Co-Metabolic Bioremediation Demonstration Project

FINAL REPORT 08-19 JUNE 2008

New York State Energy Research and Development Authority

NYSERDA

New York State Energy Research and Development Authority

The New York State Energy Research and Development Authority (NYSERDA) is a public benefit corporation created in 1975 by the New York State Legislature.

NYSERDA derives its revenues from an annual assessment levied against sales by New York's electric and gas utilities, from public benefit charges paid by New York rate payers, from voluntary annual contributions by the New York Power Authority and the Long Island Power Authority, and from limited corporate funds.

NYSERDA works with businesses, schools, and municipalities to identify existing technologies and equipment to reduce their energy costs. Its responsibilities include:

- Conducting a multifaceted energy and environmental research and development program to meet New York State's diverse economic needs.
- The New York Energy \$mart[™] program provides energy efficiency services, including those directed at the low-income sector, research and development, and environmental protection activities.
- Making energy more affordable for residential and low-income households.
- Helping industries, schools, hospitals, municipalities, not-for-profits, and the residential sector, implement energy-efficiency measures. NYSERDA research projects help the State's businesses and municipalities with their energy and environmental problems.
- Providing objective, credible, and useful energy analysis and planning to guide decisions made by major energy stakeholders in the private and public sectors.
- Since 1990, NYSERDA has developed and brought into use successful innovative, energy-efficient, and environmentally beneficial products, processes, and services.
- Managing the Western New York Nuclear Service Center at West Valley, including: overseeing the State's interests and share of costs at the West Valley Demonstration Project, a federal/State radioactive waste clean-up effort, and managing wastes and maintaining facilities at the shut-down State-Licensed Disposal Area.
- Coordinating the State's activities on energy emergencies and nuclear regulatory matters, and monitoring low-level radioactive waste generation and management in the State.
- Financing energy-related projects, reducing costs for ratepayers.

For more information, contact the Communications unit, NYSERDA, 17 Columbia Circle, Albany, New York 12203-6399; toll-free 1-866-NYSERDA, locally (518) 862-1090, ext. 3250; or on the web at www.nyserda.org

STATE OF NEW YORK David A. Paterson, Governor **ENERGY RESEARCH AND DEVELOPMENT AUTHORITY** Vincent A. Delorio, Esq., Chairman

Co-METABOLIC BIOREMEDIATION DEMONSTRATIONPROJECT

NYSDEC Inactive Hazardous Waste Site No. 344031 Former Grant Hardware Facility West Nyack, NY

Final Report

Prepared for the

NEW YORK STATE

ENERGY RESEARCH AND

DEVELOPMENT AUTHORITY

Albany, NY www.nyserda.org

Kathleen O'Connor Project Manager

and

GUSSACK REALTY

West Nyack, NY

Prepared by:

GEOVATION ENGINEERING, P.C. Florida, NY

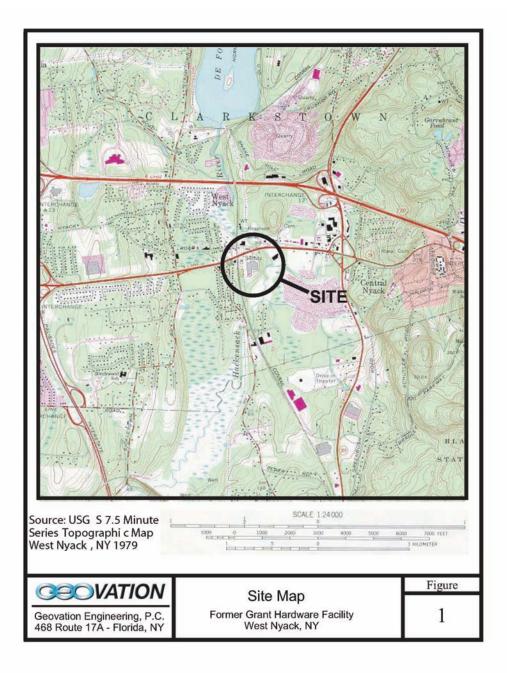
Table of Contents

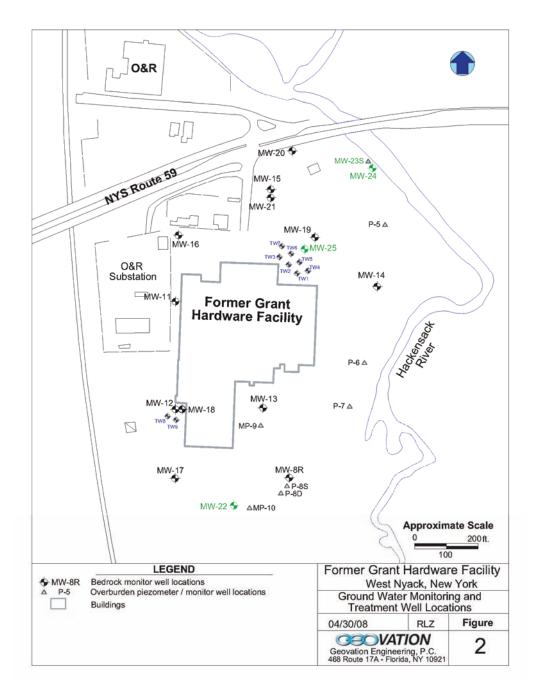
1. INTRODUCTION	
2. METHODS	
3. RESULTS	
Creation of Anaerobic and Reducing Conditions	
Increased Biological Activity	
Degradation and Reduction of Ground Water Contaminants	
Third Party VOC Sampling	
4. CONCLUSIONS	
Problems Identified and Planned Solutions	
Project Schedule	
Financial Report	

Figures

0		
Figure 1	Site Topographic Map	
Figure 2	Ground Water Monitoring Well Locations	
Figure 3	Source Area DAPI Counts and Dissolved Metals	
Figure 4	Barrier Area DAPI Counts and Dissolved Metals	
Figure 5	Source Area qPCR, PLFA Trends	
Figure 6	Barrier Area qPCR, PLFA Trends	
Figure 7	Diagram of DGGE Gels	
Figure 8	Phylogram of Partial 16S Bacterial DNA	
Figure 9	Source Area Well MW-12 Choloethene Concentrations (ug/l)	
Figure 10	Source Area Well MW-18 Chloroethene Concentrations (ug/l)	3-9
Figure 11	Barrier Area Well MW-19 Chloroethene Concentrations (ug/l)	3-9
Figure 12	Barrier Area Well MW-25 Chloroethene Concentrations (ug/l)	3-10
Figure 13	Source Area Molar Percentage of Contaminants	3-11
Figure 14	Barrier Area Molar Percentage of Contaminants	
Figure 15	Source Area Well MW-12 Chloroethene Concentrations (moles/l)	3-13
Figure 16	Source Area Well MW-18 Chloroethene Concentrations (moles/l)	3-14
Figure 17	Barrier Area Well MW-19 Chloroethene Concentrations (moles/l)	
Figure 18	Barrier Area Well MW-25 Chloroethene Concentrations (moles/l)	

Tables


Table 1	Schedule of Geovation SRC TM Ground Water Treatments	2-3
Tabel 2	Summary of Source Area Ground Water Monitoring Data	2-4
Table 3	Summary of Barrier Area Ground Water Monitoring Data	2-8
Table 4	Contaminant Degradation Rates	3-18


1. INTRODUCTION

From late December 2006 until early January 2008, this bioremediation demonstration project addressed chlorinated solvent contaminated ground water via the addition of Geovation's SRCTM product. Based on evidence gathered during the 12-month duration of this project. Geovation concludes that the application of this product has been successful. During the demonstration project, Geovation's SRCTM product created reducing conditions in all target wells and maintained these conditions, increased biological activity as measured both directly and indirectly, and changed the composition of the biological community. Furthermore, the use of SRC[™] product resulted in the degradation of ground water contaminants from parent to daughter compounds and the observation of the reduction of total chloroethenes by as much as 99.6% from baseline concentrations. Additional evidence indicated that biological enzymes were available to degrade parent and daughter compounds and that bacteria known to degrade chloroethene contaminants were present in ground water. Analysis of the contaminant concentrations over the duration of the study resulted in the calculation of contaminant degradation rates for parent and daughter compounds. Finally, the use of SRC[™] through treatment wells was shown to be an effective delivery mechanism in both a bedrock source area and for use in the construction of a line of bedrock treatment wells as a bio-barrier wall.

2. METHODS

This bioremediation demonstration project addressed chlorinated solvent contaminated ground water at the former Grant Hardware facility in West Nyack, NY. Ground water contaminants included total chloroethenes composed of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethenes (cis-1,2 DCE and trans-1,2 DCE), and vinyl chloride (VC). Additional infrastructure required to perform the approved co-metabolic bioremediation demonstration project was installed during the late summer of 2006. Ten bedrock wells, consisting of one monitoring well and nine treatment wells, were installed at the locations shown on Figure 2, and project baseline ground water sampling was performed on August 23, 2006.

Ground water contaminants were treated via the application of Geovation's SRCTM to ground water at two locations at the site: (i) in the source area designated as "WN-1, or source area," and (ii) at a down-gradient location designated "WN-2, or barrier area." In both areas, Geovation's SRCTM product was introduced into ground water through treatment wells, and the effects of the product were monitored at down gradient monitoring wells (Figure 2).

