consumption time series plots will differ considerably between an air compressor and a backhoe / loader. This is because an air compressor usually cycles between periods of full power and low idle while a backhoe operates at all possible engine speeds and torques.

Once in-use data are gathered, many types of post-processing algorithms are available. For example, meaningful analysis may be possible on data which occur within restricted engine speed and torque envelopes. This is analogous to the 40 CFR 86 "not to exceed" (NTE) emissions testing requirements [16]. Identifiable and repeatable events may occur during baseline and candidate control technology tests which would allow direct performance comparisons.

The following descriptive statistics should be generally useful to describe the events which occur within an in-use emission test or to describe the test as a whole. Exclude the following data from this event description analysis:

- PEMS zero and span checks
- battery exchange and warmup periods

In-use mean, σ_{n-1} , and maximum values

The mean is one measure of the central location of a data set. It consists of the sum of all values in the set divided by the number of items. σ_{n-1} is the square root of a data set's variance, which is a measure of dispersion. The variance is the sum of the squared deviations of the data values about the mean divided by the number of data points minus 1 [15]. σ_{n-1} of RPM times exhaust gas temperature, exhaust gas flow, or ECM torque could be especially useful in tracking in-use duty cycle variability because they are analogous to σ_{n-1} of velocity in on-highway vehicle testing. Some researchers have found this statistic to be valuable in comparing one duty cycle to another [2, 20].

Report the mean and σ_{n-1} values for a selection of identifiable in-use events if each event occurs at least three times. Also report the mean and σ_{n-1} for the in-use test as a whole. Suggested parameters are:

- RPM
- RPM times exhaust gas temperature (Tout) or turbocharger outlet temperature (Tturb)
- exhaust gas flow
- ECM-derived torque or bhp

Also examine the data set for outliers (such as mean values for identifiable events) and consider removing those that meet criteria described in ASTM E178-02 [21]. Report the maximum value for each parameter for the entire in-use testing period, the mean, and σ_{n-1} of the highest 6 values.

Median

The median is another measure of the central location of a data set. It is the value which splits the data set into two equal groups. A median RPM which is larger than the mean RPM can imply, for example, that the in-use test run may have many more high RPM events as opposed to mid-level RPM events.

Report the median as follows:

- 1. Rank the data for each parameter in ascending order.
- 2. Report the middle-ranked value (odd number of data points) or
- 3. Report the average of the two middle ranked values (even number of data points).

Frequency distributions

Frequency distributions can yield useful information about how often different conditions occur within a data set. It may be possible, for example, to state that the nonroad equipment operates between a mid-level and maximum RPM for a known percentage of the in-use test.

Report the relative and cumulative frequency distribution as follows:

- 1. Divide the range between the maximum and minimum values for each parameter into 10 to 15 intervals.
- 2. Sort the data into the appropriate intervals.
- 3. Count the number of data occurrences in each interval.
- 4. Calculate and report the relative frequency as:

$$p_{\rm i} = \frac{n_i}{n_{\rm tot}}$$
 Eqn. 7-2

where:

p_i = relative frequency of interval i (proportion or percent)

 n_i = number of occurrences in interval i

 n_{tot} = total number of data points collected

5. Calculate and report the cumulative frequency for each interval as:

$$p_{cum,i} = \frac{\sum_{i=1}^{i} n_i}{n_{tot}}$$
 Eqn. 7-3

where:

 $p_{cum,i}$ = cumulative frequency up to interval i (proportion or percent)

Note that the frequency distribution methods assume that all datalogging time periods are equal (ideally, 1 Hz). Graphic plots (such as histograms for relative or ogive curves for cumulative frequency distributions) with the parameter value on the x-axis and frequency on the y-axis can aid the data interpretation.

7.3. EXTENDED INTERVAL TESTS

Extended interval tests begin with a series of initial test runs followed by a duplicate final test series conducted at a later time (usually at least 6 months). Analysts can consider extended interval tests as a baseline / candidate test series, similar to a control strategy evaluation. The difference between the mean final and initial test runs will serve as the performance metric. Analysts should calculate and report the difference according to the procedures in §7.1 and Appendix C.

Analysts can also consider the final test series in isolation to verify whether the selected nonroad equipment (or control strategy) is still performing nominally.

7.4. EMISSIONS MEASUREMENT METHOD COMPARISONS

7.4.1. Gaseous Emissions

Section 6.5 specifies three test runs while two emissions measurements methods operate simultaneously. Analysts should, for each parameter (CO, CO₂, NO_x, THC, fuel consumption):

- report the ISS mass emissions (g/run) for each test run
- calculate the mass emissions mean and σ_{n-1} for all test runs
- calculate the PEMS mass emissions as

November 2007

$$m_{run} = \sum_{1}^{n} m_{sec}$$

Where:

 m_{run} = emission mass for the test run, g

 m_{sec} = PEMS mass emission rate per second, g/s

n = number of seconds in the test run

- calculate the mass emissions mean and σ_{n-1} for all PEMS test runs
- calculate the difference of the ISS and PEMS mean results
- evaluate the statistical significance of the difference
- calculate the 95-percent confidence interval on the difference.

Please see Appendix C for the appropriate statistical analysis procedures.

7.4.2. <u>TPM Emissions</u>

Some test campaigns may specify use of a real-time TPM accessory to the PEMS. In this case, analysts should process the TPM data and compare it to the integrated ISS mass emissions as described in §8.1.1.

7.5. DATA QUALITY

All test campaigns should meet the following qualitative data quality objective (DQO):

Sensors, measurements, step-by-step test methods, and the resulting determinations will meet or exceed this protocol's and reference method specifications as outlined in §5.0 through §6.6.

Evidence of the calibrations and performance checks summarized in Table 6-4, data and signatures from Appendix B field data forms, field notes, and corrective action reports (CAR) will document achievement of this DQO.

Explicit quantitative DQOs are not appropriate for this generic protocol because of its applicability to a wide variety of possible test campaigns. Also, test personnel cannot adopt explicit goals such as confidence intervals about a mean because relevant data will not be available prior to testing. Site-specific protocols, however, may adopt implicit DQOs based on the individual test campaign.

Eqn. 7-4

For example, assume that test personnel expect the control technology will improve emissions performance by 5.0 percent. Implicit DQOs could be:

- the difference between mean baseline and candidate performance will be statistically significant
- test personnel may refine the 95 percent confidence interval on the result as much as possible up to 6 runs

8.0 REPORTS

Original electronic and written field data, including the field team leader's daily test log, will form the basis for all analyses, conclusions, and reports.

Reported results, data summaries, and statistical analyses depend on the individual test campaign. Table 8-1 provides a general list of items to be included in each type of report. See Table 3-1 for individual parameters and units; see §8.0 for analysis procedures.

Table 8-1. Reported Results List					
Test Type	Control	In-use	Extended	Emissions	
	strategy	emissions	interval	measurement	
Description	performance	tests	tests	method	
	evaluation			comparisons	
Emission rates		\checkmark	\checkmark		
Fuel consumption	\checkmark	\checkmark	\checkmark		
Difference between baseline and candidate		–	+		
emissions and fuel consumption	v	Ι	Ι		
Control strategy costs	\checkmark	+	+		
Control strategy performance impacts		+	+		
Simple or synthesized duty cycle specifications			\checkmark		
In-use duty cycle descriptive statistics $$					
$\sqrt{1}$ Included in report					
+ Included in reports for control strategy evaluations only					

All reports should include tabular or narrative descriptions of:

- selected nonroad equipment data:
 - o manufacturer, model, serial number, year
 - o drivetrain configuration
 - o engine size, type, manufacturer, model, engine family
 - o modifications performed since purchase and the effect on the original configuration
 - o modifications performed to allow testing
 - o state of repair during testing, including hourmeter readings
 - o dispatch information such as vehicle mission, daily duties
- host site data:
 - o location, including elevation
 - o overall fleet description
 - o maintenance program description
- test equipment specifications, calibration, and performance check results
- field activity narrative:

- o dates, times
- o ambient conditions
- departures from the generic and site-specific protocols, as documented in CARs
- data quality assessments

Control strategy evaluations should include descriptions of:

- delivered condition, readiness for installation
- modifications needed to allow installation

A signed statement which certifies that the results represent the actual test conditions should accompany each report.

9.0 REFERENCES

[1] *Characterizing the Effects of Driver Variability on Real-World Emissions*, B. Holmen, D. Niemeier, <u>Transportation Research Part D</u>, vol. 3, no. 2, pp 117 - 128, Elsevier 1998

[2] Analysis and Experimental Refinement of Real-World Driving Cycles, N. Dembski, Y. Guezennec, A.
 Soliman, SAE International # 2002-01-0069, Warrendale, PA 2002

[3] 40 CFR Parts 85 and 86, Control of Emissions of Air Pollution from 2004 and Later Model Year Heavy-duty Highway Engines and Vehicles; Revision of Light-Duty Truck Definition; Notice of Proposed Rulemaking, Federal Register vol. 64, no. 209, p. 58472 ff, Washington, DC 1999

[4] 40 CFR Part 1065—Engine-Testing Procedures, adopted at Federal Register vol. 70, no. 133, p. 40516
 ff, Washington, DC 13 July 2005

 [5] On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles, Miguel, Kirchstetter, Harley, <u>Environmental Science and Technology</u>, vol.
 32, pp. 450 - 455, Iowa City, IO 1998

[6] Method 5040—Elemental Carbon (Diesel Particulate) from Manual of Analytical Methods, 4th Edition,
 National Institute of Occupational Safety and Health, Washington, DC 1996

[7] Particulate Mass Measurements of Heavy-Duty Diesel Engine Exhaust Using 2007 CVS PM Sampling Parallel to QCM and TEOM—Final Report, I. A. Khalek, U.S. Environmental Protection Agency, Ann Arbor, MI 2003

[8] The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements, I. A.
 Khalek, D. B. Kittleson, SAE International # 1999-01-1142, Warrendale, PA 1999

[9] Evaluation of Emissions from a Port of Houston Authority Yard Tractor Operating with an EnviroFuels Fuel Additive, ERMD Report # 03-10, Environment Canada Environmental Technology Centre, Ottawa, Ontario, Canada 2003

[10] *Diesel Particulate Filter (DPF) Demonstration*, ERMD Report # 02-17, Environment Canada Environmental Technology Centre, Ottawa, Ontario, Canada 2003

[11] Investigation of Diesel Emission Control Technologies on Off-Road Construction Equipment at the World Trade Center and PATH Re-Development Site—Project Summary Report (authored by M. J. Bradley & Associates, Inc.), Port Authority of New York and New Jersey 2004

[12] Measurement of Operational Activity for Nonroad Diesel Construction Equipment, T. Huai, S. D.
 Shah, T. D. Durbin, J. M. Norbeck, <u>International Journal of Automotive Technology</u>, Vol. 6, No. 4, pp.
 333-340, Seoul, South Korea 2005

[13] *Development of Refuse Vehicle Driving and Duty Cycles*, N. Dembski, G. Rizzoni, A. Soliman, SAE International # 2005-01-1165, Warrendale, PA 2005

[14] Analysis and Experimental Refinement of Real-World Driving Cycles, N. Dembski, Y. Guezennec, A.
 Soliman, SAE International # 2002-01-0069, Warrendale, PA 2002

[15] Statistics Concepts and Applications, D. Anderson, D. Sweeney, T. Williams, West Publishing Company, St. Paul, MN 1986

[16] 40 CFR Part 86.1370-2004 Not-to-Exceed Test Procedures, Federal Register vol. 64, no. 209, p.
 58550 ff, Washington, DC 1999

[17] Mechanical Engineering reference Manual -- Eighth Edition, M. Lindeburg, Professional Publications, Inc., Belmont, CA 1990

[18] Generic Verification Protocol for Diesel Exhaust Catalysts, Particulate Filters, and Engine Modification Control Technologies for Highway and Nonroad Use Diesel Engines, U.S. EPA Air Pollution Control Technology Verification Center, Research Triangle Park, NC 2002

[19] GP40 Locomotive Service Manual, Revision A, Horsepower Correction Factors for Model 16-645E3 Diesel Engine, General Motors, LaGrange, IL 1967

[20] *Development of a Heavy-Duty Chassis Dynamometer Driving Route*, R. Nine, N. Clark, J. Daley, C. Atkinson, <u>Proceedings of the Institute of Mechanical Engineers</u>, Vol 213, Part 2, London 1999

[21] Standard Practice for Dealing with Outlying Observations, ASTM E178-02, ASTM International, West Conshohocken, PA 2002

APPENDIX A SITE-SPECIFIC PROTOCOL OUTLINE

1.0 INTRODUCTION

This site-specific protocol addresses individual test details not discussed in the *Generic In-use Test Protocol for Nonroad Equipment* (generic protocol).

Note: Section numbering below follows the generic protocol system. This allows easy cross-referencing. If a test campaign will not employ a particular subsection (such as §6.4, "Extended Interval Tests"), retain the subsection heading but replace the explanatory text with "not applicable". This will ensure that section numbering is consistent with other site-specific protocols.

Project name: _____

Description of test:

Test goals: _____

2.0 APPLICABILITY

This protocol is applicable to any diesel-fueled nonroad equipment powered by mechanically-controlled engines or electronically-controlled engines equipped with engine control modules (ECM). Engines may be naturally aspirated, turbocharged, or equipped with exhaust gas recirculation (EGR). All tested equipment should be representative of the fleet of interest. This protocol also details any required special considerations depending on engine size.

Equipment powered by: mechanic	ally-controlled engine	engine control module (ECM)
Engine is: naturally aspirated	turbocharged 🗌 exhaust	gas recirculation-equipped

Special considerations:

The nonroad equipment design must allow portable emissions monitoring system (PEMS) or integrated sampling system (ISS) installation, along with the required support equipment such as gas cylinders,

exhaust pipe adaptors, and storage battery or generator power supply. Specify the appropriate mounting adaptors, brackets, shrouds, or other physical modifications as needed in §6.1.1 or §6.1.2 for PEMS or ISS, respectively

3.0 SCOPE

This section outlines the scope of the test campaign (Table 3-1) and summarizes the test parameters required for each test type (Table 3-2). Any or all test types could be performed during a given test campaign. In each table, check the boxes applicable to this test. See Tables 3-1 and 3-2 in the generic protocol for further descriptions.

Table 3-1. Test Types				
Control strategy emissions and fuel consumption performance				
In-use evaluations				
Extended interval emissions and fuel consumption performance				
Emissions method comparisons				

Table 3-2. Measurement Systems and Test Parameters				
	СО			
Commentaria de la commensa de la commens	CO_2			
Gaseous Emissions	NO _X			
	THC			
Particulate Emissions	TPM			
Unrogulated Emissions	Speciated TPM			
Unregulated Emissions	Gaseous emissions			
	Gravimetric			
Eucl Consumption	Differential mass flow			
Fuel Consumption	Volumetric			
	Carbon balance			
Control Strategy Cost (ge	Control Strategy Cost (generic protocol Appendix B3)			
Control Strategy Operating Impacts ^{<i>a</i>} (generic protocol Appendix B4)				
^a Data are likely to consist of management and dispatcher business data,				
anecdotal discussions, etc				

Specify the unregulated emissions, test methods, and analytical techniques, if applicable. See Table 3-2 of the generic protocol for more information about methods. Table 3-3 below summarizes several important methods.

	Table 3-3. Additional Test Methods					
√ if Req'd	Control Strategy Type	Analyte	Sampling System / Location	Method		
	SCD	NH ₃	ISS / downstream of SCR	Citric acid-treated filter; ion chromatography analysis		
	SCR	NH ₄ in TPM	ISS / downstream of SCR	extraction of TPM filter; ion chromatography analysis		
			PEMS	Simultaneous NO _X and NO ₂ output signals		
	PDPF	NO ₂	PEMS	3 test runs with NO ₂ converter enabled alternated with 3 test runs with NO ₂ converter disabled		
	All	Elemental carbon to organic carbon (EC / OC) ratio in exhaust	ISS / upstream of ECT	Quartz TPM filter analyzed by "improved" NIOSH Method 5040		

4.0 NONROAD EQUIPMENT, CONTROL STRATEGY, AND HOST SITE SELECTION

This section discusses the selected nonroad equipment, control strategies, and host sites. Table 4-1 provides an example.

Table 4-1. PEMS and ISS Test Matrix								
Equip. Type	Make	Model	MY	Engine Model	bhp	Control Strategy Type	Make	Notes (including special considerations, additional test methods, etc.)

Every test campaign should select the nonroad equipment, the control strategy (if applicable), and host site early in the site-specific protocol development because the steps interact with each other. This site-specific protocol should explicitly list the personnel, administrative support, operations, and other resources required.

Special Considerations:

• Control strategy and fuel consumption performance tests usually require baseline and candidate comparisons. The same operator(s) must be assigned to run the nonroad equipment (and support equipment, if needed) during simple cycle development,

synthesized duty cycle development, baseline, and candidate tests for such comparisons. See §5.2 and §5.3 for further discussion.

4.1. NONROAD EQUIPMENT SELECTION

The nonroad equipment selected for testing should be "representative" of the population of interest to each test campaign. This site-specific protocol should discuss the features and criteria which determine if the selected equipment is representative. Equipment age, fleet purchasing practice, time since the last major overhaul, state of repair, or other considerations may all affect the population of interest and the resulting selection. This protocol should therefore provide detailed data about the selected piece.