In the source area, Geovation's SRCTM product was added to treatment wells TW-8 and TW-9, which were designed to affect target wells MW-12 and MW-18. In the barrier area, SRCTM was added to treatment wells TW-1 through TW-7, and the results were monitored in wells MW-25 and MW-19. SRCTM was applied to the subsurface on a monthly schedule. The amounts of Geovation's SRCTM product applied during the project are shown in Table 1.

Table 1

Ground-Water Bioremediation Pilot Project SRC[™] Dosing Information Former Grant Hardware Facility - West Nyack, NY

Treatment Area	Liquid SRC [™] First Quarter (gallons)	Liquid SRC [™] Second Quarter (gallons)	Liquid N- Blend [™] Second Quarter (gallons)	Liquid SRC [™] Third Quarter (gallons)	Liquid SRC [™] Fourth Quarter (gallons)	Total Liquid SRC [™] (gallons)
WN-1 Source Area Back of Building	407	0	403	472	212	1091
WN-2 Down Gradient Front of Building	211	79	0	48	35	373
Total:	618	79	403	520	247	1464

For each of these areas, a control point was established that was located at a distance far enough away from the treatment wells that they were believed to be beyond the area of influence of the SRCTM applications. The control points were monitored to document natural fluctuations in ground water quality during the project. In the source area, MW-17 was selected as the control well, and in the barrier area, MW-11 was selected as the control point (Figure 2). In addition, ground water samples that were collected during quarterly ground water events were split with an independent environmental consultant, Environment Management, Ltd (EML). Four times during the demonstration project, EML observed Geovation collecting the ground water samples, received split samples from Geovation, and independently arranged for and received the results of the groundwater analyses.

Contaminated ground water at this site flows through a bedrock matrix. Typically, primary ground water flow in bedrock is through bedrock faults and fractures. As ground water flows through these faults and fractures, the flow rate can vary considerably. An additional well, MW-24, was added to this project to evaluate potential effects of this variation at great distances from the treatment areas.

Baseline data was collected in August 2006 prior to the addition of any SRCTM product. SRCTM was first added to site ground water in December 2006, and additional SRCTM was amended to site ground water on a monthly schedule (Table 1). Ground water monitoring was performed as follows during the demonstration project:field parameters were monitored monthly; biogeochemical parameters (nutrients, the metals iron and manganese, and alkalinity) and trace gases were monitored on a quarterly basis; and the concentrations of volatile organic compounds (VOCs), including chloroethenes, were monitored quarterly and with supplemental sample collection, which resulted in VOC sampling results for nine months of the 12-month study. The ground water sampling results in the source area are provided in Table 2, and the results obtained in the barrier area are provided in Table 3.

In addition, Biotrap[®] samplers were deployed in target wells to collect microorganisms growing in site ground water to evaluate the composition of the microbial communities and to look for the presence of specific organisms and enzymes to further evaluate if microbial populations were responsible for the degradation of ground water contaminants. Bacterial communities that colonized the Biotrap samplers were analyzed by qPCR and DGGE microbial assay techniques.

Ground-Water Bi w	Biore WN-1
Target	
\vdash	MW-1
:/24/2006	1/19/20
Parameters Measured by EPA Method SW-846 or Other	ner \$
1.010	
0.0367	
0.0066	
0.0026	
robes	
+	1.25
+	1,966 5 78
╞	14.2
	4,030
-258	340.
	Ē
004 305.1	
0.89	T
0.57	
290	
1	
Method 8021	(I/gu)
QN	
Q :	
	T
20	
86	
QN	
10	
QN	
53	
٥ 8	
40	
- Q	
38,000	
ND	
280	
67,000	T
32,000	
137.280	T
51~	
via EPA Method 827	3270
б	
1,600	
4,UUU	T
Nitrite (mg/i) Total NO3 + NO2 Ammonium (mg/i) Hydrolyzable Phosphate (mg/i) Field Parameters Measured with Select Dissolved Oxygen (DO) in mg/i Total Dissolved Oxygen (DO) in mg/i Phi Total Dissolved Solids (mg/i) Phi Total Dissolved Solids (mg/i) Phi En / Redox Potential (mv) Marganese Population (cells/mi) / 1 Marganese Population (cells/mi) / 1 Marganese Population (cells/mi) / 1 Marganese Population (cells/mi) / 1 Marganese Population (cells/mi) / 1 Filtinon Marganese Population (cells/mi) / 1 Filtinon	

Grou	Ground-Water Bior
Well Location Relative to Source	Target
Sampling Date	3/24/2006
Parameters Measured by EPA Method	
Nitrate (mg/l) Nitrito (mc4)	0.0249
Total NO3 + NO2	0.046
Ammonium (mg/l)	0.1891
Orthophosphate (mg/l)	0.0022
	0.0036
ţ	Selective Probes or Me
Dissolved Oxygen (DO) in mg/	_
Total Dissolved Solids (mg/l)	411 486
рл Temperature (оС)	╀
Conductivity (uS)	
Eh / Redox Potential (mv)	-577 -525
Microbiological Data: Direct Bacteria	a Counts via Epi-Flu
Average Population (cells/ml)	9.13E+05
Metals via SW 846 (mg/l)	
Iron	0.064
Manganese	Q
Bicarbonate Alkalinity (ppm)	4
I otal Organic Carbon (mg/l)	-000
Volaule Organic Compounds via EFA meniou	Vguje 1 200 nomem A
Benzene	7
l oluene Ethylhonrono	n g
Etriyiberizerie M.&D Xvienes	n g
nuai Ayteries A-Yvianes	
o-Ajieries Acetorie	44
	29
2-Butanone	14
Chloroform	-
Methylene Choride	7
1,1,1-Trichloroethane	29
1,1,2-Trichloroethane	QN
1,1-dichoroethane	38
1,1-dichoroethene	74
1,2-dichloroethane	6 77 000
trans_1,2 -Diction Jettiene trans_1 2_Dichoroethene	000,11
Tetrachloroethene	170
Trichoroethene	54.000
Vinvi Choride	240
Total Chloroethenes	131,410
VOC TICS	84
olatile Organic Compounds	via EPA Method 827
Ethane	66 250
Ethene	250
Methane	۳ ۶

	i i											
Ground-water Blo W	ater Blorei WN-	rem vN-1										
Well Location Relative to Source	Treatment poir	ooir										
Well Sampled	TM-8											
Sampling Date												
Parameters inteasured by EPA Internol SW-84 Nitrato (2004)		0 OL										
Nitrite (ma/l)	0.0209											
Total NO3 + NO2	0.0429											
Ammonium (mg/l)	0.0066			0.3532			6.531					
Orthophosphate (mg/l)	0.0078			10.424			18.895					-
Hydrolyzable Phosphate (mg/l) 0.0146	0.0146			6.254			3.127			1		1
Field Parameters Measured with Se	elective Prot	obes or Meters (Geovation Engineering, P.C.)	s (Geovation	n Engineerin	ig, P.C.)							
Dissolved Oxygen (DO) in mg/l	4.49	1.36	1.74	2.62	1.97	3.07	0.45	3.1	0.45	0.28	0.23	0.19
Total Dissolved Solids (mg/l)	622	28,000	2,780	2,480	11,490	9,680	45,200	3,500	11,220	29,700	5,390	32,800
РН	7.29	5.72	6.19	5.71	7.03	7.66	6.12	6.83	5.99	6.01	5.22	6.28
Temperature (oC)	13.8	13.5	13.9	14.3	13.7	15.4	14.5	14.1	14.1	14.4	14.5	14.6
Conductivity (uS)	1,242	56,000	5,660	5,040	22,200	19,320	90,300	6,930	21,600 55	59,600	10,830	65,500
Ell / Redux Fotential (IIIV)		-32 19 Eni El 192	-240.3		1.02-	-40	0.0		B	0.401-	-40.4	
Microbiological Data: Direct bacteria Counts		VIA EPI-FIUORESCENT MICROSCOPY		scopy								
Average Population (cells/ml)	4.68E+05			1			4.92E+08			5.16E+07		1.16E+08
Metals via SW 846 (mg/l)												
Iron	QN			15			18			12		24
Manganese	4.7			16			16			5.6		1.6
Bicarbonate Alkalinity (ppm)	350			8800			3700			12000		9600
Volatile Organic Compounds via EPA Method 8021 (ug/l)	EPA Method 8	8021 (ug/l)										•
Benzene	9			QN			Q			Q		QN
Toluene	QN			QN			QN			QN		DN
Ethylbenzene	QN			QN			ΩN			QN		DN
M&P Xylenes	QN			QN			ND			QN		ND
O-Xylenes	QN			QN			DN			QN		DN
Acetone	QN			QN			ND			QN		DN
Carbon Disulfide	35			QN			ND			QN		DN
2-Butanone	Q			Q			QN			Q		QN
Chloroform	27			QN			Q			Q		QN
Methylene Choride	28			QN			QN			Q		QN
1,1,1-Trichloroethane	120			QN			QN			Q		QN
1,1,2-Trichloroethane	27			QN			Q			Q		QN
1,1-dichoroethane	8			Q			Q			Q		Q
1,1-dichoroethene	2			Q			Q			Q		Q
1,2-dichloroethane	2			QN			Q			Q		QN
cis-1,2 -Dichloroethene	86,000			28,800			48,800			5,150		2,540
trans-1,2-Dichoroethene	380			QN			429			Q		QN
Tetrachloroethene	230			Q			103			Q		40.1
Trichoroethene	190,000			28,600			36,300			6,020		1,590
Vinyl Choride	390			QN			Q	T		Q		32.3
- 0 I E - 0 0 2	ŗ			ļ			ļ	T		0,0		, ,
	N .	, eres :		ND			ND			340		540
SEMI-Volatile Organic Compounds via EPA IN	s via EPA Me	viethod 8270 (ug/l)	<u>g(I)</u>									
Ethane	-						-	T				
Ethene	1							T				
Methane	1											

Ground-Water Bio W	ater Bioren WN-1	IT 1										
Well Location Relative to Source	Control											
Well Sampled	71-WM											
Sampling Date	8/24/2006											
Parameters Measured by EPA Method SW-84	100 SW-846 OF											
Nitrite (mg/l) Nitrite (mc/l)	0.0716											
Total NO3 + NO2	0.0335											
Ammonium (mg/l)	ΩN			0.2157			0.0362			0.2466		0.042
Orthophosphate (mg/l)	0.0003			3.273			0.0918			0.6838		0.6325
Hydrolyzable Phosphate (mg/l)	0.0005			5.779			0.1117			0.8363		0.8359
Field Parameters Measured with Selective Probes or Meters (Geovation Engineering, P.C.)	elective Prob	es or Meters	(Geovation	i Engineerin	g, P.C.)							
Dissolved Oxygen (DO) in mg/l	2.07	1.1	1.8	2.58	1.93	3.58	0.46	0.35	0.47	0.32	0.75	0.65
Total Dissolved Solids (mg/l)	483	409	389	1	333	370	491	600	546	477	397	395
PH	7.13	6.92	7.03	7.03	6.62	13	7.66	6.48	6.66	6.97	6.7	6.6
Temperature (oC)	12.6	13.5	12	13.4	13.1	7.19	13.2	12.8	13.3	13	13.1	13.3
Conductivity (uS)	958	832	871	1	673	699	978	1,181	1,087	955 170	796	787
En / Redox Potential (mv)		C.062-	-220.4	007-	-283	- 180	861-	-440	-180	c/l-	-138.2	1
Ivilicropiological Data: Direct Bacteria Counts		VIA EPI-FIUORESCENT IVIICROSCOPY		scopy		ſ	ſ				Ī	ľ
Average Population (cells/ml)												
Metals via SW 846 (mg/l)		ľ		1	ľ							
Iron	4.3			Q.			27.0			33.0		36.0
Manganese	1.5			1.4			1.6			1.3		1.0
Bicarbonate Alkalinity (ppm)		0.04 6.000		140.0			120.0			16U.U		130.0
Volatile Organic Compounds via EPA Inetnod		(i/gu) 1208									-	
Benzene	Q			Q			Q			Q		Q
Toluene	Q :			9			9			99		9 9
Etriyloenzene	2			DN I			Ð.			2		Ð.
M&P Aylenes	2									2		2 £
U-Aylenes	2									2		2 £
Acetone Cartan Dianisaa	2			2						2		2 £
Carbon Ulsuinde	2	Ī								2 2		2 2
2- batanone Chloroform	2			2						22		2 2
Methylene Choride	2			Q Q			Q Q			Q Q		g
1, 1, 1- Trichloroethane	Q			Q			Q			Q		Ð
1,1,2-Trichloroethane	Q			QN			QN			Q		Q
1,1-dichoroethane	QN			ND			ND			QN		QN
1,1-dichoroethene	QN			ND			ND			QN		ND
1,2-dichloroethane	QN			QN			ND			QN		QN
cis-1,2 -Dichloroethene	51			36			31			33		17
trans-1,2-Dichoroethene	Q			QN			QN			QN		QN
Tetrachloroethene	Q			Q			Q			Q		1.2
Trichoroethene	47			ਲ			33			36		15
Vinyl Choride	25			14			88			16		œ
	ŗ			ļ			ļ			ļ		ļ
VOC TICS SEMI Volatila Orcania Communida		004004 0070 /1120		Q			Q			9		Q
			fuf	, ,			c					ç
Ethane Ethane	7 0	Ī		n 4	Ī		11			4 1		ч c
Etnene Methane	1 200	T	T	000 0		T	1 100			180		740
Metriarie	1,200			2,000			1,100			100		110

Grou	Ground-Water Biorem wn-2 B	r Biorem WN-2 B											
Well Location Relative to Source	Target												
Well Sampled	MW-25	MW-25	111125										
Sampling Date 8/23/2006 1/19/2007	8/23/2006	1/19/2007	0.8,2007										
rarameters weasured by ErA weurd Nitrate (mo/l)	0 0 2 W-040 0												
Nitrite (mg/l)	0.0671												
Total NO3 + NO2	2.4031												
Ammonium (mg/) Otthonk contrate (mc/)	0.0538						0 0022			0 5003			00000
Ouropriospriate (mg/r) Hvdrolvzable Phosobate (mg/l)	0.0038			0.0109			0.0037			0 1088			0.0419
Field Parameters Measured with Selective Probes or Meters (Geovati	ective Probe	s or Meters	(Geovation	on Engineering. P.C.)	. P.C.)]		1					
Dissolved Oxygen (DO) in mg/l	3.45	1.06	1.57	1.48	3.64	2.83	0.32	0.41	0.39	0.034	0.35	1.89	0.48
Total Dissolved Solids (mg/l)	625	866	936	3,090	1,321	1,442	1,621	1,048	1,179	734	775	436	1,558
pH 	7.57	7.06	7.37	7.2	7.52	7.06	7.34	6.35	6.76	7.13	6.99	7.01	6.79
l emperature (oC)	14./	15.48	14.2	15.1	7:01	7.000	14.8	14.9	14.Y	14.8	14.8	15.1	15.1
Colluctivity (u.s.) Fh / Redox Potential (mv)	75.5	-3115	-329.2	-329.4	-268.5	-311	3,180 -336.6	-350.7	-344 7	-336.6	-335	~184.8	0,2,2,0
Microbiological Data: Direct Bacteria Counts via Epi-Fluorescent Micr	a Counts via	Epi-Fluores	scent Micros	CODV	2.2.2	,			,	2.222	<u>}</u>	2	
Average Population (cells/ml)	3.20E+06		4.38E+06	6 3 20E+06		ſ	5.04E+06	ſ		6.87E+05			2.74E+06
Metals via SW 846 (mg/l)													
Iron	QN			2.1			1.7			0.11			Q
Manganese	0.3			3.5			3.8			1.8			2.1
Total Organic Carbon (mg/l)	-						6.6	11.3	2.7	2.2			2.8
Bicarbonate Alkalinity (ppm)	200			310			330			240			190
Volatile Organic Compounds via EPA Method 8021 (ug/l)	A Method 80	021 (ug/l)											•
Benzene	QN			Q	QN	ΠN	QN	QN	ND	QN	QN		QN
Toluene	QN			Q	QN	QN	QN	QN	QN	QN	QN		Q
Ethylbenzene	QN			Q	Q	Q	Q	Q	QN	Q	Q		Q
M&P Xylenes	QN			Q	Q	Q	Q	Q	QN	Q	QN		Q
O-Xylenes	QN			9	g	Q	Q	Q :	Q	Q :	Q		Q
Acetone				9	9		9	9	Q	9 £	9		9
Carbori Disumae 2 Buttanone				2 2	2 9								
Chloroform				2							DE CN		
Methylene Choride	QN			2 9	e Q	321	e Q	R Q	Q	Q	2 0		2 9
1,1,1-Trichloroethane	QN			Q	QN	QN	QN	QN	ΔN	QN	QN		QN
1,1,2-Trichloroethane	QN			QN	QN	ΩN	QN	QN	ND	ΩN	QN		QN
1,1-dichoroethane	QN			Q	Q	QN	Q	Q	QN	Q	QN		QN
1,1-dichoroethene	QN			Q	Q	QN	QN	QN	QN	QN	ND		QN
1,2-dichloroethane	ON COL			9	QN C	ON C	Q .	Q	ON .	Q	98		9
cis-1,2 -Dichloroethene	3,500			6,050	3,260	2,250	1,990	1,250	1,000	363	333		284
trans-1, Z-Ulchoroethene Totta shippon shore	n v			2	70	4 -	3 2	Q S	10	Q P	ON 1		3.09
Trichoroethene	6 100			176	115 1	ΠQ	Ω α		73	176 1	۶) عر		100
Vinvil Chorida	0	ſ		2	2	115	2409	870	675 675	00	32 205		901
	AN			2		2	222	2	070	8	2024		20-
Total Chloroethenes	9,664			6,226	3,375	2,394	2,733	2,213	1,698	588	590		500
VOC TICS	QN			1,160	742	DN	444	207	ND	44	52		24
Trace Gases (ug/I)													
Ethane	0.34			1.30			0.10			0.11			0.34
Ethene	1.00			4.20			17.00			81.00			71.00
Methane	0.8/			14.00			290.UU			270.00			500.UU