Describe how the selected nonroad equipment is representative of the population of interest:

Test personnel will use the generic protocol, Appendix B1, "Nonroad Equipment Information" to acquire nonroad equipment information prior to testing. This will ensure that the selected machines truly represent the host site fleet. Information to be gathered includes:

- time since the last major overhaul
- state of repair
- maintenance history
- major modifications

4.2. CONTROL STRATEGY SELECTION

This section discusses the control strategy selection process, with reference to Table 4-1 above. Control strategy implementation must be feasible for the selected piece of nonroad equipment. Installation of some control strategies will not be feasible on some types of equipment or at certain host sites due to exhaust temperature profiles, flow rates, physical configuration, or other factors. Fill out and attach Appendices B2, "Control Strategy Information" and B3, "Control Strategy Cost Information" from the generic protocol. At the conclusion of testing, fill out and attach the generic protocol Appendix B4, "Control Strategy User's Interview".

Final

November 2007

4.3. HOST SITE SELECTION

This section discusses host site selection. Host site selection is crucial to the success of any test campaign executed under this protocol. Test personnel are responsible for ensuring that all parties are aware of their roles, responsibilities, and resource requirements. Fill out and attach Appendix B5, "Host Site Information" from the generic protocol.

For planning purposes, Table 4-2 shows major test tasks, estimated personnel, equipment out-of-service, and other times, other required resources, and responsibilities. Check those that apply to this test campaign and enter the appropriate information. Responsible parties in Table 4-2 are "H" for host site, "T" for test organization, and "O" for other parties such as the control device vendor. Describe the responsible parties below and provide names and phone numbers in §9.0.

"Н":	 	 	
"T":	 	 	
"O":			

√ if	Table 4-2. Test Tasks, Resources, and Responsibilities Responsible ✓ if Responsible				
Req'd	Description				
	Instrument, sensor, and datalogger installation for duty cycle development, in-use observations (test organization will usually supply sensors; installation with help from host site maintenance technicians)				
	Site coordination for work / pit location, test material acquisition, handling, etc. (support equipment and operators may be needed, depending on duty cycle design)				
	Dispatch, including operator assignment				
	Simple cycle development Synthesized duty cycle development Nonroad equipment operator labor during duty cycle development and test runs				
	In-use operations observations				
	Control strategy acquisition and installation				
	Control strategy training				
	Control strategy certification of proper operations				
	PEMS installation and integration including storage battery or generator power supply (PEMS supplied by test organization; site maintenance technicians may be needed to help fabricate and install brackets, hold-downs, enclosures, and other accessory equipment)				
	ISS installation and integration, including generator power supply (ISS supplied by test organization; site maintenance technicians may be needed to help fabricate and install brackets, hold-downs, enclosures, and other accessory equipment)				
	Baseline control strategy test runs				
	Candidate control strategy test runs				
	In-use evaluation test runs				
	Initial extended interval test runs				
	Final extended interval test runs				
	PEMS, ISS, and other equipment / sensor removal				
	Control strategy removal and disposition				

	Table 4-2. Test Tasks, Resources, and Responsibilities				
√ if Req'd	Description				
	Fuel storage and inventory control				
	Fuel acquisition				

Describe the "other" responsible parties for Table 4-1 tasks. Provide names and phone numbers in §9.0.

5.0 DUTY CYCLES

Table 5-1 lists parameters that may be monitored and logged during duty cycle development, cycle criteria definition, duty cycle validation, in-use evaluations, and test runs. Check all boxes applicable to this test and record sensor descriptions, manufacturers, models, ranges, and accuracy specifications in §6.6 of this site-specific protocol.

Table 5-1. Parameters to be Monitored and Logged				
ECM - Equipped Engines	Mechanically - Controlled Engines			
Percent load	RPM			
RPM	Turbocharger outlet temperature (T_{turb}) or exhaust gas (T_{exh}) outlet temperature			
Turbocharger boost pressure	\Box Exhaust gas flow surrogate, (sqrt ΔP) high			
Exhaust gas temperature (optional)	\Box Exhaust gas flow surrogate, (sqrt ΔP) low			
Net brake torque (optional)	Fuel supply flow rate (optional)			
Fuel consumption (optional)	\Box Fuel return flow rate ^{<i>a</i>} (optional)			
Other (describe below)	Other (describe below)			
^{<i>a</i>} Fuel consumption is the difference between fuel supply and return flow rates on diesel engines.				

Describe other monitored and logged parameters such as injector rack position (diesel engines), throttle position (gasoline engines), hydraulic fluid pressure and flow rates, etc.:

5.1. HOST SITE OPERATIONS EVALUATION

Describe host site operations (functions, materials handled, process rates, etc.):_____

Describe the selected nonroad equipment's functions, duties, typical in-use maneuvers, events, or duty cycles:

Duty cycles to be run in this test:	Simple 🗌	Synthesized 🗌	In-Use

5.2. SIMPLE CYCLE DEVELOPMENT (IF APPLICABLE)

Appendix B6, "Simple Cycle Development and Test Run Instructions" from the generic protocol provides instructions for developing the simple cycle and performing test runs.

IMPORTANT:

Good test results depend on minimizing operator variability. It is therefore essential that the same operator run the nonroad equipment during simple cycle development, baseline, and candidate test runs for a particular ECT / nonroad equipment combination. Some simple cycles may require support equipment, such as trucks to move material, dozers to groom piles, etc. It is essential that those operators also be the same during simple cycle development, baseline, and candidate testing.

Host site managers, dispatchers, operators, and test personnel should discuss the selected equipment's most-used functions and maneuvers, and then define typical events, including idling and shutdowns. Event definitions may consist of a single action (simple event) or multiple actions in series (composite event). These events, when pieced together and performed in sequence, should fully describe any observed duty cycle. They will also serve as the components for simple and synthesized duty cycles. Appendix B7, "Duty Cycle Event List" from the generic protocol provides a log form for the event list.

The defined events should then be arranged in a logical sequence and cycle criteria developed by dispatching the nonroad equipment to perform the complete duty cycle. Define the allowable cycle criteria values (see §5.4 below), then record the sequence and cycle criteria in Appendix B8, "Simple and Synthesized Duty Cycle Description, Elapsed Times, and Cycle Criteria" from the generic protocol.

At the end of each test run, enter event elapsed times and the mean value for each cycle criteria in Appendix B9, "Cycle Criteria Worksheet and Test Run Validation". Compare the test run cycle criteria values to those defined in Appendix B8 to validate each test run.

November 2007

5.3. SYNTHESIZED DUTY CYCLE DEVELOPMENT (IF APPLICABLE)

Appendix B10, "Synthesized Duty Cycle Development and Test Run Instructions" from the generic protocol provides instructions for developing the synthesized duty cycle and performing test runs.

IMPORTANT:

Good test results depend on minimizing operator variability. It is therefore essential that the same operator run the nonroad equipment during synthesized duty cycle development, baseline, and candidate test runs for a particular ECT / nonroad equipment combination. Some duty cycles may require support equipment, such as trucks to move material, dozers to groom piles, etc. It is essential that those operators also be the same during synthesized duty cycle development, baseline, and candidate testing.

Describe any specialized material handling, work locations, etc.:___

5.3.1. <u>In-Use Operations Logging</u>

Record observations and event descriptions as they occur during three normal in-use operations periods in Appendix B11, "In-Use Operations Observations" from the generic protocol. Log the engine parameters specified in Table 5-1 of this site-specific protocol once per second (1 Hz).

5.3.2. **Operations Analysis**

Define typical events, including idling and shutdowns. Event definitions may consist of a single action (simple event) or multiple actions in series (composite event). These events, when pieced together and performed in sequence, should fully describe any observed duty cycle. Appendix B7, "Duty Cycle Event List" from the generic protocol provides a log form for the event list.

Analyze the Appendix B7 events from each of the three observation periods on separate log forms in Appendix B12, "In-Use Operations Analysis" from the generic protocol.

Aggregate the data from all three of the B12 analysis forms into Appendices B13, "In-Use Operations Summary" and B14 "In-Use Operations Descriptive Statistics".

November 2007

5.3.3. Design Synthesized Duty Cycle

Use Appendices B13 and B14 to arrange the events in a logical sequence. List them in sequence in Appendix B8, "Simple and Synthesized Duty Cycle Description, Elapsed Times, and Cycle Criteria from the generic protocol.

5.3.4. Validate Synthesized Duty Cycle

Once developed, test personnel will dispatch the nonroad equipment to perform the synthesized duty cycle while logging the parameters described in Table 5-1. Analysts should compare the resulting synthesized duty cycle data with each of the three operations periods logged according to §5.3.1 above and will refine the duty cycle if necessary. The comparison tools are:

<u>Descriptive Statistics</u>: Calculate mean and σ_{n-1} for appropriate logged parameters and elapsed time for each event should be within ± 5.0 percent of that seen during each normal operations logging period for that event.

<u>Wilcoxon Rank-Sum Test:</u> Appendix C from the generic protocol provides the procedures, and analysts should apply the test to each of the logged parameters.

If the descriptive statistics and Wilcoxon Rank-sum test indicate that the duty cycle is a valid representation of the in-use operations, analysts will then develop the appropriate cycle criteria (see §5.4 below) and enter them in the Appendix B8 form discussed in §5.3.3 above.

At the end of each test run, enter event elapsed times and the mean value for each cycle criteria in Appendix B9, "Cycle Criteria Worksheet and Test Run Validation" from the generic protocol.

5.4. CYCLE CRITERIA

Example cycle criteria for ECM - controlled engines are:

- RPM multiplied by brake torque
- percent load

Example cycle criteria for mechanically - controlled engines are:

- RPM multiplied by a PEMS exhaust gas flow rate signal or a surrogate (such as $\sqrt{\Delta P}$ as measured by a fixed pitot tube)
- RPM multiplied by T_{turb} or T_{out}

Describe the cycle criteria or cite those from an existing duty cycle which will be used for this test:

Criteria_1:	
Criteria_2:	
Other:	

5.5. IN-USE DUTY CYCLES (IF APPLICABLE)

Describe the in-use duty cycle (processes, rates, materials handled, typical duties etc.):

Shift length:	Start times:	End times:
Breaks (fueling, meals, e	etc; describe):	
Typical number of shutd	lowns / startups per shift	Estimated idling time per shift:
Will equipment be dispa	tched: cold start	warm start
Describe procedures and	l time intervals for PEMS op	erator rendezvous, periodic zero and span checks, and
PEMS battery change ou	ıt (if needed):	

6.0 TEST PROCEDURES

This section discusses preparation and step-by-step procedures for each type of test. The concluding subsection provides the required instrument and analyzer specifications. A test campaign may require consideration of any or all of the concepts.

November 2007

6.1. **PREPARATION**

Prior to testing, maintenance personnel will ensure that the selected nonroad equipment is operating properly. A standard preventive maintenance procedure will be utilized to evaluate and document the nonroad equipment condition prior to testing. The equipment configuration should be as consistent as is possible for all test runs. Prior to testing, test personnel will record the following parameters in the generic protocol Appendix B15, "Test Run Record":

- inlet air restriction
- exhaust gas restriction
- control setting (on, off, or automatic) for the major parasitic loads (lights, air-conditioning, heater, fan clutch)

The selected nonroad equipment may have additional parasitic loads, such as a continuously-operating hydraulic pump / motor combination, which should be set to operate consistently during all test runs. Describe such other parasitic loads and their control settings here.

Example parasitic loads and their control settings for simple cycle test runs are:

- communications (radio) system -- on
- cab heater -- off
- air conditioning -- off
- headlights -- on

6.1.1. Control Strategy Preparation

The control strategy must be installed and degreened according to manufacturer specifications (typically 25 to 125 hours) prior to testing. Manufacturers must also certify proper operation of the control strategy and nonroad equipment prior to testing.

6.1.2. <u>Test Fuel</u>

Fuel to be used in the test:	nonroad diesel	current specifi	ication on-highw	ay diesel 🗌
	ultra-low sulfur diesel	biodiesel	blends	gasoline 🗌
	diesel fuel / water emulsio	ns 🗌	diesel fuel with	additive 🗌

Specify biodiesel blend, water emulsion type and concentration, additives, etc.:

The host site and fuel distributor will supply fuel for all testing from a common lot. A fuel analysis sheet for the specific lot will be provided. Contact information for the fuel supplier appears in §9.0.

6.1.3. PEMS Integration (If Applicable)

EPA guidance states that PEMS may obtain on-board power up to 1.0 percent of the machine's nominal horsepower capacity. As an example, the Horiba OBS-2200 requires approximately 800 watts, maximum, of 24-volt direct current (VDC) power. This means that any nonroad equipment larger than 110 horsepower with a 24-volt electrical system is large enough to power this PEMS. 12-volt systems or smaller machines will require temporary installation of a generator or storage batteries.

List sizes and weights of PEMS equipment and accessories. Include schematic diagrams as needed, per the following example:

Horiba OBS-2200 PEMS

Required brackets, hangers, or racks must accommodate:

- OBS-2200 enclosure, 27.5" x 36.75" x 23.5" (1 x d x h), approximately 100 lb
- gas cylinder rack, 23" x 8.5" x 23" (l x d x h), approximately 85 lb
- generator (if needed), 24" x 20" x 18" (l x d x h), approximately 80 lb
- storage batteries (if needed), 13" x 7" x 10", approximately 65 lb each (2 required)

The PEMS will employ exhaust pipe adaptors to determine exhaust gas flow rates. List the sizes required for this test:

If exhaust pipe adaptor is unavailable, specify the strategy that will be used to acquire real-time exhaust gas or intake air flow: \Box Fixed pitot for $\sqrt{\Delta P}$ and T_{out} \Box laminar flow element (LFE), size: $_$ \Box ECM \Box Other (describe and justify)_____ List estimates for the following, as required for PEMS installation:

- Labor: _____
- Materials:

Provide a schematic of the required sampling ports and their locations. Figure 6-1 is an example. Figure 6-2 provides details. These examples are for upstream and downstream sampling with a PEMS, an ISS, and an auxiliary "ETaPS" TPM instrument.

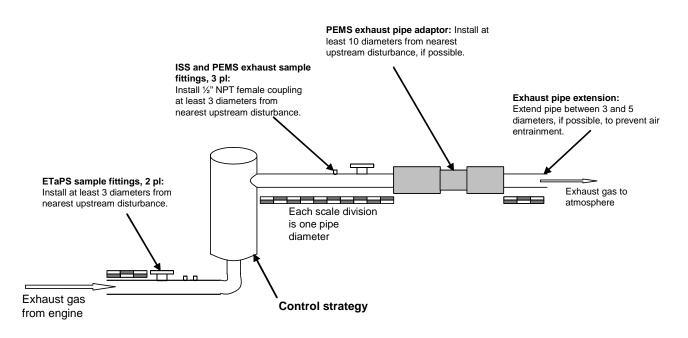


Figure 6-1. Sample Port Location Example

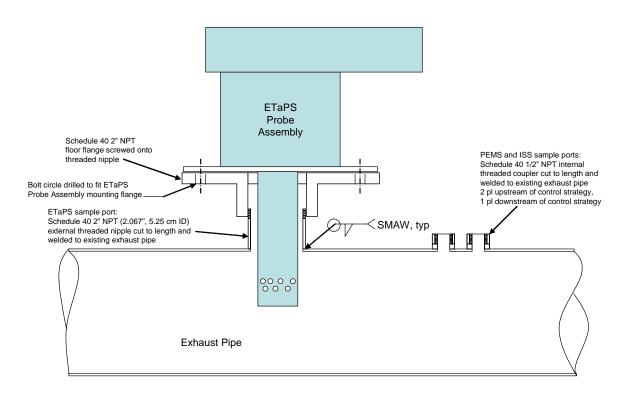
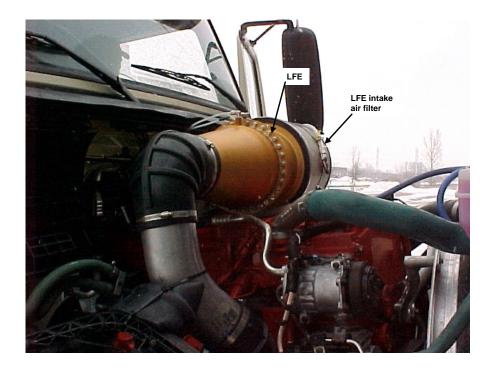


Figure 6-2. Sample Port Details Example


6.1.4. ISS Integration (if applicable)

List sizes and weights of PEMS equipment and accessories per the following example. Include schematic diagrams as needed. Describe any custom designs or installation requirements for the ISS:

Environment Canada DOES2 ISS Example:

Required brackets, hangers, or racks must accommodate:

- DOES2 enclosure, 25 x 15 x 14 (l x d x h), approximately 80 lb
- pump box, 14 x 14 x 20 (l x d x h), approximately 60 lb
- generator, 36 x 20 x 20 (l x d x h), approximately 200 lb
- laminar flow element (LFE), size varies

Test personnel will plan for the laminar flow element (LFE) installation, if used, onto the engine's intake air system with the appropriate brackets, elbows, and adaptors. Figure 6-3 shows an example installation.

Figure 6-3. LFE Installation Example

If an LFE is not applicable, specify the strategy that will be used to acquire intake air or exhaust gas flow rate:

Fixed pitot for $\sqrt{\Delta P}$ and T_{intake} ECM Other (describe and justify):

6.2. CONTROL STRATEGY PERFORMANCE TESTS (IF APPLICABLE)

Control strategy performance tests will consist of at least three baseline and three candidate test runs performed under simple or synthesized duty cycles. Test personnel may perform more test runs up to a maximum of six each in order to:

- show a statistically significant difference between the baseline and candidate conditions
- refine the confidence interval on the difference

Copy the step-by-step test procedure(s) from §6.2.1 or §6.2.2 of the generic protocol for PEMS or ISS tests, respectively. Edit the procedure as needed to reflect the actual sequence to be used during test runs.