Grou	Ground-Water Bior WN	Bior WN											
Well Location Relative to Source	Target												
Well Sampled	MW-19	MM											
Sampling Date	8/24/2006	1/19/											
Parameters Measured by EPA Method SW-846 of Nitrate (mod)	100 SW-846 0												
Nitrite (mg/l)	1												
Total NO3 + NO2	1												2,7682
Ammonium (mg/l) Otthonhosnhate (mc/l)	1			0.1510			0.1244			0.1032			0.1667
Hvdrolvzable Phosphate (ma/l)				0.0198			0.0083			0.1374			0.0215
Field Parameters Measured with Selective Probe	elective Probe	6	or Meters (Geovation Engineering, P.C.)	Engineering	, P.C.)								
Dissolved Oxygen (DO) in mg/l	2.96		5.39	1.51	1.52	2.89	0.27	0.55	0.26	1.05	0.36	0.43	4.93
Total Dissolved Solids (mg/l)	532	1,381	3,890	3,420	1,979	1,202	778	957	845	783	708	1,204	4,640
pH Temperature (oC)	7.24	6.73	6.42 14 6	6.65 14.6	6.72	6.58	1.79	6.52 13.8	6.62	6.77	6.93	14.1	6.73
Conductivity (uS)	1.067	2.820	7.860	6.850	3.960	2.410	1.558	1.915	1.691	1.568	1.418	2.520	9.280
Eh / Redox Potential (mv)	295		52.8	10.9	-321.5	-349.1	-45.4	8.1	47.3	13.8	-4.8	**183.2	
Microbiological Data: Direct Bacteria Counts via	ria Counts via	_	Epi-Fluorescent Microscopy	copy									
Average Population (cells/ml)	5.45E+05		5.45x10^5	1.46E+06			2.96E+06			1.75E+06			2.91E+05
Metals via SW 846 (mg/l)													
Iron	ΟN			0.07			0.53			QN			QN
Manganese	QN			3.1			4.3			0.63			0.66
Total Organic Carbon (mg/l)	1			1			2.6	0.6	2.5	1.3			
Bicarbonate Alkalinity (ppm)	91 BA Mothed 90	Allowed Port		180			210			150			66
		(1/6n) 170		ų,	4	4	4	í.	1	4			4
Tolijene													
Ethylbenzene	QN QN			Q Q	n n	n n	n n	D ON	Q	QN	DN DN		Q
M&P Xylenes	ΟN			QN	QN	QN	QN	QN	QN	ΠN	ΟN		DN
O-Xylenes	ΩN			QN	ΩN	QN	QN	ND	ΔN	QN	ΠN		ND
Acetone	QN			Q	QN	QN	Q	QN	Q	QN	QN		QN
Carbon Disuiride 2-Burtanone				99			99						
chloroform	D N						2 2	Q Q			D N		QN ON
Methylene Choride	QN			QN	QN	QN	QN	QN	QN	ΟN	ΩN		QN
1,1,1-Trichloroethane	ΩN			QN	QN	QN	QN	DN	QN	QN	ΩN		QN
1,1,2-Trichloroethane	QN			QN	QN	QN	QN	QN	QN	QN	ΩN		QN
1,1-dichoroethane	Q			Q :	QN :	Q C	Q	QN :	Q :	Q	QN :		Q
1, 1-dicritor detrierte 1 2-dichloroothane						EZ UN							
cis-1.2 -Dichloroethene	4.200			10.500	2.550	24.600	7.900	4.180	9.130	4,800	1.450		17
trans-1.2-Dichoroethene	40			QN	QN	52	QN	QN	QN	QN	8		: Q
Tetrachloroethene	170			QN	QN	13	QN	QN	53	QN	17		1.61
Trichoroethene	7,600			551	60	152	1,810	1,750	5,230	2,790	1,110		27
Vinyl Choride	ΠN			QN	QN	2,230	8,750	3,020	836	123	75		ΟN
Total Chloroothonoo	11 070			44 054	0153 6	200.20	10 460	0 050	45 240	672.2	1657		46
	11,310			100,11	2010	20,230	10,400	0,300	10,243	, i i i	2,002		07
Trace Gases (Ind/I)	ND			NN	ND	ND	N	ND	ND	ND	ND		NN
	60 U			0.26			0 10						UN
Ethene	0.19			0.69			8.30			4.10			C N
Methane	0.26			14.00	Ī	Ī	100.00			10.00			DN DN
	ļ]		1	1]					2

Grour	Ground-Water B	Bior WN											
Well Location Relative to Source	Remote Target	jet											
Well Sampled	MW-24	MW											
Parameters Measured by EPA Method SW-846 or	10d SW-846 0	or othe											
Nitrate (mg/l)	1.988												
Nitrite (mg/)	0.1056												
I 01al NO3 + NO2 Ammonium /mc4/	2.0936			80/1.1 9096 0			0.0244			4.2699			4.1490
Ammonium (mg/i) Orthophosphate (mg/i)	0.0019			0.0089 0.0089			0.0056			0 1088			0.0327
Hvdrolvzable Phosphate (mg/)	0.0028			0.0128			0.0086			0.1221			0.0178
Field Parameters Measured with Selective Probes	elective Prob	es or Meters	: (Geovation	(Geovation Engineering, P.C.)	g, P.C.)								
Dissolved Oxygen (DO) in mg/l	2.84		1.3	3.14	2.24	3.77	0.38	0.5	0.35	0.28	0.51	0.32	0.29
Total Dissolved Solids (mg/l)	462	495	460	-	503	328	651	449	459	711	642	807	689
Нд	7.46	7.09	7.19	7.26	7.29	8.1	7.93	7	6.86	7.11	6.98	7.35	7.35
Temperature (oC)	11.5	12	11.9	11.9	11.8	11.7	11.5	11.6	11.7	11.9	11.7	12.4	11.8
Conductivity (uS)	921	1,000	919 404 E		1,003	648	1,299	895	905 75 3	1,425	1,285	1,624	1,381
En / Redox Potential (mV) -119 Missobiological Data: Disost Basteria Counts via E	-119 ria Compte via		-00.3 -101.3 -10 bi-Eluoroscont Microsconu	101-	0.001-	-00-	1.10-	-02.0	-73.3	-33.2	c.eut-	-30.2	I
Average Deputation / relis/m/	6 53~10A5			A EDVIDAE	ſ		2 4 2 4 10 4 5		ſ	3 73E⊥05	ſ	ſ	27FT05
Metals via SM 846 (mm/l)	0.01720.0			0 0 070.4			0 01 77-77			2.7 01 100			201107
metals via 3vv 0-to (mg/l) Iron	~0 02			20.05	ſ		1		ſ	•	ſ	ſ	•
Mandanese	PC0.02			0.042			0.016			<0.1 <0.01			- 600
Total Organic Carbon (mg/l)										1.0			12
Bicarbonate Alkalinity (ppm) 140.0	140.0			110.0			160.0			160.0			160.0
Volatile Organic Compounds via El	PA Method 8(021 (ug/l)											
Benzene	DN			DN			DN			ND	DN		DN
Toluene	QN			QN			QN			ND	ΩN		ND
Ethylbenzene	QN			QN			QN			ND	QN		QN
M&P Xylenes	QN			QN			QN			ND	QN		QN
O-Xylenes	QN			Q			QN			QN	Q		QN
Acetorie Carbon Disulfide					T			T		ON ON			
Caliborit essentac	QN UN						DN UN			ON UN			DN CN
Chloroform	و			QN ON			QN			DN DN	D DN		DN DN
Methylene Choride	QN			QN			QN			QN	QN		QN
1,1,1-Trichloroethane	17			ND			ND			ND	ND		ND
1,1,2-Trichloroethane	б			QN			QN			ND	QN		QN
1,1-dichoroethane	QN			QN			QN			ND	QN		ΠN
1,1-dichoroethene	24			Q			QN			QN	QN		QN
1,2-dichloroethane	QN			QN			UN ON			UN 00 00	ON C		QN
cis-1,2 -Dicnioroetnene	12,000			5,14U			22,5UU			23,600	9,64U		14,2UU
Itaris- 1,2-Dicrioroerrierie Tetrachloroethene	34 <5000			346			718			UN 678	282		BEF
Trichoroethene	48 000			42 800			69 400			86,900	32 000		51500
Vinyl Choride	11			QN			QN			ND	QN		DND I
VOC TICS	35			DN			DN			ND	ND		DN
Trace Gases (ug/l)													
Ethane	5.90			43.00			3.00			0.96			6.00
Ethene	6.70			90.00			3.10	T		1.00	T	T	4.60 2.25
Methane	2.00]		3.30			2.50			4.50			3.00