6.3. IN-USE EVALUATIONS (IF APPLICABLE)

In-use evaluations will consist of monitoring under in-use duty cycles and will allow emissions assessments under real world conditions.

Copy the step-by-step test procedure from §6.3 of the generic protocol. Edit the procedure as needed.

6.4. EXTENDED INTERVAL TESTS (IF APPLICABLE)

Extended interval tests are intended to assess nonroad equipment or control strategy performance trends. They consist of a series of initial PEMS test runs followed by an extended interval of normal in-use service, typically at least 6 months. Tests conclude with a series of final PEMS test runs.

Ambient temperatures should be as close as possible between the initial and final test series. Explain how this issue will be addressed, such as selection of seasons, time of day, monitoring of meteorological conditions and comparisons to previous work prior to authorizing a test run, or other procedures:

Copy step-by-step the procedure from §6.4 of the generic protocol. Edit the procedure as needed.

6.5. EMISSIONS METHOD COMPARISONS (IF APPLICABLE)

Copy the step-by-step procedure from §6.5 of the generic protocol. This procedure outlines a comparison between a PEMS and ISS. Edit the procedure as needed to reflect the actual emissions methods which will be compared.

6.6. INSTRUMENT SPECIFICATIONS, CALIBRATION, AND PERFORMANCE CHECKS

The emissions and performance determinations described in this protocol require numerous contributing measurements, sensors, instruments, analytical procedures, and dataloggers. This section provides general specifications which, if met, will help ensure repeatability within a test campaign and comparability with other programs.

Table 6-1 lists the PEMS and ISS accuracy specifications recommended for use with this protocol. Enter the manufacturer and model of the measurement system or sensor and check the appropriate boxes to indicate if a measurement system will be used and if the accuracy specification was met.

	Table 6-1. PEMS and ISS Specifications								
Parameter	√ if used	Logging Frequency	Accuracy	Repeatability	Manufacturer	Model(s)	Meets Spec.	Date Verified	
Engine speed		1 Hz	5.0 % of point or 1.0 % of max ^{<i>a</i>}	2.0 % of point or 1.0 % of max					
Torque estimator, BSFC		1 Hz	8.0 % of point or 5.0 % of max	$\begin{array}{c} 2.0 \ \% \ \text{of point} \\ \text{or } 1.0 \ \% \ \text{of} \\ \text{max}^b \end{array}$					
Pressure transducers		1 Hz	5.0 % of point or 5.0 % of max	2.0 % of point or 0.5 % of max					
Ambient barometric pressure		6 second	0.07 "Hg (250 Pa)	0.06 "Hg (200 Pa)					
Temperature transducers $(T_{turb}, T_{out}, T_{amb})$		1 Hz	1.0 % of point or 5.0 °C	0.5 % of point or 2.0 °C					
Dewpoint / RH ^c (if used)		6 second	5.0 °F	2.0 °F					
Exhaust flow		1 Hz	5.0 % of point or 3.0 % of max	2.0 % of point					
Instrumental analyzer concentration		1 Hz	4.0 % of point	2.0 % of point					
Fuel flow (if used) ^d		1 Hz	2.0 % of point or 1.5 % of max	1.0 % of point or 0.75 % of max					
				ISS Only					
Instrumental analyzer concentration		1 Hz	2.0 % of point	1.0 % of point					

Table 6-1. PEMS and ISS Specifications								
Parameter	√ if used	Logging Frequency	Accuracy	Repeatability	Manufacturer	Model(s)	Meets Spec.	Date Verified
Gravimetric TPM balance		n/a ^e	0.1 % (see §1065.790)	0.5 µg				
Main flow rate								
Dilution air flow rate								
Sample flow rate		2 Hz	$1.0 \% FS^{f}$	n/a				
Differential pressure (if used)								
^a "max" refers to the maximum value expected during testing. ^b Quantification of ECM torque estimator accuracy may be difficult because $\$1065.915(b)(5)(i)$ regulations requiring this on nonroad engines are not effective until 2010. ^c relative humidity (RH) ^d This specification refers to fuel consumption by: 1) net gravimetric determinations from removable day tanks, 2) net of diesel engine fuel supply and return mass flows, 3) volumetric makeup flow into a closed diesel engine fuel circulation loop, or 4) other methods of direct fuel consumption measurement. Note that the supply and return flow meters must be extremely accurate (generally better than ± 0.2 %) to achieve this specification for differential flow at low fuel consumption rates. ^e Not applicable (n/a) ^f Full scale (FS)								

Table 6-2 lists recommended calibration intervals and performance checks. Note that test personnel must perform some performance checks, such as leak checks, analyzer zero and spans, etc. before and after each test run while others may be performed either in the field or laboratory. Table 6-4 in the generic protocol provides specific references to step-by-step calibration procedures.

	Table 6-2. Recommended Calibrations and Performance Checks								
System or Parameter	Description / Procedure Frequency		Meets Spec.?	Date Completed					
Engine speed	11-point linearity check	At purchase / installation							
Pressure transducers									
Temperature transducers (T _{turb} , T _{out} , T _{amb})	NIST-traceable ^{<i>a</i>} calibration	Within 12 months							
Dewpoint / RH									
Exhaust flow									
All instrumental analyzers	11-point linearity check	Within 12 months							
CO_2 (NDIR detectors) ^b	H ₂ O interference	Within 12 months							
CO (NDIR detectors)	CO ₂ , H ₂ O interference								
Hydrocarbons	Propane (C_3H_8) calibration								
$(FID)^c$	FID response optimization								
	C ₃ H ₈ / methyl radical (CH ₃) response factor determination								
	C ₃ H ₈ / CH ₃ response factor								

System or	Description / Description	F	Meets	Date
Parameter	Description / Procedure	Frequency	Spec.?	Completed
	check		•	-
	Oxygen (O ₂) interference check			
NO _X	CO_2 and H_2O quench $(CLD)^d$			
	Non-methane hydrocarbons			
	(NMHC) and H ₂ O interference			
	(NDUV detectors) ^e			
	Ammonia interference and NO ₂			
	response (zirconium dioxide			
	detectors)			
	Chiller NO ₂ penetration (PEMS			
	with chillers for sample			
	moisture removal)			
		Within 6 months or		
	NO ₂ to NO converter efficiency	immediately prior to		
		departure for field tests		
	Comparison against laboratory	At purchase / installation;		
	CVS system	after major modifications		
PEMS	Zero / span analyzers (zero $\leq \pm$	Before and after each test run		
	2.0 % of span, span $\leq \pm 4.0$ % of	or as needed during in-use	Defente	
	point)	evaluations	Refer to	
	Perform analyzer drift check (≤	After each test run	generic	
	± 4.0 % of cal gas point)	After each test fun	protocol	
	NMHC contamination check (≤		Appendix B15,	
	2.0 % of expected conc. or ≤ 2	Once per test day	"Test	
	ppmv)	1	Run	
Exhaust gas or	Differential pressure line leak		Record"	
intake air flow	check (ΔP stable for 15 seconds	Once per test day	iteeoitu	
measurement device	at 3 "H ₂ O)	1		
	Comparison against laboratory	At purchase / installation;		
	CVS system	after major modifications		
	Zero / span analyzers (zero $\leq \pm$			
	2.0 % of span, span $\leq \pm 4.0$ % of	Before and after each test run		
	point)			
	Inspect sample lines, filter			
	housings, and sample bags for			
	visible moisture (none is	After each test run	Refer to	
	allowed)	Alter each test run	generic	
ISS	Perform analyzer drift check (≤		protocol	
155	\pm 4.0 % of cal gas point)		Appendix	
	NMHC background check and		B15,	
	dilution tunnel blank		"Test	
	TPM background check and		Run	
	dilution tunnel blank	Once per test day	Record"	
	Dilution tunnel leak check	-		
	Sample bag leak check (< 0.5 %			
	of normal system flow rate)		J	
	TPM filter face temperature (not	continuously during compliant		
	to exceed 47 °C or 117 °F)	continuously during sampling		

Table 6-2. Recommended Calibrations and Performance Checks							
System or Parameter	rameter Description / Procedure Frequency		Meets Spec.?	Date Completed			
Fuel flow	11-point linearity check	At purchase (coriolis meters only); within 6 months or immediately prior to departure for field tests (turbine or gear meters)					
TPM gravimetric	NIST-traceable calibration	Within 12 months					
balance	Reference sample weights	Within 12 hours of filter weighings					
ISS main, dilution, and sample flow rates	11-point linearity check	Within 12 months					
^{<i>a</i>} National Institutes of ^{<i>b</i>} non-dispersive infrare ^{<i>c</i>} flame ionization deter ^{<i>d</i>} chemilumenescence of ^{<i>e</i>} non-dispersive ultra v	ctor (FID) letector (CLD)						

List sensors used for duty cycle development, mechanically-controlled engine parameters (such as exhaust gas flow rate surrogate sensors, which include a suitable pitot, ΔP sensors, and thermocouple) and other sensors to be used during this test campaign.

	Table 6-3. Duty Cycle, Engine, and Auxiliary Sensors						
Description	Manufacturer	Model	ID or Serial Number	Range	Accuracy		

7.0 DATA QUALITY AND ANALYSIS

This section outlines general data analysis procedures for each type of test and data quality requirements for all tests. Appendix C from the generic protocol supplements the discussion with statistical concepts and equations.

7.1. CONTROL STRATEGY PERFORMANCE TESTS

Check the boxes in the following subsections to indicate the analyses which will be performed for this test campaign.

7.1.1. Emissions Reductions and Fuel Consumption Changes for Simple and Synthesized Duty <u>Cycles</u>

The following calculations will be made for each parameter (CO, CO_2 , NO_x , THC, TPM, and fuel consumption, as applicable). Refer to Appendix C from the generic protocol for procedures and attach documentation of calculations to the test report.

 \square mass emissions (g/run) mean and σ_{n-1} for all baseline and candidate test runs

Fuel consumption rate (gal/run, gal/hr)

carbon balance method (from PEMS data)

gravimetric (day tank weight change)

mass-flow fuel meters

volumetric-flow fuel meters

 \Box fuel-specific emission rate (g/gal) mean and σ_{n-1} for all baseline and candidate test runs

 \Box brake-specific emission rate mean (g/bhp-h) and σ_{n-1} for all baseline and candidate test runs, if torque or horsepower data are available from an ECM

the difference between the baseline and candidate mean results

the statistical significance of the difference

the 95-percent confidence interval on the difference

7.1.2. Emissions Reductions and Fuel Consumption Changes for In-use Duty Cycles

The following calculations will be made for each parameter (CO, CO_2 , NO_x , THC, TPM, and fuel consumption, as applicable). Refer to Appendix C from the generic protocol for procedures and attach documentation of calculations to the test report.

Fuel consumption rate (gal/event, gal/hr)

carbon balance method (from PEMS data)

gravimetric (day tank weight change)

mass-flow fuel meters

volumetric-flow fuel meters

 \Box fuel-specific emission rate (g/gal) mean and σ_{n-1} for each test period and individual events

 \Box brake-specific emission rate mean (g/bhp-h) and σ_{n-1} for all baseline and candidate test runs, if torque or horsepower data are available from an ECM

the difference between the baseline and candidate mean results for each test period and for individual comparable events

the statistical significance of the difference

the 95-percent confidence interval on the difference

7.1.3. Control Strategy Cost Analysis

Analysis of control strategy costs consists primarily of summing and reporting the data collected in Appendix B3, "Control Strategy Cost Information" of the generic protocol. Costs should be separated into the following general categories:

capital purchases

shop-made modifications, specialty items

downtime (or demurrage), installation, and training labor

operating materials, supplies, and reagents

operating labor

7.1.4. <u>Control Strategy Engine and Operational Performance Impact Analysis</u>

The following methods will be used to assess control strategy performance:

ECM data is available: calculate the difference between the baseline and candidate horsepower and fuel consumption, normalized to brake horsepower

ECM data is suspect or not available: calculate the difference in mean fuel consumption between baseline and candidate tests as observed during simple or synthesized duty cycles

In-Use duty cycles: fuel consumption difference between baseline and candidate conditions over a consistent time period. Indicate time period of comparison (per shift, per day, etc.)

Fuel consumption changes:	brake-s	specific		per shi	ift	per hour
	other (describe	e): d	uty cyc	ele-sp	pecific

Test personnel will gather other control strategy impact information as described in Appendix B4, "Control Strategy User's Interview" from the generic protocol.

7.2. IN-USE EMISSIONS TESTS

This section discusses application of basic descriptive statistics, but analysts should be open to other possibilities depending on the circumstances of a particular test campaign. Appendix C and §7.2 from the

generic protocol provides additional analytical concepts such as methods for identifying and comparing inuse events.

The following descriptive statistics should be generally useful to describe the events which occur within an in-use emission test or to describe the test as a whole. Check those applicable to this test.

 \Box In-use overall mean, σ_{n-1}

 \Box individual event means, σ_{n-1}

Frequency distributions

7.3. EXTENDED INTERVAL TESTS

Analysts can consider extended interval tests as a baseline / candidate test series, similar to a control strategy evaluation. The difference between the mean final and initial test runs will serve as the performance metric. Analysts should calculate and report the difference according to the procedures in §7.1 above and Appendix C of the generic protocol.

7.4. EMISSIONS MEASUREMENT METHOD COMPARISONS

Analysts should, for each parameter (CO, CO₂, NO_X, THC, and fuel consumption, as applicable):

report the ISS mass emissions (g/run) for each test run

 \Box calculate the mass emissions mean and σ_{n-1} for all test runs

calculate the PEMS mass emissions

 \Box calculate the mass emissions mean and σ_{n-1} for all PEMS test runs

calculate the difference of the ISS and PEMS mean results

evaluate the statistical significance of the difference

calculate the 95-percent confidence interval on the difference.

See Appendix C of the generic protocol for the appropriate statistical analysis procedures.

7.5. DATA QUALITY

All test campaigns should meet the following qualitative data quality objective (DQO):

Sensors, measurements, step-by-step test methods, and the resulting determinations will meet or exceed this protocol's and reference method specifications as outlined in §5.0 through §6.6.

List any site-specific DQOs here:

8.0 REPORTS

Reported results, data summaries, and statistical analyses depend on the individual test campaign. Table 8-1 provides a general list of items to be included in each type of report. Check all items applicable to this test.

Table 8-1. Reported Results List						
Test Type	Control strategy	In-use	Extended	Emissions		
	performance	emissions	interval	measurement		
Description	evaluation	tests	tests	method		
				comparisons		
Emission rates						
Fuel consumption						
Difference between baseline and candidate emissions						
and fuel consumption						
Control strategy costs						
Control strategy performance impacts						
Simple or synthesized duty cycle specifications						
In-use duty cycle descriptive statistics						

Indicate where all data files related to this test will be kept.

Electronic files:

Hard copy files:

Specify the person(s) responsible for managing the data:

Specify the person(s) responsible for performing data calculations:

9.0 CONTACTS

Site-specific protocol author Contact Name:

Company:

Phone: Fax:

Field team leader for this test:

Contact Name:

Company:

Phone:

Fuel distributor:

Contact Name:

Company:

Phone:

Host Site: Contact Name:

Company:

Phone:

ISS Provider

Contact Name:

Company:

Phone:

Control Strategy Provider(s)

Contact Name:

Company:

Phone:

[Blank Page]

APPENDIX A-1 SAMPLE SITE-SPECIFIC PROTOCOL

The preceding Site-Specific Protocol Outline (Appendix A) formed the initial template for the following sample site-specific protocol. Comparisons between the two documents show how the authors adapted the template to suit the planned tests, selected nonroad equipment, control strategies, adminstrative structures, responsibilities, and manpower.

NYSERDA CLEAN DIESEL TECHNOLOGY: NON-ROAD FIELD DEMONSTRATION PROGRAM

Site Specific Test Plan

For

In-Use Evaluation of Diesel Emission Control Technologies at the New York City Department of Sanitation

Prepared for:

THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY

Albany, NY

Barry Liebowitz, P.E. Senior Project Manager

Prepared by:

SOUTHERN RESEARCH INSTITUTE

Morrisville, NC

Tim A. Hansen Project Manager

Agreement Number 8958 22 September, 2006 [Blank Page]

Site Specific Test Plan Number One For In-Use Evaluation of Diesel Emission Control Technologies at the New York City Department of Sanitation

1.0 INTRODUCTION

This site-specific protocol addresses individual test details for the evaluation of emission control technologies (ECT) on non-road diesel construction equipment operated by the New York City Department of Sanitation (DSNY). The site-specific test procedures and details are based on the *Generic In-Use Test Protocol for Nonroad Equipment* (generic protocol) developed by Southern Research Institute for New York State Energy Research and Development Authority (NYSERDA).

This site-specific protocol applies to the first three ECT evaluations to be performed under NYSERDA's Clean Diesel Technology Non-Road Field Demonstration Program. NYSERDA is funding the demonstrations, with equipment for testing and support provided by DSNY, and ECTs provided by several vendors at reduced or no cost.