Ground-Water Biore WN-	Vater Biore WN-:	e L-										
Mell Location Relative to Source	Treatment											
Well Sampled	TW-6											
Sampling Date	8/23/2006											
Parameters Measured by EPA Method SW-846	od SW-846 or	r (
Nitrate (mg/l)	5.0652											
Nitrite (mg/l) Total NO3 + NO3	0.U209											
1 Utal 1403 7 1402 Ammonium (md(l)	0.1110			0.6173			0.2531					
Orthophosphate (mg/)	0.0028			11 827			6.525					
Hvdrolvzable Phosphate (mg/l)	0.0035			2.774			2.066			1		1
Field Parameters Measured with Selective Prol	elective Probe	bes or Meters	(Geovation	(Geovation Engineering, P.C)	P.C.)							
Dissolved Oxygen (DO) in ma/l	3.41	1.06	1.78	2.5	1.6	2.88	0.5	0.13	1.4	0.15	0.25	0.23
Total Dissolved Solids (ma/l)	518	31.500	4.700	30,300	5,390	20,700	25	14,890	39,900	31,200	17,010	32,100
Ha	7.44	5.82	6.25	6.04	5.92	6.6	6.09	5.2	5.98	5.86	5.68	6.1
Temperature (oC)	15	15.4	14.9	15.3	15.4	15.5	14.8	16	19.8	18.2	12.22	15.5
Conductivity (uS)	1,037	63,200	16,600	60,000	10,680	41,500	49	29,500	79,800	62,700	34,500	64,500
Eh / Redox Potential (mv)	-23	-12.9	-240.1	-342.1	-11.6	-21.8	-18.1	-50.2	-46.9	-87.8	**-72.2	-
Microbiological Data: Direct Bacteria Counts vi	ia Counts via	ia Epi-Fluorescent Microscopy	cent Micros	copy								
Average Population (cells/ml)	7.59E+05			5.07E+07			1.15E+08			5.16E+07		1.81E+08
Metals via SW 846 (mg/l)												
Iron	1			7.5			7.7			21		19
Manganese				0.68			3.2			2.3		5.5
Bicarbonate Alkalinity (ppm)				1600			4500			12000		9600
Volatile Organic Compounds via EPA Method		8021 (ug/l)										
Benzene	ND			ND			ND			DN		QN
Toluene	QN			QN			QN			QN		ΟN
Ethylbenzene	QN			QN			QN			QN		QN
M&P Xylenes	QN			QN			QN			QN		QN
O-Xylenes	QN			QN			QN			QN		QN
Acetone	QN			249			147			Q		175
Carbon Disulfide	QN			QN			ΟN			QN		QN
2-Butanone	ΟN			QN			ND			QN		478
Chloroform	22			QN			QN			QN		QN
Methylene Choride	QN			Q			Q			Q		QN
1,1,1-1 richloroethane	QN			Q			QN			Q		QN
1, 1, 2- Irichloroethane	QN			Q			Q			Q		Q
1,1-dichoroethane	QN			Q			Q			Q		Q
1,1-dicnoroethene	ON :			Q			QN :			Q :		Q
1, 2-dicnioroetnane	ON O			Q			Q I			Q		QN
cis-1,2 - Dichloroethene	2,600			ַת י			1			Q !		Q !
trans-1,2-Dicnoroetnene	4			N I	Ī		D I			R :		
I etrachioroethene	48			N			N.			N		N
I richoroethene	5,5UU			QN			F			QN		QN
Vinyl Choride	QN			Q			Q			Q		Q
	2			1 000	T		3 100			730		200
	NU		1	4,003	1		0,400			007		067
Irace Gases (ug/l)	4			<u>í</u>			Ú,			Ĺ		ú,
cularie Fitt												
Etnene							Q (9		Q
Methane	QN			QN			QN			QN		QN

Ground-Water Bi V	Vater Biore WN-2	0										
Well Location Relative to Source	Control											
Well Sampled	MVV-11											
Parameters Measured by EPA Method SW-846 or	od SW-846 or											
Nitrate (mg/l)	2.4994											
Nitrite (mg/l)	0.0216											
Total NO3 + NO2	2.521	H		76/67			3.2001			1091.0		10607
Ammonium (mg/l)				0.2272			0.0404			0.1265		0.1136
Ormopriospriate (mg/i) Hvdrolvzable Phosohate (mg/l)	0.004			0.0408			0.0314			0.124		0.0114
Field Parameters Measured with Selective Probes or Meters (Geovation Engineering, P.C.)	lective Probe	s or Meters (Geovation	Engineering,	P.C.)							
Dissolved Oxygen (DO) in ma/l	3.05	6.67	5.61	7.1	7.52	8.33	0.46	4.43	5.27	6.21	5.51	5.25
Total Dissolved Solids (mg/l)	299	189	206	1	424	339	491	308	476	465	518	274
Hd	7.76	6.86	7.32	7.3	6.98	7.12	7.66	6.64	7.02	6.63	2	7.23
Temperature (oC)	14.2	13.8	14	14.7	14	13.98	13.2	13.7	14	14	13.9	14.6
Conductivity (uS)	599	403	422	1	856	680	978	588	939	932	1,040	546
Eh / Redox Potential (mv)		57.8	-76.9	34.3	17.4	18.2	-137.6	-43.5	28.2	2.8	**2.3	1
Microbiological Data: Direct Bacteria Counts		via Epi-Fluorescent Microscopy	cent Micros	copy	ľ							
Average Population (cells/ml)												
Metals via SW 846 (mg/l)												
Iron	0.06			QN			0.29			Q		ND
Manganese	QN			<.01			UN			QN		DN
Bicarbonate Alkalinity (ppm)				150.00			160.00			160.00		130.00
Volatile Organic Compounds via EPA Method		8021 (ug/l)			Ĩ					Ĩ		
Benzene	QN			QN			QN			QN		DN
Toluene	QN			QN			QN			QN		ΩN
Ethylbenzene	Q			QN			QN			Q		ΩN
M&P Xylenes	Q :			Q			Q !			Q (ON 2
U-Aylenes			T		T					2 £		
Acetorie Carbon Disulfida		Î	T									
Calibori Disuinde 2-Butanone												
Chloroform	UN UN			UN UN			CN CN			C N		ON UN
Methylene Choride	9			Q			QN			QN		QN
1,1,1-Trichloroethane	QN			ΩN			DN			QN		DN
1, 1, 2- Trichloroethane	QN			DN			ND			QN		ΩN
1, 1-dichoroethane	QN			QN			QN			QN		ΟN
1,1-dichoroethene	QN			QN			QN			QN		ND
1,2-dichloroethane	QN			QN			QN			Q		ON
cis-1,2 - Dichloroethene	260			307			535			217		264
trans-1, 2-Uichoroethene	; م		Ī	QN	T	T						Q V
letrachioroethene	4			<u>م</u>	T	T	Σ			200		<u>ا</u> م
Vinul Charida	040 240	T	T	774			000 ^[]			₹		6 <u>7</u>
	R									N		ND
VOC TICs	QN			QN			QN			Q		ND
Trace Gases (uo/l)												
Ethane	QN	ľ		QN			QN			QN		QN
Ethene	QN			QN			QN			0.03		0.03
Methane	1.50			1.80			1.80			0.38		0.45

3. RESULTS

This demonstration project had several objectives, out of necessity, as it was difficult prior to the study to predict the rates of the reaction of the native biological community at the site to SRCTM substrate and nutrient enrichment. This was made more difficult by the uncertainties involved with the transport of these products through a bedrock aquifer.

Significant impacts were not observed at monitoring location MW-24, which was located at a considerable distance from the treatment areas; therefore, discussion of the results obtained in this well are not included in this report. However, all data obtained from this well during the project has been included. These results indicate that MW-24 is located beyond the distance that the treatment areas could impact within one year.

Creation of Anaerobic and Reducing Conditions

The first objective of this project was to use SRCTM to create anaerobic and reducing conditions in the subsurface. These geochemical conditions set the stage for the biological reduction of chlorinated compounds. Review of dissolved oxygen values in both the source area and the barrier area indicate that DO concentrations generally remained very low during the project, which indicates anaerobic conditions were achieved (Tables 2 and 3). The exception to this observation is the measurement of some low levels of dissolved oxygen in the barrier area in monitoring well MW-19 near the end of the project (further discussed below). In the source area, the DO concentrations of the control wells also changed in a similar response to that of the targeted monitoring wells. This may indicate that control well MW-17 was not outside the influence of SRCTM additions, or it may indicate that DO concentrations in control well MW-11 changed very little, which supported the view that reductions in DO were achieved via the addition of SRCTM product.

Baseline redox potential conditions showed that the source area exhibited preexisting negative eH values. In this area, Geovation's SRC[™] product was helpful at maintaining these conditions in both target ground water monitoring wells for the duration of the project (Table 2). Comparison of these results to control point MW-17 indicates that ground water in the source area is likely to have remained negative without SRCTM additions. In the barrier area, monitoring well MW-25 is located closer to the treatment wells than is MW-19 (Figure 2). In MW-25, eH values became negative after approximately one month of the application of SRCTM product and remained negative for the duration of the project (Table 3). Farther away, at location MW-19, eH values were observed to slowly decrease in response to the application of SRCTM product and became negative after four months of SRC[™] treatment. The eH values remained negative for approximately three months and then varied between slightly negative and slightly positive for the duration of the project. During this time period, there was some reduction in Geovation's ability to introduce SRCTM product in the desired quantities into the treatment wells up gradient of MW-25 and MW-19. It is this reduction in the amounts of SRC[™] added to the barrier area (Table 1), combined with the greater distance from the treatment wells compared to MW-25, that likely allowed the concentration of dissolved oxygen and redox potential to increase in MW-19 during the final portion of the project. Data obtained from the control point MW-11 indicates that there was considerable natural variation in the redox values of the ground water. Based on this observation of the natural variation in control point MW-11, the consistently negative redox potential measurements obtained from monitoring point MW-25 indicate that addition of SRCTM in the barrier area was successful at creating and maintaining anaerobic and reducing conditions.

It also is noted that due to a malfunction of the redox probe during the last two, and a portion of the last third, sampling events, there is no comparable redox data for these events (Tables 2 and 3).

Increased Biological Activity

The second objective of this pilot project was to measure increased biological activity in response to SRC[™] additions. Biological activity was measured both directly and indirectly. Direct counts of microorganisms in ground water by epi-fluorescent light microscopy (DAPI counts) generally increased in the source area, with cell concentrations measured at one to two orders of magnitude above baseline in MW-12 and MW-18 (Table 2 and Figure 3 – Source Area).