The goals of this test program are to:

- demonstrate and evaluate the feasibility and performance of commercially available emission control technologies for reduction of particulate matter (PM) and oxides of nitrogen (NOx) emissions from non-road diesel equipment using in-use field testing approaches
- evaluate the performance of diesel emission control technologies (ECTs) on several pieces of nonroad equipment operated by the DSNY
- evaluate ECT economic impacts, including costs, maintenance, and operations effects
- utilize integrated sampling systems (ISS) and portable emission measurement systems (PEMS) to evaluate emissions upstream and downstream of the control device
- evaluate the correlation between the two emission measurement methods

2.0 APPLICABILITY

This test plan is applicable to equipment owned and operated by the DSNY. Nonroad equipment to be tested will include of the following types of diesel engines:

Equipment powered by: mechanically-controlled engine engine control module (ECM)

Engine is: naturally aspirated \Box turbocharged \boxtimes exhaust gas recirculation-equipped \Box

The following equipment has been identified and provided by DSNY for installation of retrofit ECTs and in-use evaluations and testing:

• Rubber Tire Loaders, 100-600 HP

The nonroad equipment design must allow portable emissions monitoring system (PEMS) and integrated sampling system (ISS) installation, along with the required support equipment such as gas cylinders, exhaust pipe adaptors, and storage battery or generator power supply. Sections 6.1.3 and 6.1.4 specify the required mounting adaptors, brackets, shrouds, or other physical modifications.

3.0 SCOPE

This section outlines the scope of the test campaign (Table 3-1) and summarizes the test parameters required for each test type (Table 3-2). In each table, checked boxes indicate applicable tests. See Tables 3-1 and 3-2 in the generic protocol for further details.

Table 3-1. Test Types				
Control strategy emissions and fuel consumption performance	\boxtimes			
In-use evaluations	\boxtimes			
Extended interval emissions and fuel consumption performance				
Emissions method comparisons	\boxtimes			

Test personnel will evaluate ECT performance under a well-defined simple cycle and in-use duty cycles. Southern Research Institute (Southern) will provide a Horiba OBS-2200 PEMS for the simple cycle and inuse tests. Environment Canada (EC) will deploy their dynamic offroad emissions sampling system (DOES2) ISS in parallel with the PEMS for the simple cycle tests. Realtime TPM concentrations will also be measured using a Dekati electrical tailpipe particulate sensor (ETaPS) if available.

Table 3-2. Measurement Systems and Test Parameters				
Parameter				
	СО	\boxtimes		
	CO ₂	\boxtimes		
Gaseous Emissions	NO _X	\square		
	THC	\boxtimes		
Particulate Emissions	TPM	\boxtimes		
Unrogulated	Speciated TPM ^a	\square		
Unregulated Emissions	Gaseous	\square		
LIIIISSIOIIS	emissions ^a			
	Gravimetric			
	Differential mass			
Fuel Consumption	flow			
	Volumetric			
	Carbon balance	\boxtimes		
Control Strategy Cost (generic protocol				
Appendix B3)				
Control Strategy Operating Impacts ^b				
(generic protocol Appendix B4)				
^a See Table 3-3 for deta	uils			
^b Data are likely to consist of management and				
dispatcher business data, anecdotal discussions,				
etc.				

Table 3-3 specifies additional test methods for unregulated emissions. Checked table entries indicate test methods required for this test series.

	Table 3-3. Additional Test Methods						
✓ if	ECT	Analyte	Sampling System /	Method			
Req'd	Туре		Location				
	SCR	NH ₃	ISS / downstream of	Citric acid-treated filter; ion			
			SCR	chromatography analysis			
		NH ₄ in TPM	ISS / downstream of	extraction of TPM filter; ion			
			SCR	chromatography analysis			
	PDPF	NO ₂	Semtech-D PEMS	Simultaneous NO _X and NO ₂ output			
				signals			
			Horiba OBS-2200	3 test runs with NO ₂ converter enabled			
			PEMS	alternated with 3 test runs with NO ₂			
				converter disabled			
	All	Elemental carbon	ISS / upstream of	Quartz TPM filter analyzed by			
1		to organic carbon	ECT	"improved" NIOSH Method 5040			
•		(EC / OC) ratio in					
		exhaust					

4.0 NONROAD EQUIPMENT, CONTROL STRATEGY, AND HOST SITE SELECTION

Table 4-1. PEMS and ISS Test Matrix								
Equip. Type	Make	Model	MY	Engine Model	bhp	ЕСТ Туре	Make	Notes
	Daewoo	Mega 200	2003	DB58TI S	143	DPF - CRT	JMI	
	Case	821B	1998	6T-830	190	FTF	Extengine	Use quartz filters upstream of
Loader	Daewoo	Mega 200	2003	DB58TI S	143	FTF	Nett	ECT for EC / OC analysis
	Case	821B	1998	6T-830	190	DPF	Clean Air Systems	

Table 4-1 lists the nonroad equipment to be tested.

Special considerations:

- The same operator(s) must be assigned to run the nonroad equipment (and support equipment, if needed) during simple cycle development, baseline, and candidate tests. See §5.2 for further discussion.
- The Case 821 and Daewoo Mega 200 engines are mechanically controlled and will require installation of engine speed (rpm) sensors for duty cycle development.

4.1. NONROAD EQUIPMENT SELECTION

The Daewoo and Case loaders selected for field demonstration are common, representative of the entire rubber tire loader population, and of the DSNY fleet. For example, DSNY operates 70 Daewoo Mega 200 loaders.

Test personnel will use the generic protocol, Appendix B1, "Nonroad Equipment Information" to acquire nonroad equipment information prior to testing. This will ensure that the selected machines truly represent the DSNY fleet. Information to be gathered includes:

- time since the last major overhaul
- state of repair
- maintenance history
- major modifications

4.2. CONTROL STRATEGY SELECTION

Table 4-1 (see §4.0) lists the control strategies to be tested during this campaign. The generic protocol Appendix B2, "Control Strategy Information" and B3, "Control Strategy Cost Information" will be completed for each control strategy prior to field testing. At the conclusion of the campaign, test and site personnel will fill out and attach Appendix B4, "Control Strategy User's Interview".

Additional information regarding control strategy feasibility, selection, and implementation are available in separate documents. ECTs were obtained through an open solicitation of ECT vendors for participation in the testing program. Control technologies were selected based on interest to the program, feasibility, availability, and cost to the program.

Special considerations:

Control devices will be installed on the test equipment prior to testing. Baseline tests will therefore take place upstream of the control device. Candidate tests will take place downstream of the control device.

4.3. HOST SITE SELECTION

Host site selection is crucial to the success of any test campaign. Test personnel are responsible for ensuring that all parties are aware of their roles, responsibilities, and resource requirements. To ensure this, a Participation Agreement has been completed and signed by both the testing agency and host site / equipment operator. Test personnel will complete the generic protocol Appendix B5, "Host Site Information" for details regarding the host site.

For planning purposes, Table 4-2 shows major test tasks and responsibilities. Responsible parties listed below and in Table 4-2 are "H" for host site, "T" for test organization, and "O" for other parties such as the control device vendor. Section 9.0 provides responsible party contact information.

- "H": DSNY
- "T1": Southern Research Institute
- "T2": Environment Canada
- "O1": Johnson-Matthey Incorporated
- "O2": Nett
- "O3": Extengine

Table 4-2. Test Tasks, Resources, and Responsibilities				
√ if Req'd	Description	Respon- sible Party(s)		
~	Instrument, sensor, and datalogger installation for duty cycle development, in-use observations (test organization will usually supply sensors; installation with help from host site maintenance technicians)	H, T1, T2		
~	Site coordination for work / pit location, test material acquisition, handling, etc. (support equipment and operators may be needed, depending on duty cycle design)	H, T1		
✓	Dispatch, including operator assignment	Н		
\checkmark	Simple cycle development	H, T1		
	Synthesized duty cycle development			
\checkmark	Nonroad equipment operator labor during duty cycle development and test runs	Н		
\checkmark	In-use operations observations	T1		
\checkmark	Control strategy acquisition and installation	H, O2, O3		
\checkmark	Control strategy training	H, O1 - O3		
\checkmark	Control strategy certification of proper operations	01 - 03		
~	PEMS installation and integration including storage battery or generator power supply (PEMS supplied by test organization; site maintenance technicians may be needed to help fabricate and install brackets, hold-downs, enclosures, and other accessory equipment)	H, T1		
~	ISS installation and integration, including generator power supply (ISS supplied by test organization; site maintenance technicians may be needed to help fabricate and install brackets, hold-downs, enclosures, and other accessory equipment)	Н, Т2		
✓	Baseline control strategy test runs	H, T1, T2		
\checkmark	Candidate control strategy test runs	H, T1, T2		
\checkmark	In-use evaluation test runs	H, T1		
	Initial extended interval test runs			
	Final extended interval test runs			
\checkmark	PEMS, ISS, and other equipment / sensor removal	H, T1, T2		
\checkmark	Control strategy removal and disposition (if required)	H, O1 - O3		
✓	Fuel storage and inventory control	H, T1		
\checkmark	Fuel acquisition	Н		

5.0 DUTY CYCLES

Table 5-1 lists parameters that will be monitored and logged during duty cycle development, cycle criteria definition, duty cycle validation, in-use evaluations, and test runs. The checked boxes are applicable to this test. Section 6.6 lists sensor descriptions, manufacturers, models, ranges, and accuracy specifications.

Table 5-1. Parameters to be Monitored and Logged				
ECM - Equipped Engines	Mechanically - Controlled Engines			
Percent load	🖾 rpm			
RPM	\Box Turbocharger outlet temperature (T _{turb}) or			
	\boxtimes exhaust gas (T _{exh}) outlet temperature			
Turbocharger boost pressure	\Box Exhaust gas flow surrogate, (sqrt ΔP) high			
Exhaust gas temperature (optional)	\Box Exhaust gas flow surrogate, (sqrt ΔP) low			
Net brake torque (optional)	Fuel supply flow rate (optional)			
Fuel consumption (optional)	\Box Fuel return flow rate ^{<i>a</i>} (optional)			
Other (describe below)	Other (describe below)			
^{<i>a</i>} Fuel consumption is the difference between fuel supply and return flow rates on diesel engines.				

Other monitored and logged parameters include the exhaust gas flow rate, as monitored by the PEMS.

5.1. HOST SITE OPERATIONS EVALUATION

The nonroad equipment selected for this test campaign, its functions, duties, typical in-use maneuvers, events, or duty cycles are:

- Daewoo Mega 200: lot clearing, snow removal
- Case 821B: moving salt/sand, snow removal, and lot clearing

Duty cycles to be run in this test: Simple \boxtimes Synthesized \square In-Use \boxtimes

5.2. SIMPLE CYCLE DEVELOPMENT

The generic protocol Appendix B6, "Simple Cycle Development and Test Run Instructions" provides instructions for developing the simple cycle and performing test runs.

IMPORTANT:

Good test results depend on minimizing operator variability. It is therefore essential that the same operator run the nonroad equipment during simple cycle development, baseline, and candidate test runs for a particular ECT / nonroad equipment combination. Some simple cycles may require support equipment, such as trucks to move material, dozers to groom piles, etc. It is essential that those operators also be the same during simple cycle development, baseline, and candidate testing.

Host site managers, dispatchers, operators, and test personnel will discuss the selected equipment's mostused functions and maneuvers, and then define typical events, including idling and shutdowns. Event definitions may consist of a single action (simple event) or multiple actions in series (composite event). Appendix B7, "Duty Cycle Event List" from the generic protocol provides a log form for the event list.

In-use vehicle operations will be observed for a short duration (1-2 hours). Depending on availability, equipment may also be outfitted with exhaust gas temperature and rpm data logging devices. Observations will be logged, including identification of events and event durations. Such observations will be documented in generic protocol Appendix B7.

The defined events will be arranged in a logical sequence to ensure that representative events are accounted for with durations appropriate to the test period and the observed equipment usage. Once this simple duty cycle is established, cycle criteria will be developed by dispatching the nonroad equipment to perform the complete duty cycle.

Allowable cycle criteria values will be defined in accordance with section §5.4 below, and the sequence and cycle criteria recorded in generic protocol Appendix B8, "Simple and Synthesized Duty Cycle Description, Elapsed Times, and Cycle Criteria".

At the end of each test run, event elapsed times and the mean value for each cycle criteria will be documented in the generic protocol Appendix B9, "Cycle Criteria Worksheet and Test Run Validation". The test run cycle criteria values will be compared to those defined in generic protocol Appendix B8 to validate each test run.

5.3. SYNTHESIZED DUTY CYCLE DEVELOPMENT

Not applicable

5.4. CYCLE CRITERIA

For simplicity, the cycle criteria for this test program will be defined similarly for all engine types (mechanically or electronically controlled). The cycle criteria definitions are:

- Criteria_1: RPM multiplied by exhaust gas flow
- Criteria_2: RPM multiplied by T_{exh}

For a single test run cycle to be valid, these criteria must be within 5 percent of the established cycle criteria developed during the duty cycle development (see §5.2 and generic protocol Appendix B8).

5.5. IN-USE DUTY CYCLES

Equipment will be dispatched into its normal operations for an approximately 4 hour test period. At a minimum, this test phase will be completed with PEMS equipment on board. No prescribed cycles will be utilized in this case. The equipment should be in its normal in-service operation, with no interference in its work, except for allowances to verify PEMS calibrations and make test equipment adjustments or data downloads.

6.0 TEST PROCEDURES

This section discusses preparation and step-by-step procedures for each type of test. The concluding subsection provides the required instrument and analyzer specifications.

6.1. PREPARATION

Prior to testing, maintenance personnel will ensure that the selected nonroad equipment is operating properly. A standard preventive maintenance procedure will be utilized to evaluate and document the nonroad equipment condition prior to testing. The equipment configuration should be as consistent as is possible for all test runs. Prior to testing, test personnel will record the following parameters in the Appendix B15, "Test Run Record":

- inlet air restriction
- exhaust gas restriction
- control setting (on, off, or automatic) for the major parasitic loads (lights, air-conditioning, heater, fan clutch)

The selected nonroad equipment may have additional parasitic loads, such as a continuously-operating hydraulic pump / motor combination, which should be set to operate consistently during all test runs.

Other parasitic loads and their control settings for simple cycle test runs will be:

- communications (radio) system -- on
- cab heater -- off
- air conditioning -- off
- headlights -- on

In-use evaluations will not restrict the use of parasitic loads, as evaluations of real operations are desired.

6.1.1. ECT Preparation

The ECT must be installed, degreened according to manufacturer specifications (typically 25 to 125 hours) prior to testing. Manufacturers must also certify proper operation of the control strategy and nonroad equipment prior to testing.

6.1.2. <u>Test Fuel</u>

Fuel to be used in the test:	nonroad diesel	current spec	ification on-highwa	y diesel 🗌
	ultra-low sulfur diesel	🛛 biod	iesel blends 🗌	gasoline 🗌
	diesel fuel / water emul	sions 🗌	diesel fuel with	h additive 🗌

Specify biodiesel blend, water emulsion type and concentration, additives, etc.: Not applicable

Special Considerations: If available, testing should be completed using number 2 ultra-low sulfur diesel (ULSD), but may be completed with number 1 ULSD if necessary. In either case, test fuel must be consistent throughout the test campaign.

The host site and fuel distributor will supply fuel for all testing from a common lot. A fuel analysis sheet for the specific lot will be provided. Attachment 1 provides an example of current fuel specifications.

6.1.3. <u>PEMS Integration</u>

Test personnel will install the PEMS and its power supply with assistance from the host organization. Estimated labor time is four hours for the PEMS integration plus one hour for the generator or battery bank for each piece of nonroad equipment tested.

Required brackets, hangers, or racks must accommodate the following test equipment:

- OBS-2200 enclosure, 27.5" x 36.75" x 23.5" (l x d x h), approximately 100 lb
- gas cylinder rack, 23" x 8.5" x 23" (l x d x h), approximately 85 lb

EPA guidance states that PEMS may obtain on-board power up to 1.0 percent of the machine's nominal horsepower capacity. The Horiba OBS-2200 requires approximately 800 watts, maximum, of 24-volt

direct current (VDC) power. This means that any nonroad equipment larger than 110 horsepower with a 24-volt electrical system is large enough to power this PEMS.

The PEMS will employ exhaust pipe adaptors to determine exhaust gas flow rates. Test personnel will determine the required adaptor and boot sizes immediately prior to test instrument installation.

Figure 6-1 is a schematic of the required exhaust sampling port locations.

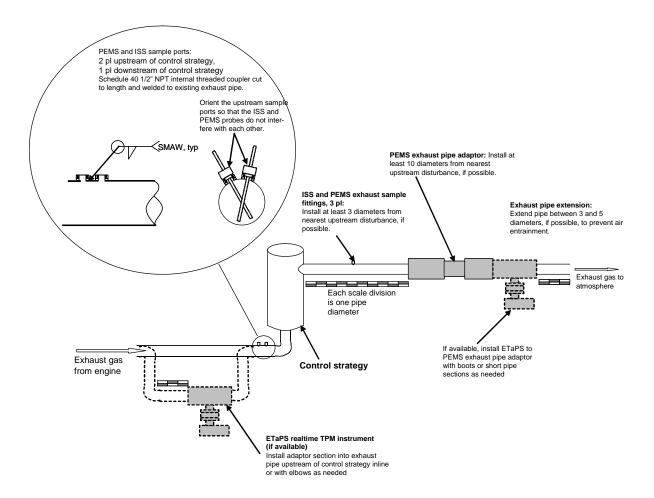


Figure 6-1. Sample Port Locations

6.1.4. ISS Integration

Test personnel will install the ISS and its power supply with assistance from the host organization. Estimated labor time is four hours for the ISS integration plus one hour for the generator.