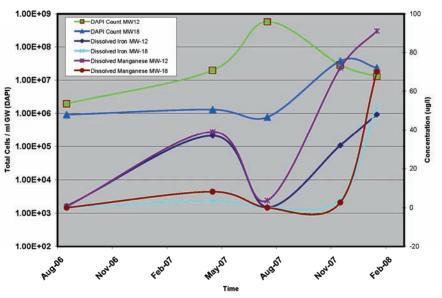


Figure 3 - Source DAPI Counts and Dissolved Metals

In the barrier area, the measured microorganism cell concentrations first increased, then subsequently decreased. As discussed above, in the barrier area, near the end of the study period, Geovation's ability to introduce SRCTM product in the desired quantities into the treatment wells was reduced, and this is likely to have resulted in the decreases in cell concentrations observed in MW-19 and MW-25 (Table 3 and Figure 4 – Barrier Area). Cell concentrations in the barrier area also may have decreased in the later portion of the study as contaminant concentrations decreased. Direct cell counts were also collected in one treatment well in the source area and biobarrier area. In the treatment wells, the cell concentrations in ground water consistently increased by two to three orders of magnitude above baseline conditions (Tables 2 and 3).

Indirect measurements of biological activity included measurements of the dissolved metals iron and manganese. The concentrations of dissolved metals in the source area and barrier area were generally elevated above the baseline concentrations throughout the study (Tables 2 and 3, Figures 3 and 4). In the barrier area, the dissolved iron and manganese concentrations were generally observed to decrease near the end of the study, which is consistent with the information collected by direct microscopy counts.

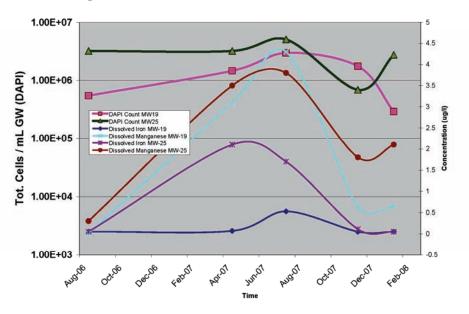
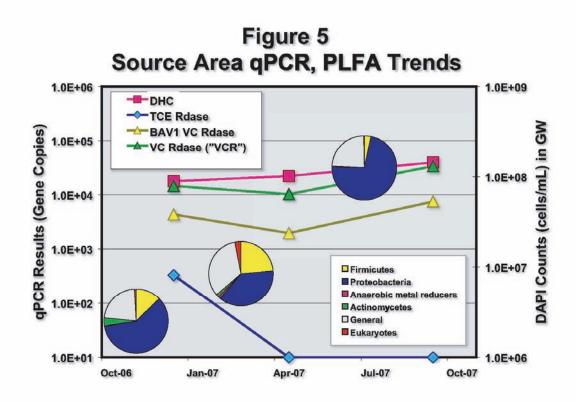
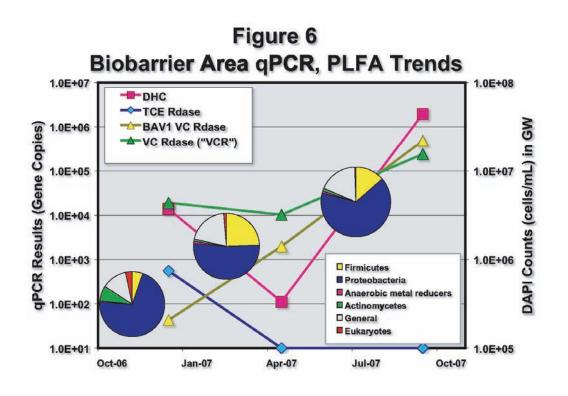
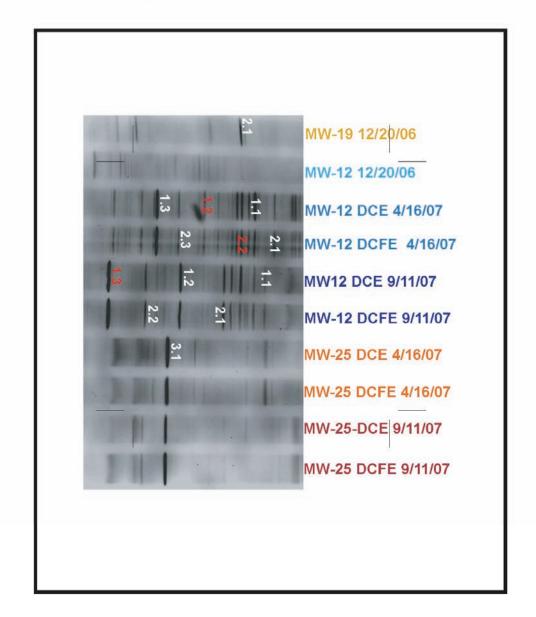



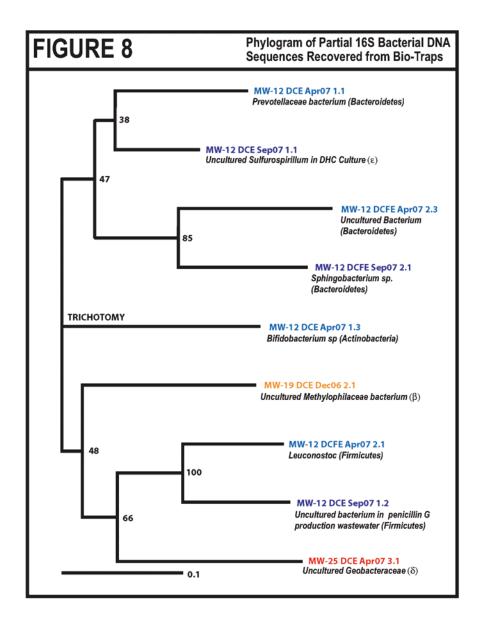
Figure 4 - Barrier Area DAPI Counts and Dissolved Metals


Additional measurements of biological activity included the results obtained from the Biotrap[®] samplers. Biotrap[®] samplers are passive samplers designed for collecting microorganisms by providing a matrix on which to grow. The Biotrap[®] samplers were suspended in monitoring well MW-12 in the source area and, at different time periods, in wells MW-19 and MW-25 in the barrier area. Biotrap[®] samplers were suspended in these wells for minimum 60-day time periods to become colonized.

Biotrap[®] samples were collected at three time points during the study: in December 2006 prior to the first SRCTM application (baseline), in April 2007, and in September 2007. The Biotrap[®] samples were analyzed for variants of phospholipids fatty acids (PLFA), which are a main component of the cell membranes of microorganisms. The PLFA profiles obtained from a sample correspond to specific groupings of organisms and reflect the composition of the microbial community in ground water. The changes in the composition of the microbial community during this project are presented on Figure 5.

A copy of the original laboratory data is provided in Appendix A. As shown on Figure 5, both the source and barrier areas were dominated by proteobacteria, which is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. Firmicutes, indicative of the presence of anaerobic fermenting bacteria (which produce the H_2 necessary for reductive dechlorination, as discussed in more detail below), were also present in both areas monitored during the pilot study. In general, the proteobacteria proportion of the community first decreased, then subsequently increased in response to SRCTM treatment. Alternatively, the firmicutes initially increased and then decreased. Eukaryotes consistently represented a small percentage of the community, and actinomycetes, which were present in the baseline sampling, significantly decreased as a percentage of the community, as the study progressed (Figure 5).


Biotrap[®] samples were also submitted for qPCR (quantitative real-time polymerase chain reaction) analysis, a molecular biological tool that can detect and quantify genetic code for specific microorganisms and metabolic enzymes. The organisms and enzymes that were targeted were *Dehalococcoides spp* (a group of bacteria known to be capable of dechlorinating PCE and/or TCE to ethene), *TCE R-Dase "tceA"* (an enzyme that is known to catalyze the dechlorination of TCE to VC), and *BAV1 VC R-Dase* and *VC R-Dase* (enzymes that are known to catalyze the direct dechlorination of VC). These target organisms and enzymes were found to be present in both the source and barrier areas, which demonstrated that the biological tools required for the contaminant degradation observed were found to be present in the biological community. A plot of the qPCR data over the three time periods is provided as Figure 6.


As shown on this figure, the amounts of these targeted enzymes generally increased in response to SRCTM treatment. Gene copies of the target organism *Dehalococcoides spp.* increased in both the source and barrier areas. Similarly, gene copies for the enzymes for VC degradation (*VC R-Dase* and *VC R-Dase*) were also observed to increase from the baseline sampling event to the October 2007 sampling event. Gene copies for the TCE degradation enzyme TCE Rdas "tceA" declined to below the analytical method detection limits during the study. However, it is likely that other enzymes were present in the microbial community and involved in TCE dechlorination, as the concentration of TCE was observed to decrease during the study and has been largely eliminated as of the completion of the pilot study in January 2008.

Samples from the Biotraps[®] were further analyzed by Denatured Gradient Gel Electrophoresis (DGGE), which is a molecular fingerprinting method that separates PCR-generated DNA products and allows further delineation of the microbiological community. The results of the DGGE analysis are shown on Figure 7.

Figure 7 Diagram of DGGE Gels

On this figure, each "band" theoretically represents a different bacterial population present in the community. Partial 16S bacterial DNA sequences were recovered from the more prominent bands to identify specific bacteria. A phylogram showing relationships of specific identified bacteria is provided as Figure 8.

Of particular interest on this chart is the identification of the Epsilon bacteria, *Sulfurospirillum*, which is a known dechlorinator of PCE and TCE to cDCE, and the identification of the Delta bacteria *Geobacteraceae*, who's family includes many of the most important/known Fe(III) reducers and many sulfate reducers. In general, DGGE analyses support the qPCR analyses, showing the clear dominance of anaerobic fermenters of a microbial community that includes known chloroethene degraders.

Based on the data collected, the application of SRCTM product was successful in increasing the biological activity at this site as indicated by: (i) the observation of increased concentrations of iron and manganese dissolved in ground water, (ii) the observation of increased direct counts of microorganisms, (iii) the observation of shifts in the biological community toward anaerobic fermenters, (iv) the observation of increased *Dehalococcoides spp.* amounts and two different microbial enzymes capable of the biodegradation of vinyl chloride, and (v) the identification of specific bacterial populations present at the site that are known to be important in bioremediation of chloroethenes.

Degradation and Reduction of Ground Water Contaminants

The third objective of this project was to measure decreases in contaminant concentrations in response to SRCTM additions. Chlorinated solvents can biodegrade in ground water under strong reducing conditions through a process known as reductive dechlorination. During this process, the chlorinated hydrocarbon is used as an electron acceptor, not as a source of carbon, and a chlorine atom is removed and replaced with a hydrogen atom. Fermentation of another source of carbon would produce H₂, which serves as the electron donor in this process. Geovation's SRCTM product provides the carbon source to accelerate this process.

Biological reductive dechlorination of solvents takes place in a series of discrete steps, with a single chlorine atom removed from the solvent molecule in each step. Tetrachloroethene is progressively converted to trichloroethene (TCE), which is converted to dichloroethene and then to chloroethene (vinyl chloride), which then further degrades to ethene gas and chloride. It should be noted that other degradation pathways do exist for these chlorinated compounds.

Contaminant concentrations are typically measured in ug/l. This measurement of concentration is based on the weight (mass) of the contaminant in a liter of water. The changes in ground water contaminant concentrations for the duration of the study are provided on Tables 2 and 3. This information is presented graphically on Figures 9 through 12.

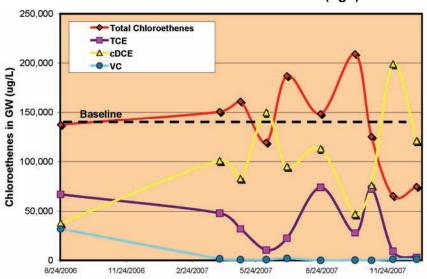


Figure 9 MW-12 Chloroethene Trends (ug/l)

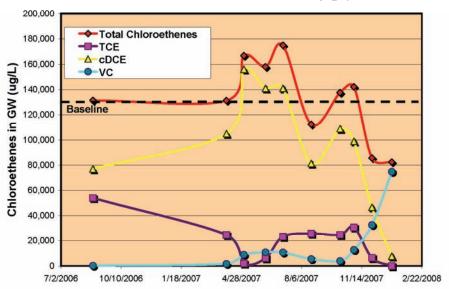
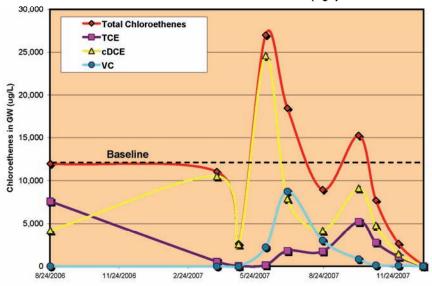
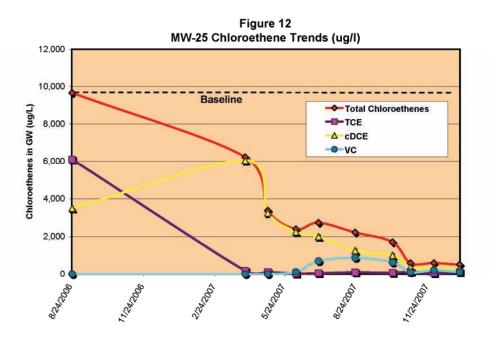




Figure 10 MW-18 Chloroethene Trends (ug/l)

Figure 11 MW-19 Chloroethene Trends (ug/l)

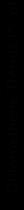
As an analytical technique, the concentrations of the family of related compounds that comprise the chloroethenes -- PCE, TCE, DCE (cis & trans), VC, and ethene -- were converted to molar concentrations to better evaluate the degradation of parent to daughter compounds. This conversion to molar concentration facilitates this understanding by looking at the changes in the amount of molecules from parent to daughter compounds, not their weights.

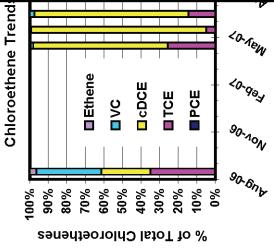
An example of the conversion of the mass concentration to molar concentration for TCE is provided below.

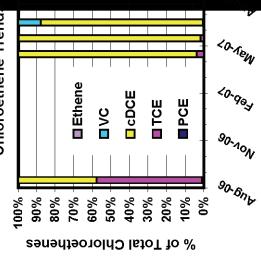
$TCE \ (moles/liter) = (TCE \ (ug/l) \ x \ (10^{-9} \ g/ug)) \ / \ (131.39 \ g \ TCE/mole \ TCE)$

where 131.39 is the molecular weight of TCE

The calculation would be the same for the daughter compounds, with the molecular weight for each of them substituted in the equation. The molar concentrations of the parent and daughter compounds were evaluated in two ways. First, the percentage of each of these constituents as percentage of the total contaminant mass (measured in each well) was calculated for each ground water sampling event, and in this way the composition of the dissolved ground water contamination was evaluated over the duration of the pilot to-date. Charts of the molar percent of contaminants for the target wells and control wells are presented as Figures 13 (source area) and 14 (barrier area).







3-11

Chloroethene Trends by Mo

WN-2 Barrie Ground-Wa

Control Well NW-11 Chlornethene Trends /% of Total

As shown on these figures, the compositions of the contaminants in the control wells (MW-17 and MW-11) have remained relatively stable throughout the pilot project. By comparison, the compositions of the contaminants in the target wells are seen to change in response to SRCTM additions as parent compounds are converted to daughters.

This comparison shows that the changes seen in the reduction of contaminants in the target wells are not the result of simple dilution of aquifer by the additions of "uncontaminated" SRCTM liquid. If simple dilution were the cause for the observed changes in contaminant concentrations, the relative composition of the contaminants should remain largely unchanged and be similar to the background composition changes observed in the control wells. Another use of these percentage composition diagrams is to emphasize the progression of the conversion of parent to daughter compounds. This alteration of contaminant chemistry is direct support for biologically mediated contaminant destruction and the success of this pilot project. The degradation of parent compounds to daughters is seen in all target wells, as the relative proportion of TCE is reduced and the proportion of cDCE increases first, followed by increases in VC and then ethene. This pattern is most clearly observed in monitoring well MW-25 (Figure 14). Baseline conditions show relatively equal proportions of TCE and cDCE in this well. Over time, the enhanced bioremediation caused by the SRCTM product is seen to first increase the proportion of cDCE present and then to sequentially initiate the degradation of cDCE and production of VC, and the degradation of VC and production of ethene gas, as predicted by the dechlorination process described above.

The second method used to evaluate the calculated mole concentration data was to directly graph the sum total of the moles of contaminant reported in ground water over time. These data are

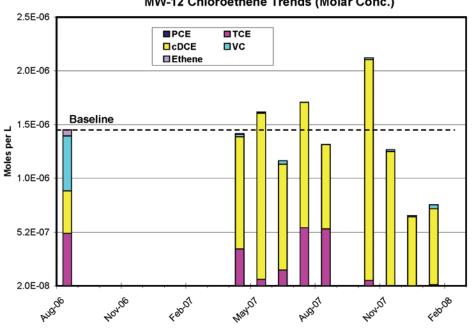


Figure 15 MW-12 Chloroethene Trends (Molar Conc.)

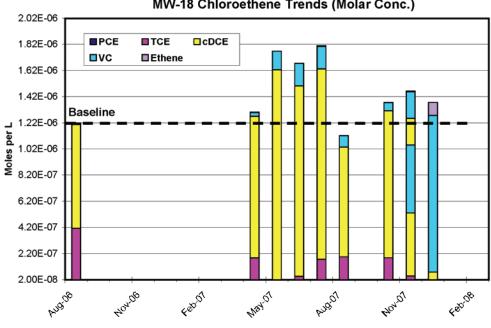


Figure 16 MW-18 Chloroethene Trends (Molar Conc.)

MW-19 Chloroethene Trends (Molar Conc.) 3.5E-07 Ethene 3.0E-07 ∎vc TCE 2.5E-07 PCE Moles per L 2.0E-07 1.5E-07 Baseline 1.0E-07 5.0E-08 0.0E+00 AUGOG MayOT AUGOT HOUDI Febros 404.06 Febrol

Figure 17

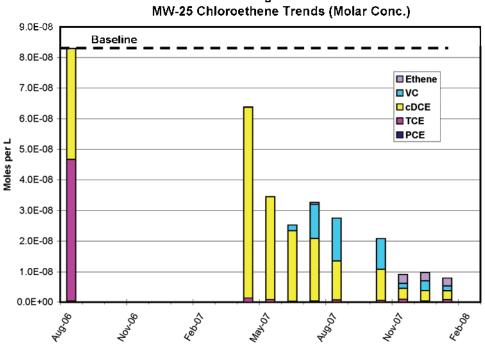


Figure 18

In these figures, rather than the bar height representing 100 percent (as in Figures 13 and 14), the bar height represents the amount of contaminants reported during each sampling event, and the amounts are vertically stacked to show the total contaminants measured during each sampling event. The left-most stacked bar on each of these charts represents the baseline conditions prior to the addition of the SRC[™]. For example, for MW-12 (Figure 15) the total mass of TCE and its daughters was comprised of about one-third each of TCE, cDCE, and vinyl chloride, with a sum total of almost 1.5×10^{-6} moles/liter contaminants. The bars to the right show the changes in the amount of dissolved contaminants over time.