Required brackets, hangers, or racks must accommodate the following equipment:

- DOES2 enclosure, 25 x 15 x 14 (l x d x h), approximately 80 lb
- pump box, 14 x 14 x 20 (l x d x h), approximately 60 lb
- generator, 36 x 20 x 20 (l x d x h), approximately 200 lb
- laminar flow element (LFE), size varies

Test personnel will install the LFE onto the engine's intake air system with the appropriate brackets, elbows, and adaptors. Figure 6-3 shows a typical installation.

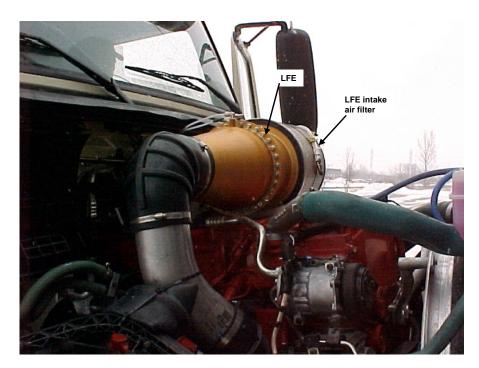


Figure 6-3. LFE Installation Example

6.2. CONTROL STRATEGY PERFORMANCE TESTS

Control strategy performance tests will consist of at least three baseline and three candidate test runs performed under simple duty cycles. Test personnel may perform more test runs up to a maximum of six each in order to:

- show a statistically significant difference between the baseline and candidate conditions
- refine the confidence interval on the difference

Sections 6.2.1 and 6.2.2 of the generic protocol provided the following step-by-step instructions.

Note: data collected from simultaneous application of PEMS and ISS in these test runs will also be utilized to evaluate PEMS and ISS correlations.

IMPORTANT:

Good test results depend on minimizing operator variability. It is therefore essential that the same operator run the nonroad equipment during simple cycle development, baseline, and candidate test runs for a particular ECT / nonroad equipment combination. Some simple cycles may require support equipment, such as trucks to move material, dozers to groom piles, etc. It is essential that those operators also be the same during simple cycle development, baseline, and candidate testing.

Baseline Test Runs

- 1. Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly. Note that sample probe location for baseline testing should be upstream of the ECT.
- 2. Synchronize all clocks to the PEMS datalogger timestamp.
- 3. Energize the PEMS and ISS (analyzer bench and sampling pumps) for its specified warmup period (30 minutes for PEMS and ISS). Use power mains for PEMS warmup to avoid depleting the batteries.
- 4. Switch PEMS to battery or generator power supply without interruption.
- 5. Start the nonroad equipment and dispatch it to perform one complete simple duty cycle for warmup. Shut it down immediately following the duty cycle for a 20 ± 5-minute soak period during PEMS warmup. Follow the manufacturer's recommendations regarding turbocharger cooling at shutdown.
- 6. Conduct PEMS initial zero and span checks. Perform at least one NMHC contamination check per test day.
- 7. Collect ambient air samples for background CO, CO2, NOX, and THC correction.
- Perform ISS tunnel leak check, collect NMHC and TPM (as needed) tunnel blank and background samples at least once per day. Analyze ISS gaseous samples immediately or during the following test run.
- 9. Start PEMS and ISS sampling.
- 10. Start the nonroad equipment and operate the engine at midrange idle for 30 seconds. Reduce engine speed to low idle for 10 seconds. Operate the engine at midrange idle for 15 seconds. Reduce the engine speed to low idle for 5 seconds and immediately start the test run. This operating profile will provide readily recognizable data patterns which will help later analysis.
- 11. Immediately dispatch the nonroad equipment to perform one complete simple duty cycle.

- 12. Shut down the nonroad equipment immediately following the duty cycle for a 20 ± 5 -minute soak period during data download and post-run checks. Follow the manufacturer's recommendations regarding turbocharger cooling at shutdown.
- 13. Stop ISS sampling and immediately inspect ISS sample train, sample bag, and filter housings for condensed moisture. Invalidate the test run if moisture is present
- 14. Recover and inspect TPM filters (if used) for condensed moisture. Invalidate the test run if moisture is present. Store TPM filters under refrigeration or in a cooler until analyzed.
- 15. Conduct PEMS final zero and span checks.
- 16. Recover sample bags and analyze ISS gaseous samples immediately. Perform all applicable zero, span, and drift checks.
- 17. Install new ISS filters and sample bags
- Review cycle criteria (3 complete cycles needed to develop cycle criteria; see generic protocol §5.4) to establish the run's validity.
- Repeat steps 10 through 18 until 3 valid test runs are complete. If the soak period between runs exceeds 25 minutes, dispatch the nonroad equipment to perform one complete duty cycle for warmup as in step 5.
- 20. Forward the TPM filters for gravimetric or additional analysis (see Table 3-3.)
- 21. Calculate the mean and confidence interval on the results for each parameter (see §7.1). Conduct additional test runs if the confidence interval is a significant fraction of the expected performance.

Note: Connect the PEMS to the power mains and exchange the PEMS batteries as needed without interruption to avoid having to repeat its warmup period.

Candidate Test Runs

Conduct candidate test runs according to the baseline test run procedures (steps 1 through 21). The number of candidate test runs should at least equal the number of baseline runs. The sample probe location should be changed such that sampling is completed downstream of the ECT.

Calculate and report the mean and confidence interval on the difference between the baseline and candidate results according to procedures in §7.1. Conduct additional candidate test runs (up to 6) if necessary.

Test staff will collect control strategy cost and performance data required in Appendix B3 for each ECT tested.

6.3. IN-USE EVALUATIONS

In-use Evaluations will be completed utilizing PEMS instrumentation only because it provides real-time emissions determinations. Evaluations should be completed at the equipment's host site where it is in normal service. In-use evaluations will last approximately four hours with the sampling probe location alternating hourly between upstream and downstream of the ECT. Note that the nonroad equipment operator(s) need not be the same as those employed during baseline and candidate testing. Step-by-step procedures are as follows:

- Ensure that all applicable preparations (see §6.1) are complete, that all required instruments and sensors are installed and functioning properly. Sample probe location should initially be upstream of the ECT.
- 2. Synchronize all clocks to the PEMS datalogger timestamp.
- 3. Energize the PEMS for its specified warmup period (typically 30 minutes). Use power mains for PEMS warmup to avoid depleting the batteries.
- 4. Conduct PEMS initial zero and span checks. Perform at least one NMHC contamination check per test day.
- 5. Collect ambient air samples for background CO, CO2, NOX, and THC correction.
- 6. Switch PEMS to battery or generator power supply without interruption.
- 7. Start PEMS sampling.
- 8. Start the nonroad equipment and operate the engine at midrange idle for 30 seconds. Reduce engine speed to low idle for 10 seconds. Operate the engine at midrange idle for 15 seconds. Reduce the engine speed to low idle for 5 seconds and immediately start the test run. This operating profile will provide readily recognizable data patterns which will help later analysis.
- 9. Dispatch the equipment into its normal operations.
- 10. Rendezvous with the equipment every hour to do a zero-span check and switch the sampling probe location to the opposite of its previous location upstream or downstream of the ECT.
- 11. Re-start PEMS sampling and operate the engine at midrange idle for 30 seconds. Reduce engine speed to low idle for 10 seconds. Operate the engine at midrange idle for 15 seconds. Reduce the engine speed to low idle for 5 seconds and immediately start the test run. This operating profile will provide readily recognizable data patterns which will help later analysis.
- 12. Perform steps 10 and 11 until at least two in-use duty cycles have been recorded at both upstream and downstream of the ECT.
- 13. Conduct PEMS final zero and span checks.
- Evaluate in-use test data in accordance with procedures specified in the generic protocol §7.2 and Appendix C with respect to identification of 'events' and evaluations of event emissions for comparisons.

6.4. EXTENDED INTERVAL TESTS

Not applicable

6.5. EMISSIONS METHOD COMPARISONS

See Section 6.2 for step-by-step test procedures. Test data for comparisons will be collected simultaneously with baseline and candidate test runs.

6.6. INSTRUMENT SPECIFICATIONS, CALIBRATION, AND PERFORMANCE CHECKS

The emissions and performance determinations described in this protocol require numerous contributing measurements, sensors, instruments, analytical procedures, and dataloggers. This section provides general specifications which, if met, will help ensure repeatability within a test campaign and comparability with other programs. Table 6-1 lists the instrument and sensor accuracy specifications recommended for use with this protocol. It also indicates the instrument manufacturer, model, and specification verification dates.

	Table 6-1. PEMS and ISS Specifications								
Parameter	✓ if used	Logging Frequency	Accuracy	Repeatability	Manufacturer	Model(s)	Meets Spec.	Date Verified	
Engine speed	\boxtimes	1 Hz	5.0 % of point or 1.0 % of max ^{<i>a</i>}	2.0 % of point or 1.0 % of max	Baumer Electric	FPAM 18N3151			
Torque estimator, BSFC		1 Hz	8.0 % of point or 5.0 % of max	2.0 % of point or 1.0 % of \max^{b}					
Pressure transducers	\boxtimes	1 Hz	5.0 % of point or 5.0 % of max	2.0 % of point or 0.5 % of max	Horiba	OBS- 2200			
Ambient barometric pressure	\boxtimes	6 second	0.07 "Hg (250 Pa)	0.06 "Hg (200 Pa)	Horiba	OBS- 2200			
Temperature transducers $(T_{turb}, T_{out}, T_{amb})$	\boxtimes	1 Hz	1.0 % of point or 5.0 °C	0.5 % of point or 2.0 °C	Horiba	OBS- 2200			
Dewpoint / RH ^c	\boxtimes	6 second	5.0 °F	2.0 °F	Horiba	OBS- 2200			

			Table 6-1. Pl	EMS and ISS Sp	ecifications			
Parameter	✓ if used	Logging Frequency	Accuracy	Repeatability	Manufacturer	Model(s)	Meets Spec.	Date Verified
Exhaust flow	\boxtimes	1 Hz	5.0 % of point or 3.0 % of max	2.0 % of point	Horiba	OBS- 2200		
Instrumental analyzer concentration	\boxtimes	1 Hz	4.0 % of point	2.0 % of point	Horiba	OBS- 2200		
Fuel flow via carbon balance	\boxtimes	1 Hz	4.0 % of point	2.0 % of point	Horiba	OBS- 2200		
ISS Only								
Instrumental analyzer concentration	\boxtimes	1 Hz	2.0 % of point	1.0 % of point	Environment Canada	DOES2		
Gravimetric TPM balance		n/a ^d	0.1 % (see §1065.790)	0.5 µg	Environment Canada	DOES2		
Main flow rate	\boxtimes				Environment Canada	DOES2		
Dilution air flow rate	\boxtimes				Environment Canada	DOES2		
Sample flow rate		2 Hz	$1.0 \% FS^e$	n/a	Environment Canada	DOES2		
Differential pressure (if used)					Environment Canada	DOES2		
"max" refers t	n of ECI d engine lity (RH e (n/a)	M torque estin es are not effec	nator accuracy	may be difficult	because §1065.91	5(b)(5)(i) re	gulations	requiring

Table 6-2 lists recommended calibration intervals and performance checks. Note that test personnel must perform some performance checks, such as leak checks, analyzer zero and spans, etc. before and after each test run while others may be performed either in the field or laboratory. Table 6-4 in the generic protocol provides specific references to step-by-step calibration procedures.

	Table 6-2. Recommended Calibrations and Performance Checks							
System or Parameter	Description / Procedure	Frequency	Meets Spec.?	Date Completed				
Engine speed	11-point linearity check	At purchase / installation						
Pressure transducers								
Temperature	NIST-traceable ^{a} calibration							
transducers (T _{turb} ,		Within 12 months						
T_{out}, T_{amb})								
Dewpoint / RH								
Exhaust flow								
All instrumental	11-point linearity check	Within 12 months						
analyzers	11-point incarity check							

System or	Description / Dressed	Frequency	Meets	Date
Parameter	Description / Procedure	Frequency	Spec.?	Completed
CO ₂ (NDIR	II O interference			-
detectors) ^b	H ₂ O interference			
CO (NDIR				
detectors)	CO_2 , H_2O interference			
	Propane (C_3H_8) calibration	-		
	FID response optimization			
	C_3H_8 / methyl radical (CH ₃)			
Hydrocarbons	response factor determination			
$(FID)^c$	C_3H_8 / CH ₃ response factor			
	check			
	Oxygen (O ₂) interference check	Within 12 months		
	CO_2 and H_2O quench $(CLD)^d$			
	Non-methane hydrocarbons			
	(NMHC) and H_2O interference			
	(NDUV detectors) ^e	-		
	Ammonia interference and NO ₂			
NO	response (zirconium dioxide			
NO _X	detectors)			
	Chiller NO ₂ penetration (PEMS			
	with chillers for sample			
	moisture removal)			
		Within 6 months or		
	NO ₂ to NO converter efficiency	immediately prior to		
	~	departure for field tests		
	Comparison against laboratory	At purchase / installation;		
	CVS system	after major modifications		
	Zero / span analyzers (zero $\leq \pm$	Before and after each test run		
	2.0 % of span, span $\leq \pm 4.0$ % of	or as needed during in-use	Refer to	
PEMS	point)	evaluations	generic	
I LIVIS	Perform analyzer drift check (\leq	After each test run	protocol	
	± 4.0 % of cal gas point)	After each test full	Appendix	
	NMHC contamination check (≤		B15,	
	2.0 % of expected conc. or ≤ 2	Once per test day	"Test	
	ppmv)		Run	
Exhaust gas or	Differential pressure line leak		Record"	
intake air flow	check (ΔP stable for 15 seconds	Once per test day	Record	
measurement device	at 3 "H ₂ O)	1 5		
	Comparison against laboratory	At purchase / installation;		
	CVS system	after major modifications		
	Zero / span analyzers (zero $\leq \pm$	ř.		
	2.0% of span, span $\le \pm 4.0 \%$ of	Before and after each test run	Refer to	
	point)		generic	
ISS	Inspect sample lines, filter		protocol	
	housings, and sample bags for		appendix	
	visible moisture (none is		B15,	
	allowed)	After each test run	"Test	
		4	Run	
	Perform analyzer drift check (\leq		Record"	
	± 4.0 % of cal gas point)		Defe (
ISS	NMHC background check and	Once per test day	Refer to	
	dilution tunnel blank		generic	
	TPM background check and		protocol	

System or Parameter	Description / Procedure	Frequency	Meets Spec.?	Date Completed
	dilution tunnel blank		appendix	
	Dilution tunnel leak check		B15,	
	Sample bag leak check (< 0.5 % of normal system flow rate)		"Test Run Record"	
	TPM filter face temperature (not to exceed 47 °C or 117 °F)	continuously during sampling		
Fuel flow	11-point linearity check	At purchase (coriolis meters only); within 6 months or immediately prior to departure for field tests (turbine or gear meters)		
TPM gravimetric	NIST-traceable calibration	Within 12 months		
balance	Reference sample weights	Within 12 hours of filter weighings		
ISS main, dilution, and sample flow rates	11-point linearity check	Within 12 months		
^{<i>a</i>} National Institutes o ^{<i>b</i>} non-dispersive infra ^{<i>c</i>} flame ionization det ^{<i>d</i>} chemilumenescence ^{<i>e</i>} non-dispersive ultra	ector (FID) detector (CLD)			

Table 6-3 lists sensors used for duty cycle development, mechanically-controlled engine parameters (such as exhaust gas flow rate surrogate sensors, which include a suitable pitot, ΔP sensors, and thermocouple) and other sensors to be used during this test campaign.

Table 6-3. Duty Cycle, Engine, and Auxiliary Sensors							
Description	Manufacturer	Model	ID or Serial Number	Range	Accuracy		
Photoelectric sensor for RPM	Baumer Electric	FPAM 18N3151	S293	0 – 50 Hz	± 3.3 % at 1800 rpm		
HOBO Data Logger HOBO Pulse Input Adapter	Onset Onset	H21-002 S-UCA-M006		0 - 120 Hz			
Exhaust flow rate	Horiba	OBS-2200		0 - 2300 acfm (varies within size)	± 1.5% FS		
Exhaust temperature	Horiba	OBS-2200		0 °C - 800 °C	± 1.0% FS		

7.0 DATA QUALITY AND ANALYSIS

This section outlines general data analysis procedures for each type of test and data quality requirements for all tests. Appendix C from the generic protocol supplements the discussion with statistical concepts and equations.

7.1. CONTROL STRATEGY PERFORMANCE TESTS

The checked boxes in the following subsections indicate the analyses which will be performed for this test campaign.

7.1.1. <u>Emissions Reductions and Fuel Consumption Changes for Simple and Synthesized Duty</u> <u>Cycles</u>

The following calculations will be made for each parameter (CO, CO_2 , NO_x , THC, TPM, and fuel consumption, as applicable). Refer to Appendix C from the generic protocol for procedures and attach documentation of calculations to the test report.

 \boxtimes mass emissions (g/run) mean and σ_{n-1} for all baseline and candidate test runs

Fuel consumption rate (gal/run, gal/hr)

Carbon balance method (from PEMS data)

gravimetric (day tank weight change)

mass-flow fuel meters

volumetric-flow fuel meters

 \boxtimes fuel-specific emission rate (g/gal) mean and σ_{n-1} for all baseline and candidate test runs

 \boxtimes brake-specific emission rate mean (g/bhp-h) and σ_{n-1} for all baseline and candidate test runs, if torque or horsepower data are available from an ECM

 \boxtimes the difference between the baseline and candidate mean results

 \boxtimes the statistical significance of the difference

 \boxtimes the 95-percent confidence interval on the difference

7.1.2. Emissions Reductions and Fuel Consumption Changes for In-use Duty Cycles

The following calculations will be made for each parameter (CO, CO_2 , NO_x , THC, TPM, and fuel consumption, as applicable). Refer to Appendix C from the generic protocol for procedures and attach documentation of calculations to the test report.

 \boxtimes mass emissions (g/hr, g/event) mean and σ_{n-1} for each test period and individual events

Fuel consumption rate (gal/event, gal/hr)

Carbon balance method (from PEMS data)

gravimetric (day tank weight change)

mass-flow fuel meters

volumetric-flow fuel meters

- \boxtimes fuel-specific emission rate (g/gal) mean and σ_{n-1} for each test period and individual events
- \boxtimes brake-specific emission rate mean (g/bhp-h) and σ_{n-1} for all baseline and candidate test runs, if torque or horsepower data are available from an ECM
- the difference between the baseline and candidate mean results for each test period and for individual comparable events
- \boxtimes the statistical significance of the difference
- \boxtimes the 95-percent confidence interval on the difference

7.1.3. Control Strategy Cost Analysis

Analysis of control strategy costs consists primarily of summing and reporting the data collected in Appendix B3, "Control Strategy Cost Information" of the generic protocol. Costs should be separated into the following general categories:

 \boxtimes capital purchases

- \boxtimes shop-made modifications, specialty items
- downtime (or demurrage), installation, and training labor (both vendor and equipment owner staff)
- \boxtimes operating materials, supplies, and reagents
- operating labor (for required maintenance, operation, etc.)

7.1.4. Control Strategy Engine and Operational Performance Impact Analysis

The following methods will be used to assess control strategy performance:

ECM data is available: calculate the difference between the baseline and candidate horsepower and fuel consumption, normalized to brake horsepower

ECM data is suspect or not available: calculate the difference in mean fuel consumption between baseline and candidate tests as observed during simple or synthesized duty cycles

In-Use duty cycles: fuel consumption difference between baseline and candidate conditions over a consistent time period. Indicate time period of comparison (per shift, per day, etc.)

Test personnel will gather other control strategy impact information as described in Appendix B4, "Control Strategy User's Interview" from the generic protocol.

7.2. IN-USE EMISSIONS TESTS

This section discusses application of basic descriptive statistics, but analysts should be open to other possibilities depending on the circumstances of a particular test campaign. Appendix C and §7.2 from the generic protocol provides additional analytical concepts such as methods for identifying and comparing inuse events.

The following descriptive statistics should be generally useful to describe the events which occur within an in-use emission test or to describe the test as a whole. Check those applicable to this test.

 $\square In-use overall mean, \sigma_{n-1}$ $\square individual event means, \sigma_{n-1}$

Frequency distributions

7.3. EXTENDED INTERVAL TESTS

Not applicable

7.4. EMISSIONS MEASUREMENT METHOD COMPARISONS

Analysts should, for each parameter (CO, CO₂, NO_X, THC, and fuel consumption, as applicable):

 \boxtimes report the ISS mass emissions (g/run) for each test run

 \boxtimes calculate the mass emissions mean and σ_{n-1} for all test runs

 \boxtimes calculate the PEMS mass emissions

 \boxtimes calculate the mass emissions mean and σ_{n-1} for all PEMS test runs

 \boxtimes calculate the difference of the ISS and PEMS mean results

 \boxtimes evaluate the statistical significance of the difference

 \boxtimes calculate the 95-percent confidence interval on the difference.

See Appendix C of the generic protocol for the appropriate statistical analysis procedures.

Analysts will compare TPM measurements from the ETaPS PM sensor with the integrated measurements from the ISS. The ETaPS voltage output signal will be correlated to PM emissions based on an evaluation of the ETaPS performed by Southern prior to testing. In the evaluation, PM emissions as measured from integrated gravimetric data and from the Dekati Mass Monitor, a real-time instrument for particulate emissions measurements, were correlated to the voltage output signal from the ETaPS.

7.5. DATA QUALITY

All test campaigns should meet the following qualitative data quality objective (DQO):

Sensors, measurements, step-by-step test methods, and the resulting determinations will meet or exceed this protocol's and reference method specifications as outlined in §5.0 through §6.6.

8.0 REPORTS

Reported results, data summaries, and statistical analyses depend on the individual test campaign. Table 8-1 provides a general list of items to be included in each type of report. The checked items are applicable to this test.

Table 8-1. Reported Results List								
Test Type or	Control strategy	In-use	Extended	Emissions				
Description	performance	emissions	interval	measurement				
	evaluation	tests	tests	method				
				comparisons				
Emission rates	\boxtimes	\boxtimes		\boxtimes				
Fuel consumption	\square	\boxtimes						
Difference between baseline and candidate emissions	\square	\square		\boxtimes				
and fuel consumption								
Control strategy costs	\square							
Control strategy performance impacts	\boxtimes							
Simple or synthesized duty cycle specifications	\square							
In-use duty cycle descriptive statistics		\square						

The test organizations will maintain all data files as follows:

<u>Electronic files</u>: backed up on a thumb drive at the end of each day and transmitted to central office for storage and archiving.

<u>Hard copy files</u>: the field team leader will maintain a field book with copies of hard copy files; originals will be kept at Southern Research Institute

November 2007

Bob Richards of Southern, 919/806-3456 x26, will be responsible for managing the data files. Environment Canada will be responsible for performing and reporting DOES2-based mass emission calculations. Staci Haggis of Southern, 919/806-3456 x24, will be responsible for performing PEMS and remaining data calculations.

9.0 CONTACTS

Site-specific protocol author Staci Haggis Title: Mechanical Engineer Southern Research Institute 919.806.3456

Field team leader for this test: William Crews Title: Sr. Project Leader Southern Research Institute 919.806.3456

<u>Fuel distributor:</u> Sprague Energy Steven Levy, Burr Mosher 914.284.2188

<u>Host Site:</u> DSNY Spiro Kattan 718.334.9205

ISS Provider Environment Canada Greg Rideout 613.990.8169 ECT Providers Johnson Matthey Incorporated Ursula Miezio (610.341.3435; 484.869.2892) Marty Lassen (610.341.3404; 610.476.0131) 380 Lapp Road Malvern, PA 19355

CleanAIR systems Ralph Wintersberger, Michael Roach P.O. Box 23449 Santa Fe, NM 87502 800.355.5513; 505.474.4120

Extengine LLC Dick Carlson Philip Roberts < roberts@extengine.com> 1370 Acacia Avenue Fullerton, CA 92831 714.774.3569

NETT Technologies, Inc. M. A. Mannan < mamannan@nett.ca> 2-6707 Goreway Drive Mississauga, ON L4V 1P7 John Popik P.O. Box 27143 Toronto, ON M9W 6L0 905.672.5453 x121

Appendix B

Field Data Forms

Appendix B1	Nonroad Equipment Information	B1
Appendix B2	Control Strategy Information	
Appendix B3	Control Strategy Cost Information	B3
Appendix B4	Control Strategy User's Interview	B4
Appendix B5	Host Site Information	B5
Appendix B6	Simple Cycle Development and Test Run Instructions	B6
Appendix B7	Duty Cycle Event List	B9
Appendix B8	Event Times	B10
Appendix B9	Simple Cycle and Synthesized Duty Cycle Elapsed Time Criteria	
Appendix B10	Analyst's Cycle Criteria Definitions and Values	B12
Appendix B11	Cycle Criteria Worksheet and Test Run Validation	B13
Appendix B12	Synthesized Duty Cycle Development and Test Run Instructions	B14
Appendix B13	In-Use Operations Observations	B16
Appendix B14	In-Use Operations Analysis	B17
Appendix B15	In-Use Operations Summary	B18
Appendix B16	In-Use Operations Descriptive Statistics	B19
Appendix B17	Test Run Summary	
Appendix B18	Horiba OBS-2200 Test Run Record	B21

		Project ID:	Tes	<i>t_ID</i> :	Date:	
Site name:		Sit	te ID:	Equip ID:		
Compiled by (0	Company):			_		
Name (printed)	Company):		Signature:			
Owner and Ed	uipment Data (R)	EQUIRED)				
Owner's Equip	ment ID or name:_	I	Description:			
Contact name:				Phone:		
Address:		<i>City</i> :			_Zip:	
	ment data		En	gine data		
Manufacturer		Manufacturer		# cylinders		
Model year		Model		Displacement		
Model		Engine family		Install / overha	ul date	
Serial number		Serial number		Expected life ((h)	
Hourmeter		horsepower				
Optional Info	rmation					
ECM protocol:	□n/a □SAE J1	939 🗆 J1708 🖂	other:			
-					□powersh	nift
	☐diesel electric		•	-	-	
Main huduauli						
Main nyarauno Floctrical syste	es max. psig: em alternator capac	Nominal pump	gpm	□12 VDC	$\Box 24$ VDC	•
Dealer name:			Dealer phone	· ·		
U	name:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		A		
Implements, fe	atures (such as buc	ket size, blade caj	pacity, ripper, wil	nch, auger size, o	ther descriptio	ns.)
U	name: atures (such as buc	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		A		otio

Accessories: Air-conditioning Auxiliary hydraulics other (describe):

Describe the 3 most recent routine maintenance events and the 3 most recent major repair events below.

Routine Maintenance			Major Repairs			
Date	Description	Outcome	Date	Description	Outcome	

Appendix B2. Control Strategy Information

Use a combination of letters, num	pers, and underscores (no spaces)	for Test_ID, Site_ID, Cntrl_	ID, etc. Example: "DPF01".
Project Name:	Project_ID:	<i>Test_ID</i> :	<i>Date</i> :
Compiled by (Company):			
Name (printed) [.]	S	lignature:	
Technology type: Manufacturer:		Cntrl	_ <i>ID</i> :
Manufacturer:	<i>Contact name:</i>		Phone:
Distributor:	Contact name:		Phone:
Product name:			
Description and operating p	principle:		
Recommended applications:			
Certifications, verifications,			
Dimensions (h x w x l or dia	Specificat	tionsWeig	ht:(lb / kg)
Required accessories, reage	ents, etc.: \Box datalogger / co	mputer $\Box T_{exh}$ sensor \Box	<i>Tbackpressure sensor</i>
□other temp sensors (descr	ibe):	$\Box \Delta P \ sensor \ \Box s$	hore power
□reagent (describe):	tank	vei	ight (full):
□other temp sensors (descr □reagent (describe): □other sensors or accessor	ies (describe specialized bro	ackets, shock mounts, e	tc.):
bhp range:T _e Installed exhaust backpress	ure at full load: (("Hg / psig)	
<i>Time / temperature limitatio</i> <i>Ambient temperature range</i>	ns:	(1 .1)	
Ambient temperature range	Other limiting	parameters (describe):	
Brackets, hangers, cables, to	Installation and Co anks, etc. (describe and atta	0	
Estimated installation down Breakin or degreening proc		Labor (hr):	
Diagnostics procedures (sur			
Operating procedures and n	naintenance schedules:		
Received (date):	Initials: In		
Breakin / degreening compl			
Operations certified OK; Sig			
Representing:			

Appendix B3. Control Strategy Cost Information								
Project Name:	Project_ID:	<i>Test_ID</i> :	Date:					
Compiled by (Company) :		Cntrl_ID:		_				
Name (printed):		Signature:						

Purchased Equipment and Supplies						
Category	Description	\$ Estimate	\$ Actual			
Capital equipment						
Support equipment						
Inventoried spares						
Reagents and supplies						
Tooling, brackets						
Electronics, cables,						
etc.						

	Shop-made Fabrications and Nonroad Equipment Modifications								
Category	Description	Description Labor, Rate, Labor Materials To							
		h	\$	\$	\$	\$			
Tooling, brackets									
Modifications									

Installation Demurrage and Labor						
Description	Estimate, h	Actual, h	Rate, \$	Total \$		
Nonroad equipment downtime for installation						
Installation labor						
Training labor (maintenance and operations)						
Training expenses (hired consultants, supplies, etc.)						

Operating Expenses				
Begin Date	End Date	Description	\$ Total	
		Reagents and supplies (list):		
		Routine maintenance parts (include interval):		
		Routine maintenance labor (describe):		
		Estimated overhaul parts (include interval):		
		Estimated overhaul labor (describe):		
		Unscheduled repair parts, labor (describe):		

Appendix B4. Control Strategy User's Interview

Project Name:	Project ID:	Test ID:	Date:
Compiled by (Company) :		Equip_ID:	Cntrl_ID:
Name (printed):		Signature:	

This Appendix is intended to document anecdotal information about the control strategy implementation and performance. The performance, dispatching, and other operating effects on the selected nonroad equipment should also be discussed.

Control strategy acquisition, installation, implementation

 Ratings: 1 = poor, 3 = average, 5 = excellent

 Rate distributor's customer service : _____ Operator training : _____ Maintenance training : _____

 Rate repair parts availability : _____ Physical access for technicians : _____

Ratings: 1 = easy / entry level skills, 3 = moderate, 5 = hard / expert level skills

Rate installation difficulty : _____ *Troubleshooting diagnosis* : _____ *Maintenance, repair activities* : _____ *Rate verification of proper operations* : _____

Describe control strategy acquisition, installation, implementation, and maintenance issues:

What tasks must be performed to keep the control strategy operating properly? What level of difficulty?

What maintenance frequency was recommended? How does this compare with the actual maintenance history seen at this site?

Control strategy performance

 Ratings: n/a = can't tell, 1 = poor, 3 = average, 5 = excellent

 1 = easy and convenient, 3 = somewhat inconvenient, 5 = significant hassle

 Rate ease of day-to-day operations :

 Rate performance :
 Describe control strategy performance issues :

Control strategy impacts

(1 = no effect, 3 = noticeable effects, 5 = significant impacts) Rate impacts on day-to-day operations for the selected nonroad equipment : _____ Rate impacts on equipment performance : _____ Power : _____ Operator sight lines / visibility : _____ Rate perceived health effects : _____ Shop environment effects : _____ In-use or work face effects : _____ Rate machine balance changes : _____ Rate operating weight impacts : _____

Discuss the impacts (gear selections, machine capacity, noise, odors, etc.):

How have dispatching schedules changed? For better or worse? Why? :______

Other comments:

Use a combination of 3 to 5 letters and 0 to 2 numbers (no spaces) for Test_ID, Site_ID, etc. Example: "NYC01".
Project Name: Project ID:	Date:
Project Name:Project_ID: Compiled by (Company) :	Site ID :
Name (printed) :	Signature :
Site name :	Owner Company :
Address :	Address :
City, State, Zip :	City, State, Zip :
Contact person :	Contact person :
Title :	Title :
Title :	Title :
Site phone :	Company phone :
Site fax :	Company fax :
Site elevation (ft) :	
Site safety training required? $\Box y \Box n$ If yes, provid	
Fuel supplier : Contact name : Site fuel tank capacity for test fuel : (gal) H	
Site fuel tank capacity for test fuel : (gal) I	<i>Refull frequency</i> :
Site description :	
Site operations (number and duration of normal shifts	
Summarize nonroad equipment description (s) for ea (see Appendix B1) :	
Primary duty(ies) (such as "gravel loading", "spre rates, hours per day, or other measures for each piece	
Other duties :	
Host site test contacts:	
Operator name(s) :	
Maintenance technician name(s) :	
Dispatcher / manager name(s) :	

Appendix B5. Host Site Information

Appendix B6. Simple Cycle Development and Test Run Instructions

The intent of this simple cycle development procedure is to reduce the workload on test personnel by allowing them to conduct cycle repetitions ("test runs") with minimal pauses for data analysis. Recording and reviewing elapsed times are the primary responsibility of test personnel during field work. They should strive to ensure that elapsed times are within ± 5 % of each other for individual events and the entire simple cycle. They should also conduct a sufficient number of test runs to ensure that, after analysts post-process the data, at least three valid test runs will be available for the final results.

Analysts are responsible for reviewing the field data during post-processing and selecting at least three test runs which contribute the least variability to the final results. The basis for their decisions will be the "cycle criteria", calculated according to steps 8 and 9. This review is not necessary if only three test runs are available.

Step-by-step instructions for test personnel during field work:

1. Develop event definitions for the selected nonroad equipment in conjunction with host site managers, operators, and dispatchers.

- assign a unique identifier, or *Event_ID*, to each event, such as "travel_1" or "load_1"
- provide detailed descriptions for each event, such as:
 - "travel from dump point A to loading point X in 2nd gear with bucket at ¹/₄ height" for "travel_1" event
 - o "load bucket ³/₄ full and raise to ¹/₄ height" for "load_1" event
- estimate the approximate time duration for each event

IMPORTANT: Event descriptions are subject to professional judgment. Events may consist of individual motions or a series of combined motions. Loader cycles, for example, may occur too swiftly to break into individual events. This means that longer event descriptions, such as "travel forward, approach pile, load, and lift bucket" may be appropriate. Record the event identifiers (Event_ID), their descriptions, and approximate durations in Appendix B7.

2. Arrange the Event_IDs defined in Appendix B7 into a logical sequence. Shorter event sequences may be repeated or strung together if required to make up the simple cycle. The arrangement is arbitrary, but the combination of loaded, unloaded, and idle events would ideally be similar to those observed at the host site. For example, a complete simple cycle may be composed of a series of 10 loader cycles.

Record the Event_IDs in Appendix B8 in their proper order and assign a simple cycle identifier (*Cycle_ID*) such as "smpl_01".

3. Install a datalogger on ECM-equipped engines. Configure the datalogger to record the following parameters at 1 Hz:

- percent load
- turbocharger boost pressure
- engine speed, RPM
- exhaust gas temperature (optional)
- net brake torque (optional)
- fuel consumption (optional)

Install sensors and a datalogger on mechanically-controlled engines. Configure the datalogger to record the following parameters at 1 Hz:

- engine speed, RPM
- turbocharger outlet temperature (T_{turb}) or exhaust gas outlet temperature (T_{out})
- exhaust gas flow surrogate, $\sqrt{\Delta P}$ high (ΔP sensor range 0 10 "H₂O)
- exhaust gas flow surrogate, $\sqrt{\Delta P}$ low (ΔP sensor range 0 1 "H₂O)
- fuel supply flow rate (optional)
- fuel return flow rate (optional. Note: for diesel engines, fuel consumption is the difference between fuel supply and return flow rates)

5. Dispatch the nonroad equipment to perform the entire simple cycle while logging the engine parameters. This will show whether the simple cycle is feasible. Repeat the simple cycle until each event has been performed at least three times while logging.

6. While performing step 5, observe and record the time, to the second, at the start of each simple cycle. Use Appendix B8. Then, "on the fly", record the completion time for each Event_ID. Continue until data for at least three repetitions of each event are available.

NOTE: Do not attempt to calculate elapsed times for each Event_ID until after the recording session. Most in-use events occur too fast to allow use of a stop watch or lap-timer. If an event time is missed, continue on to the next event and repeat the entire cycle again until at least three repetitions of each Event_ID are available.

7. Calculate the individual Event_ID and overall Cycle_ID elapsed times. Enter them in Appendix B9. Calculate the mean and \pm 5 % of the mean for the overall Cycle_ID and each Event_ID. Enter the results in Appendix B9. These are the elapsed time criteria.

During testing, record new Event_ID and Cycle_ID starting times and elapsed times on new copies of Appendix B8. Calculate the individual Event_ID and overall Cycle_ID elapsed times. Compare the results with the elapsed time criteria entered in Appendix B9. Valid test runs are those for which:

- elapsed time for each Event_ID is within \pm 5 % of the mean for that event
- elapsed time for the entire Cycle_ID is ± 5 % of the mean for all duty cycles

It may not be possible, in some cases, to meet this goal. Test personnel should work with the operators to minimize the elapsed time variability.

IMPORTANT: Analysts will require accurate starting times and elapsed times for test run validation.

Step-by-step instructions for analysts during post processing:

NOTE: The following procedures are intended to minimize test result confidence intervals. Analysts may use them to select Run_IDs which have the least run-to-run variation. They should be employed when four or more Run_IDs are available for analysis.

8. Define one or two cycle criteria for each event. Cycle criteria definitions should be based on professional judgment. Examples are:

- any engine:
 - o mean engine speed
 - \circ engine speed sample standard deviation $(\sigma_{n\text{-}1})$
- ECM-equipped engines:
 - o mean RPM multiplied by torque
 - o mean percent load

- mechanically-controlled engines:
 - \circ mean RPM multiplied by T_{turb}
 - o mean RPM multiplied by $\sqrt{\Delta P}$

9. Obtain Event_ID start times and elapsed times from the Appendix B8 field data forms. Extract the appropriate timestamped data for three different Run_IDs from the datalogger files and calculate the cycle criteria for each Event ID. Record the following in Appendix B10:

- cycle criteria descriptions
- cycle criteria value for each Event_ID for each of the three Run_IDs

Calculate the mean and σ_{n-1} for each Event_ID cycle criteria over the three Run_IDs and enter the values on Appendix B10.

Transcribe the cycle criteria mean for each Event_ID onto Appendix B11. Calculate 1.7 * σ_{n-1} for each Event_ID and enter the value on Appendix B11. Extract the appropriate timestamped data from the datalogger files for the remaining Run_IDs and calculate the actual cycle criteria value observed. Subtract the actual value from the expected value. The actual cycle criteria observed for valid test runs should be less than $\pm (1.7 * \sigma_{n-1})$ for each Event_ID.

Appendix B7. Duty Cycle Event List

Project Name	:	<i>Test_ID</i> :	Date :
Compiled by (<i>Company)</i> :		
		Signature :	
		ional sheets for more events if necessa	
Event_ID		Description	Approx. Duration (mm:ss)

Notes (Describe work location at host site, nonroad equipment description, duties, etc.):

Appendix B8. Event Times

Project Name :	<i>Test_ID</i> :	Date :
Compiled by (Company) :	Cycle_ID :	
Name (printed) :	_Signature :	

See Appendix B6 for instructions. Use additional sheets if necessary.

Sta	rt Time:]						
Index	Event_ID	Clock Time	Elapsed Time	Clock Time	Elapsed Time	Clock Time	Elapsed Time	Clock Time	Elapsed Time
1		-							
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
Cycle T Times)	Time (sum of]	Elapsed		Cycle Time		Cycle Time		Cycle Time	

Notes:

Appendix B9. Simple Cycle and Synthesized Duty Cycle Elapsed Time Criteria

Project Name :	<i>Test_ID</i> :	_Date :
Compiled by (Company) :	<i>Cycle_ID</i> :	_
<i>Name (printed)</i> :	Signature :	

See Appendix B6 for simple cycle instructions. See Appendix B10 for synthesized duty cycle instructions. Use additional sheets for more events if necessary.

Index	Event ID	Event Elapsed Time		
		Mean	± 5 %	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13		1		
14		1		
15		1		
Cyle tim elapsed	e (sum of times)			

Notes:_____

Appendix B10. Analyst's Cycle Criteria Definitions and Values

Project Name:	Test_ID:	_Date:
Compiled by (Company)	Cycle_ID:	_
Name (printed):	Signature:	

See Appendix B6 for simple cycle instructions. See Appendix B10 for synthesized duty cycle instructions. Use additional sheets for more events if necessary.

Criteria_1 definition:

Criteria_2 definition:

	Criteria_1 Values							Cr	iteria_2 V	alues	
Index	Event_ID	Run 1	Run 2	Run 3	Mean	σ _{n-1}	Run 1	Run 2	Run 3	Mean	σ _{n-1}
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											

Notes:

Project Name :							_ Test_ID :					
								alid Run? ((y/n) :	_		
	Compiled by (printed) :											
Diff = Actual minus Mean. Check "OK?" if Diff is less than the												
Index	Event			riteria_1					teria_2			
	ID	Mean	1.7*σ _{n-1}	Actual	Diff	OK?	Mean	1.7*σ _{n-1}	Actual	Diff	OK?	
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												

Appendix B11. Cycle Criteria Worksheet and Test Run Validation

Appendix B12 Synthesized Duty Cycle Development and Test Run Instructions

1. Install a datalogger on ECM-equipped engines. Configure the datalogger to record the following parameters at 1 Hz:

- percent load
- turbocharger boost pressure
- engine speed, RPM
- exhaust gas temperature (optional)
- net brake torque (optional)
- fuel consumption (optional)

Install sensors and a datalogger on mechanically-controlled engines. Configure the datalogger to record the following parameters at 1 Hz:

- engine speed, RPM
- turbocharger outlet temperature (T_{turb}) or exhaust gas outlet temperature (T_{out})
- exhaust gas flow surrogate, $\sqrt{\Delta P}$ high (ΔP sensor range 0 10 "H₂O)
- exhaust gas flow surrogate, $\sqrt{\Delta P}$ low (ΔP sensor range 0 1 "H₂O)
- fuel supply flow rate (optional)
- fuel return flow rate (optional. Note: for diesel engines, fuel consumption is the difference between fuel supply and return flow rates)

2. Dispatch the nonroad equipment and log normal in-use operations over 3 separate observation periods, generally longer than 1 hour each. Observe (or record by video) each operations period and record event descriptions as they occur on Appendix B11. This will aid event identification during operations analysis. Synchronize observations with the datalogger clock and timestamp.

3. Examine the three completed Appendix B11 forms for events that should be defined uniquely or repeated events that meet a single definition. Create event descriptions and identifiers (such as "Back1") based on the three observation periods. Repeated sequences of simple events may be combined into composite events. Event elapsed times (the difference between start time and end time), functions performed (such as backing loaded verses backing empty), work location, or other factors should contribute to event descriptions. For example, traveling for a short distance empty may require a different event definition than traveling for a long distance empty because the elapsed times would be significantly different. Assign a unique identifier, or *Event_ID*, to each event such as "Travel1" and enter the descriptions in Appendix B7. The Event ID will serve as a shorthand designator for each observed event.

4. Analyze the event data recorded during each observation period (Obs_1, Obs_2, Obs_3) on three separate Appendix B12 forms. List Event_IDs from Appendix B7 in the order in which they occurred during the observation period. Transfer the observed elapsed time for each event from the Appendix B11 form for the observation period being analyzed. For each Event_ID, obtain the logged data and calculate the mean and σ_{n-1} for each logged parameter and enter the values in Appendix B12.

5. Aggregate the data from the three Appendix B12 forms into Appendices B13 and B14. For each Event_ID, calculate the mean elapsed time and σ_{n-1} for all three observation periods. Also calculate the mean and σ_{n-1} for each logged parameter. Enter the results on B13. Calculate event frequencies and time proportions over all three observation periods for each Event_ID and record on B14.

6. Use the analyses in Appendices B13 and B14 to create the synthesized duty cycle. Some considerations:

- specify the synthesized duty cycle as a logical sequence of Event_IDs
- event time proportions should be similar to those observed. For example, if "Back1" occupies 25 % of total elapsed time during observations, the synthesized duty cycle should include enough Back1 events to yield a similar time proportion.
- event frequencies should be similar to those observed. For example, if "Back1" represents 15 % of all events observed, Back1 events should comprise approximately 15 % of all synthesized duty cycle events.
- synthesized duty cycle durations typically range between 20 minutes and 1 hour

7. List the synthesized duty cycle events in sequence, accompanied by specified time durations, on Appendix B7. Dispatch the nonroad equipment to perform the synthesized duty cycle while logging the parameters listed in step 1 above.

8. For each Event_ID, record the elapsed times and the mean and σ_{n-1} for each logged parameter on Appendix B12. The values for each Event_ID should be within ± 5 % of those observed for that event during the in-use observation periods.

9. Perform the Wilcoxon Rank-Sum as described in Appendix D1.4 on the data gathered in step 7. If the test statistic Z_i is acceptable (-1.96 $\leq Z_i \leq$ 1.96), the synthesized duty cycle fairly represents the in-use observations and the duty cycle is suitable for testing. Record the Z_i value on Appendix B8.

10. Develop the appropriate cycle criteria. Examples are:

- ECM-equipped engines
 - RPM multiplied by torque
 - o percent load
- mechanically-controlled engines
 - \circ RPM multiplied by T_{turb}
 - RPM multiplied by $\sqrt{\Delta P}$

Calculate the expected cycle criteria mean and σ_{n-1} values for each Event_ID based on the data gathered in step 7 above. Record the cycle criteria descriptions and expected values on Appendix B8.

11. Log the same engine and equipment parameters during each test run as were logged during the in-use observation periods.

12. At the end of each test run, enter the elapsed time for each event into Appendix B9. The elapsed time should be within ± 5 % of the value observed based on the data gathered in step 7 above.

13. Enter the mean value for each cycle criteria into Appendix B9. The value should be within \pm (1.7 * σ_{n-1}) of the value observed based on the data gathered in step 7 above.

14. The test run is valid if the elapsed times and cycle criteria are within the stated elapsed time and cycle criteria tolerances.

Appendix B13 In-Use Operations Observations

Project Name:	Test_ID:	Date:
Compiled by (Company)		Obs_ID:
Name (printed):	Signature:	

See Appendix B9 for detailed instructions. Use additional sheets for more events if necessary. Enter the observing period identification as *Obs_1*, *Obs_2*, or *Obs_3* under "Obs_ID" above. Use good judgment to separate events from one to the next.

Event Description	Start Time	End Time	Elapsed Time
1			
<u> </u>			
1			

Notes:

Appendix B14 **In-Use Operations Analysis**

 Project Name:
 Test_ID:
 Obs_ID:
 Date:

Compiled by (printed): ______ Signature: _____

See Appendix B9 for detailed instructions. Enter the logged parameter descriptions (percent load, RPM, T_{turb}, etc.) in the appropriate columns (Parm_1, Parm_2, etc.). Obtain Event ID event identifiers from Appendix B6.

Observation period start time: _____ End time: _____ Elapsed time: _____

Index	Event_ID	Event End	Event End Event	Parm_1:Parm_2:		Parm_2:	Parm_3:			Parm_4:	
		Time	Elapsed Time	Mean	σ _{n-1}	Mean	σ _{n-1}	Mean	σ _{n-1}	Mean	σ _{n-1}
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24						1					

Appendix B15 In-Use Operations Summary

Project Name: _____ Test_ID: _____

Date: _____

Compiled by (printed): ______ Signature: _____

Enter the logged parameter descriptions (percent load, RPM, T_{turb}, etc.) in the appropriate columns (Parm_1, Parm_2, etc.). Use Event_ID identifiers, elapsed times, and parameter data from Obs_1, Obs_2, Obs_3 log sheets (Appendix B11). For each event, compute the overall mean and σ_{n-1} for each logged parameter. For events which occurred 3 times or more, compute overall mean and σ_{n-1} elapsed time.

Event_ID	Elapsed Time		Parm_1:		Parm_2:		Parm_3:		Parm_4:	
	Mean	σ _{n-1}	Mean	σ _{n-1}	Mean	σ _{n-1}	Mean	σ _{n-1}	Mean	σ_{n-1}
										
										<u> </u>

Appendix B16 In-Use Operations Descriptive Statistics

Project Name:	Test_ID:	Date:
Compiled by (Company)		
Name (printed):	Signature:	

Use Event_ID identifiers, elapsed times, and Index numbers from Obs_1, Obs_2, Obs_3 log sheets (Appendix B11). Each time a given event occurred during in-use operations, record the index number in the appropriate "Occurrences" column.

Freq_evt is the total tally of index numbers over all three observation periods for each event. Freq_tot is the total tally of index numbers for all events. Freq_prop is Freq_evt divided by Freq_tot for each event.

Time_evt is the total elapsed time over all three observation periods for each event, as obtained from Obs_1, Obs_2, Obs_3 log sheets (Appendix B11). Time_tot is the total elapsed time over all three observation periods for all events. Time_prop is Time_evt divided by Time_tot for each event.

Event_ID		Oc	currences		Elapsed Times		
	Obs_1 Index #s	Obs_2 Index #s	Obs_3 Index #s	Freq_evt	Freq_prop	Time_evt	Time_prop
			Freq_tot		Time_tot		

		Appendix B17 Test Run Summar	v	
Project Name:		Test	<i>ID</i> :	
Site_ID:	Cntrl_ID:	Equip_ID):	
Compiled by (Comp	any):			
Name (printed):		Signat	ure:	
(check one)	Control strateg In-use evaluatio Extended interv le; <i>Cycle_ID</i> :	on val initial	□Control strategy □Emissions metho □Extended interva ; <i>Cycle_ID</i> :	od comparison l final
<i>Fuel type</i> : □ULSD	□on-highway diesel	□nonroad diesel (d	yed) □other: □ <i>A</i>	
measurement equipme provides a sample form	nt pretest and post-test	zero, span, calibration	n, performance, or other	ocuments the emissions checks. Appendix B16
Date	Run_ID	Start Time	End Time	Elapsed Time
Data	Run ID		PFMS Filonamos	

Date	Run_ID	PEMS Filenames

Run_ID	Datalogger or Other Filenames
	Run_ID

Appen	dix B18. Horiba OBS-2	200 Test Run R	Record
Project Name:		Test_ID:	Date:
Site_ID:	Equip_	ID:	Run_ID:
Name (printed):	S	ignature:	
PEMS S/N:	Last 1	l-point Calibrati	on Date:
Filename:			
Test Run Truck operator n	ame:		
Start time (hh:mm:ss; use 24-hou	r clock):	End tin	ne:
Describe ambient conditions:			
Wind speed (estimate):	Direction:	Fa	ir 🗌 Overcast 🗌 Precipitation

IMPORTANT: Enter the calibration (or span) gas concentrations, 2 %, and 4 % of each value in the cells marked "*" below. After each OBS-2200 test run, acquire the appropriate zero drift and span drift values from the "..._b.csv" worksheets. Cell references are provided.

Subtract the zero drift and span drift responses in the "..._b.csv" file from the calibration (or span) gas concentration. Enter the result in the table and compare to the ± 2 % or ± 4 % criteria.

Enter " \checkmark " if a parameter is acceptable, "X" or "Fail" if it is unacceptable. Discuss all "Fail" entries and indicate whether the run is invalid because of them in the Notes below.

PEMS Zero and Span Drift Checks							
Analyte	Calibration (or span) gas concentrations (ppmv or %)	±2% of Cal (or span) gas value	✓ if Zero drift OK (≤±2% of span Cells I3 : I6)	±4% of Cal (or span) gas value	✓ if Span drift OK (≤±4% of span Cells J3: J6)		
СО	*	*		*			
CO ₂	*	*		*			
THC	*	*		*			
NO _X	*	*		*			

Parameter	Criteria	✓ if OK
Allowable ambient temperature range	within \pm 10 °F (6 °C) for T _{amb} \leq 80 °F (27 °C)	
(see _b.csv worksheet Cells M16 : EOF)	within \pm 5 °F (3 °C) for T _{amb} > 80 °F (27 °C)	
Allowable barometric pressure range (see _b.csv worksheet Cells N16 : EOF)	within \pm 1" Hg (3.4 kPa)	
Allowable "Hangup" (NMHC	Enter expected THC concentration, ppmv as C	
contamination) (see _b.csv worksheet	Enter 2 % of expected concentration	
Cell Z5)	"Hangup must be < 2 % of expected concentration	

NMHC contamination and background check $\leq 2ppmv$ or $\leq 2\%$ of conc. ΔP line leak check must be stable for 15 seconds at 3 "H₂O. DSS sample bag and dilution tunnel leak check < 0.5% of normal flow rate. Mean P_{bar} within ± 1.0 "Hg of mean for all test runs. Mean T_{amb} within ± 10 °F of mean for all test runs if T_{amb} is < 80 °F. Mean T_{amb} within ± 5 °F of mean for all test runs if T_{amb} is ≥ 80 °F. Drift = (Post-test span minus Pre-test span); must be $\leq 4.0\%$.

Notes:

APPENDIX C ANALYTICAL PROCEDURES

1.0 STATISTICAL ANALYSIS

1.1. STATISTICAL SIGNIFICANCE

Test campaigns often include performance comparisons between a baseline and candidate, between two measurement systems, or other types of paired test conditions. All campaigns should specify at least three test runs under each condition. The difference between the mean result for each test condition is the basis for the comparison.

Analysts should first examine the data set for outliers (such as mean emission rates or other parameters) for each test run. They should consider removing those that meet criteria described in ASTM E178-02 [C1] prior to further analysis. More than three test runs are generally necessary for this because at least three data points are needed for the following calculations. The next step is to evaluate the statistical significance of the difference between the two test conditions. If the difference is significant, analysts can then calculate the difference's confidence interval.

After the 3^{rd} test run, and after each following run, analysts will calculate a test statistic, t_{test} , and compare it with the Student's T distribution value with $(n_1 + n_2 - 2)$ degrees of freedom as follows [C2]:

$$t_{test} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
Eqn. C-1

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 Eqn. C-2

Where:

\mathbf{X}_1	=	mean result for first test condition
X_2	=	mean result for second test condition
μ ₁ - μ ₂	=	zero (H _o hypothesizes that there is no difference between the population means)
n_1	=	number of repeated test runs for first test condition
n ₂	=	number of repeated test runs for second test condition
s_1^2	=	sample standard deviation for first test condition, squared

$$s_2^2$$
 = sample standard deviation for second test condition, squared

 s_p^2 = pooled standard deviation, squared

Selected T-distribution values at a 95-percent confidence coefficient ($t_{0.025, DF}$) appear in the following table [C2].

Table C-1. Selected T-distribution Values					
n ₁	n ₂	Degrees of Freedom, DF (n ₁ +n ₂ - 2)	t _{0.025, DF}		
3	3	4	2.776		
3	4	5	2.571		
4	4	6	2.447		
4	5	7	2.365		
5	5	8	2.306		
5	6	9	2.262		
6	6	10	2.228		

If $t_{test} > t_{0.025,DF}$, conclude that the data shows a statistically significant difference between the two test conditions. Otherwise, conclude that a significant difference does not exist. If significant, report the difference and its confidence interval (see §C1.3).

1.2. SAMPLE VARIANCE SIMILARITY

Use of equations C-1 and C-2 requires the assumption that the two test condition populations have similar variance. The ratio of the sample variances (sample standard deviation squared) between the two test conditions is a measure of this similarity [C3]. Analysts will calculate an F_{test} statistic according to equation C-3 and compare the results to the values in Table C-2 to determine the degree of similarity between the sample variances.

$$F_{test} = \frac{s^2_{\text{max}}}{s^2_{\text{min}}}$$
Eqn. C-3

Where:

 F_{test} = F-test statistic s_{max}^2 = larger of the sample standard deviations, squared s_{min}^2 = smaller of the sample standard deviations, squared

Table C-2 [C2] presents selected $F_{0.05}$ distribution values for the expected number of test runs and the acceptable uncertainty ($\alpha = 0.05$).

Table C-2. Selected F _{0.05} Distribution Values							
	s ² _{max} number of runs	3	4	5	6		
s ² _{min} number of	Degrees of	2	3	4	5		
runs	Freedom						
3	2	19.00	19.16	19.25	19.30		
4	3	9.55	9.28	9.12	9.01		
5	4	6.94	6.59	6.39	6.26		
6	5	5.79	5.41	5.19	5.05		

If the F-test statistic is less than the corresponding value in Table C-2, then analysts will conclude that the sample variances are substantially the same and the statistical significance evaluation and confidence interval calculations are valid approaches. If the F-test statistic is equal to or greater than the Table C-2 value, analysts will conclude that the sample variances are not the same and will consequently modify the confidence interval calculation according to Satterthwaite's approximation [C3]. The report will discuss Satterthwaite's approximation if the actual test data indicate that it must be applied.

1.3. 95-PERCENT CONFIDENCE INTERVAL

Analysts will calculate the 95-percent confidence interval if a statistically significant difference between the two test conditions is observed. The half width (e) of the 95 percent confidence interval is [C2]:

$$e = t_{.025,DF} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 Eqn. C-4

The difference between the two test conditions can then be reported as $(X_2 - X_1) \pm e$.

1.4. WILCOXON RANK-SUM TEST

The Generic Protocol §5.1.4 recommends the Wilcoxon Rank-Sum Test [C2] for evaluating whether a synthesized duty cycle represents the observed nonroad equipment behavior. Step-by-step procedures are:

- Perform a trial run of the proposed synthesized duty cycle and log elapsed time, RPM, T_{turb}, T_{out}, exhaust gas flow (or a surrogate), percent power (ECM-equipped engines), torque (ECM-equipped engines), or other appropriate parameters.
- 2. Aggregate data for each parameter from one of the normal operations period data sets with that logged during the duty cycle trial run.
- 3. Rank the data in ascending order.

4. Search for 2 or more identical values in the ranked data. If any are present, assign the average ranking of their positions in the data set according to the following example:

Value	Assigned Rank
303.2	209
304.0	211
304.0	211
304.0	211
304.8	213

- 5. Dis-aggregate the normal operations period data from the duty cycle run.
- 6. Calculate the sum of the rankings assigned to the normal operations period, W
- 7. Calculate the mean and standard deviation of the W distribution as:

$$\mu_W = \frac{n_{ops,i} \left(n_{ops,i} + n_{DutyCycle} + 1 \right)}{2}$$
Eqn. C-5

$$\sigma_{W} = \sqrt{\frac{n_{ops,i}n_{DutyCycle}(n_{ops,i} + n_{DutyCycle} + 1)}{12}}$$
Eqn. C-6

Where:

 μ_W = mean of W distribution

 $\sigma_{\rm W}$ = standard deviation of W distribution

 $n_{ops,i}$ = number of records logged in the normal operations period "i"

 $n_{DutyCycle}$ = number of records in the duty cycle run

8. Calculate the test statistic:

$$Z_i = \frac{W - \mu_W}{\sigma_W}$$
 Eqn. C-7

- 9. For $\alpha = 0.05$, -1.96 $\leq Z \leq 1.96$ implies that the duty cycle and normal operations data from logging period i come from the same population and that the synthesized duty cycle is a "fair" representation.
- 10. Perform the same analysis for the other two logged normal operations periods.

November 2007

2.0 IN-USE DATA ANALYSIS TECHNIQUES

2.1. 30-SECOND OR DEFINED INTERVAL SLIDING WINDOW DESCRIPTIVE STATISTICS

The detailed in-use behavior of nonroad equipment is inherently noisy because of operator variability, transients, varying ambient conditions, and process material properties. Sliding window analysis may allow a more realistic assessment of in-use performance because it tends to average out the very short-term high and low values. A 30-second sliding window includes all the data in a rolling segment that is 30 seconds wide. The first window includes data from second number 1 through second number 30. The second window includes second number 2 through second number 31, and so on.

Figure C-1 shows the relationship between the 1-second realtime intake air flow on a rubber-tired loader, 30-second, and 60-second sliding windows. In this case, a 30-second sliding window interval strikes a compromise between the original data and the over-simplified 60-second interval. Analysis of the 30-second sliding window average descriptive statistics (maximum, mean, standard deviation, median, and frequency distributions) may be especially useful for control strategy performance analysis. The mean value between seconds 360 and 627, for example, could serve as the baseline comparison point if similar patterns exist in the candidate test results.

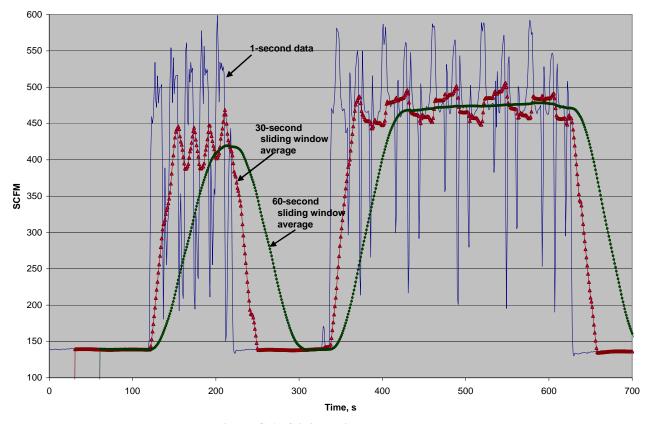


Figure C-1. Sliding Window Averages

Site-specific protocols may use defined interval widths other than 30-seconds as required.

2.2. OPERATING EVENT DESCRIPTIVE STATISTICS

In-use performance data will likely include repetitive patterns which are similar to the duty cycle events described in the Generic Protocol §5.1. These events, especially those which occur at elevated torque and RPM, are analogous to the NTE events of 40 CFR 86, and could serve for baseline / candidate performance comparisons. Figures C-2 and C-3 illustrate this concept.

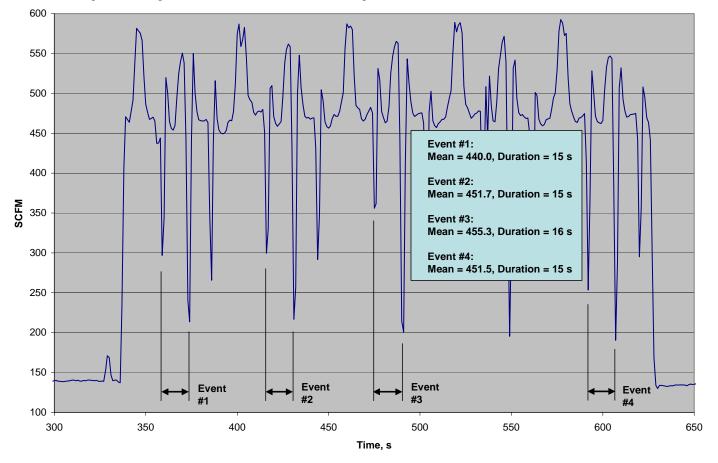


Figure C-2. In-use Events

Table C-3 presents some descriptive statistics on the 4 transient in-use events shown in Figure C-2. The events could form the baseline comparison point of a control strategy evaluation if similar patterns appear during both baseline and candidate testing, but the descriptive statistics can indicate whether a particular event should be included in the analyis.

Table C-3. Rubber Tire Loader Descriptive Statistics, SCFM							
Event_ID	Maximum	Minimum	2 nd	Mean	Median	σ _{n-1}	
			Minimum				
1	550	214	297	440	462	108	
2	558	217	300	458	468	98	
3	563	201	356	455	477	112	
4	544	190	253	452	469	168	

At first glance, all four events may appear to be eligible for inclusion in a data set. The means for each Event_ID are within approximately 2.5 percent of the overall mean. The medians are between 2.2 and 5 percent greater than the means. This can indicate that SCFM trends consistently upward during each event in a repeatable pattern. The minimum and maximum values are reasonably similar for all Event_IDs.

The 2^{nd} minimum and σ_{n-1} values for event number 4, however, show that it is quite different from the others even though the graphic representation in Figure C-2 makes it appear similar. In particular, σ_{n-1} for that event is about 60 percent higher than for all of the others while σ_{n-1} for events 1, 2, and 3 vary only about 14 percent between the lowest and highest values. For whatever reason, SCFM varied much more during event number 4 (as shown by the large σ_{n-1}), and analysts would have good reason to exclude it from calculating a mean value. This would be especially relevant for baseline / candidate control strategy evaluations based on in-use data.

Figure C-3 shows two "composite" events obtained from the rubber-tired loader data. A composite event is a repeated sequence of simple transient events such as those shown in Figure C-2, and similar statistical analyses could be applied.

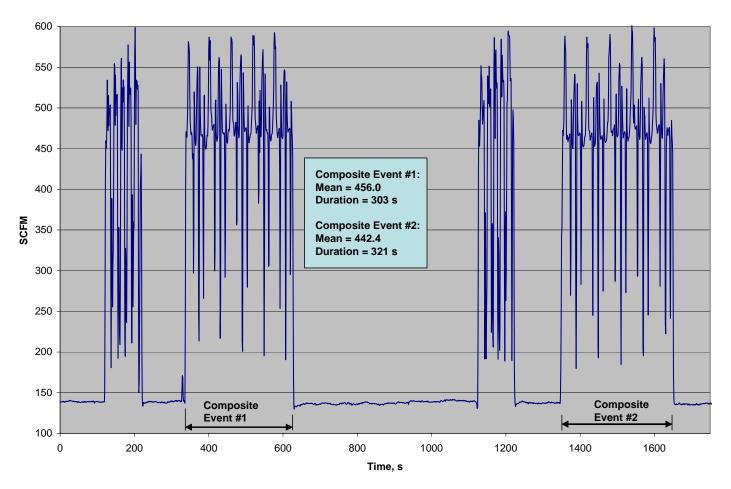


Figure C-3. Composite In-Use Events

2.3. NORMALIZATION

Different types of normalization or correlations could reveal trends or data subsets amenable to further analysis. Normalization is the ratio of two or more parameters, such as NO_X divided by bhp-h, which yields brake-specific NO_X . Other normalizations may be useful. Figure C-4 shows a time series plot of SCFM divided by RPM for a series of rubber-tired loader tests. C-5 provides the frequency distribution of this relationship. The events when SCFM / RPM is near 0.15 or 0.21 are likely to be of interest because they happen more often than any others.

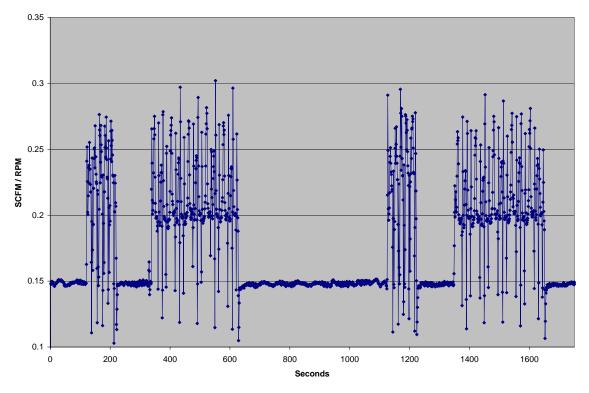
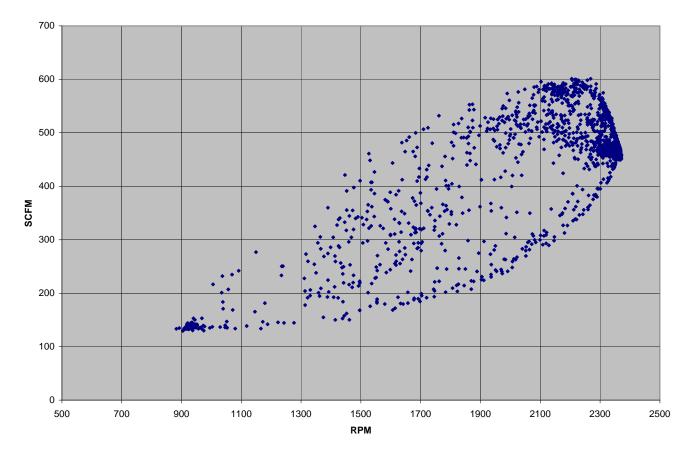



Figure C-5. Frequency Distribution of SCFM Divided by RPM

Correlations such as emissions as a function of engine power are also likely to be revealing. Figure C-6 shows SCFM as a function of RPM for a rubber-tired loader.

Figure C-6. SCFM versus RPM

In this case, the tight cluster of data points between 2280 and 2370 RPM and 440 and 490 SCFM shows that this is a frequently-occurring operating characteristic. The emissions associated with those data points may form a reasonable selection set for baseline / candidate comparisons.

-C10 -

3.0 REFERENCES

[C1] *Standard Practice for Dealing with Outlying Observations, ASTM E178-02*, ASTM International, West Conshohocken, PA 2002

[C2] *Statistics Concepts and Applications*, D.R. Anderson, E.J. Sweeney, T.A. Williams. West Publishing Company, St. Paul, MN. 1986

[C3] A Modern Approach to Statistics, R.L. Iman, W.J. Conover. John Wiley & Sons. New York, NY. 1983