It is Geovation's experience that the increase in the total amount of contaminants above the baseline values indicates some degree of natural variation in the ground water quality as well as desorption of additional source material from the bedrock matrix. It is not unusual in enhanced bioremediation studies to observe temporary increases in contaminant concentrations above baseline values, followed by a subsequent decrease. Temporary increases in the dissolved concentration of a parent or daughter compound are not an indication that the dechlorination process is not occurring. Enhanced desorption of contaminants from the aquifer matrix is a desired outcome of the bioremediation process and, furthermore, will likely be a (if not the) limiting factor in the overall success of any type of remedial process implemented at this or other sites.

Figure 15 shows that the responses to SRCTM additions in the source area near monitoring well MW-12 were a significant decrease in the amount of TCE in ground water (94% decrease over the project) and an increase in the amount of the daughter product cDCE. It should be noted that, at this location, VC was reported at an elevated concentration (32,000 ug/l) prior to the implementation of the pilot program and is being produced naturally at the site. As a result of the pilot program, VC values at this location have decreased by 92%. It also should be noted that in May and June 2007, application of SRCTM was suspended in the back area (WN-1), and instead, Geovation's N-Blend[®] nitrate-based biological nutrients were added to the subsurface in an attempt to further enhance the biodegradation of cDCE. The results of adding N-Blend[®] during these months were inconclusive, and SRCTM applications were resumed in July 2007. It is likely that this interruption of SRCTM application is responsible for the temporary increase in TCE concentrations observed in July and August 2007.

Data for MW-18, also located in the source area, are depicted in Figure 18 and show that very little vinyl chloride was present prior to the start of the pilot study (240 ug/l – too little to be visible on the chart). In response to SRCTM additions, TCE values have decreased to below the detection limit (>99.9%) and concentrations of c-DCE and vinyl chloride both increased, again demonstrating that dechlorination is occurring. Subsequently, c-DCE has declined to below baseline (a 90% removal from the baseline concentration), the VC concentration has increased, and the production of ethene has now been quantified.

In the source area, additional contaminants continue to desorb from the aquifer matrix into ground water, which renews the supply of parent compounds. In the barrier area, renewal of contaminants is limited to up-gradient supply dissolved in ground water. In the barrier area, indicators of the dechlorination of this more limited supply of parent compounds are much more evident. In MW-19, subsequent to SRCTM treatment, TCE concentrations were quickly reduced. This was accompanied with the anticipated increase in cDCE concentration and the appearance of VC (Figure 17). Ethene concentrations have not yet been observed to increase significantly; thus, it is likely being removed from the system at the same rate it is being produced (Table 3; the molar concentrations are too low to be visible on Figure 17). In MW-19, TCE concentrations have decreased by 99.6% since the initiation of the pilot study.

Monitoring well MW-25 exhibits the best dataset obtained during this study. TCE has been degraded by 98% since the initiation of the pilot. As discussed above, the complete set of dechlorination daughter products has been observed at this location, which is strong evidence of the great potential for the use of SRCTM to remediate ground water at this site. The molar chloroethene trends in MW-25 are depicted in Figure 18. The concentration of cDCE is observed to increase after the initial application of SRCTM, with production of VC measured at month five of the pilot. Ethene concentrations increase at approximately month six, and VC concentrations are observed to decrease in month nine. As of January 2008 (month twelve), total VOCs have been reduced by 94.8% on a concentration basis and 90% on a molar basis.

As noted above, the concentrations of parent compound TCE were reduced by at least 94% (by weight) in all target wells. The predicted resultant increases in the first daughter product, cDCE, were observed, and cDCE subsequently was reduced. In the barrier area, the resultant increases and reductions in the second daughter product, VC, were also observed. Based on the observed rates of contaminant reduction and daughter product creation/destruction, Geovation modeled contaminant degradation rates for TCE, cDCE, and VC (when possible). First-order degradation equations were used as follows:

$$\frac{dC_{A}}{dT} = -k_{1}C_{A}$$

where,

 $dC_A = Change$ in concentration of compound A dT = Duration of Time period over which dC_a is measured k = calculated degradation rate of compound A $C_A = Initial$ Concentration of compound A

and

$$\frac{dC_{\rm B}}{dT} = -k_2C_{\rm B} + k_{\rm A}C_{\rm A}$$

where,

 $dC_B = Change$ in concentration of compound B dT = Duration of Time period over which dC_B is measured $k_2 = calculated$ degradation rate of Compound B $C_B = Initial$ Concentration of compound B

Using these equations as the basis of a detailed analytical and numerical evaluation of the data generated, Geovation calculated degradation rates for the ground water contaminants. Curve matching of one or more selected time periods where consistent contaminant mass reductions were observed was the numerical method most often used. More detailed information on the analytical and numerical calculations is provided in Appendix B. The results of this evaluation are summarized in Table 4. As shown on Table 4, Geovation calculated a site-wide average k for TCE of 0.0426, which corresponds to an average half-life of TCE of 16 days. The site-wide average k calculated for cDCE was 0.0269, which corresponds to an average half-life of 0.011 for VC, which corresponds to a half-life of 63 days.

	k	t _{1/2}	k	t _{1/2}	k	t _{1/2}
	TCE	TCE	cDCE	cDCE	VC	VC
Well	(1/day)	(days)	(1/day)	(days)	(1/day)	(days)
Source Area						
MW-12	0.0261	27	0.02	35		
MW-18	0.081	9	0.034	20		
Average Source Area	0.05355	13	0.027	26		
Barrier Area						
MW-19	0.03135	22	0.042	17		
MW-25	0.032	22	0.0116	60	0.011	63
Average Barrier Area	0.031675	22	0.0268	26	0.011	63
Site-Wide Average	0.042613	16	0.0269	26	0.011	63

Table 4 Calculated Ground-Water Contaminant Degradation Rates Former Grant Hardware Facility - West Nyack, NY

Third Party VOC Sampling

As previously indicated, the four quarterly sampling events were witnessed by an independent third party, Environmental Management, Ltd. (EML), and spilt samples were provided to EML for independent analysis and reporting. A summary of the data obtained by EML is provided in Appendix C. In general, the sampling results obtained by EML from the laboratory correlated very well with the data obtained by Geovation. Comparison of the chloroethene results of the two data sets results in a correlation coefficient of 0.95, which indicates very consistent data sets. Several differences, however, were observed. EML's lab was able to quantify very low concentrations of additional ground water contaminants, which Geovation's lab did not identify, at concentrations above the method detection limit. As the concentrations of the chloroethene compounds of interest in this study were reported in very high concentrations -- with the exception of trans-1,2 dichloroethene, which played a minor role -- this difference in the data sets is not considered to be significant. In addition, the concentrations of the chloroethenes reported by EML's laboratory were consistently lower than those reported by Geovation's laboratory. The fact that EML's laboratory consistently reported lower concentrations of chloroethenes in ground water suggests that Geovation's data may be conservative and site conditions may be slightly better than our data indicates

4. CONCLUSIONS

Data from the barrier area supports the conclusion that the application of SRCTM product was successful in creating and maintaining anaerobic and reducing conditions. The source area was anaerobic and reducing prior to the start of the program. Although the source area remained anaerobic and reducing throughout the program, the control well also remained anaerobic and reducing, meaning that the effectiveness of SRCTM for this purpose could not be evaluated in the source area.

Reductions of total chloroethenes were observed in all target wells during the demonstration project. The primary contaminant, TCE, was reduced by more than 94% in all target wells, and a reduction of more than 93% of the daughter compound, cDCE, was achieved in the barrier area. Comparison of the contaminant concentrations in the target wells with the control points showed that the contaminant reductions were not the result of simple ground water dilution and were instead a response to SRCTM additions. Third- party split sampling of these analyses corroborated the results achieved.

Direct counts of microorganisms in treatment wells showed large increases in the biological community in response to SRCTM treatment. Responding in a similar way to ground water treatment as changes observed in microbial populations, concentrations of dissolved metals followed similar patterns and support the observation of increased microorganisms in response to SRCTM additions. Biotrap[®] samples provided additional supporting information that the biological community was responsible for the contaminant reductions. One bacteria known to degrade chloroethenes, *Dehalococcoides spp*, was identified in site ground water, and qPCR counts of this organism were seen to increase in response to SRCTM additions. In addition, qPCR identified that the DNA code for two enzymes that are capable of VC degradation were present in site ground water and also increased in response to SRCTM treatments. DGGE analysis further identified in site ground water the bacteria *Sulfurospirillum*, which is a known dechlorinator of PCE and TCE, and also identified the bacteria *Geobacteraceae*, whose family includes many of the most important known Fe(III) and sulfate reducers for bioremediation technologies.

More detailed analysis of the data obtained on contaminant reductions allowed for the calculation of the rates of contaminant degradation in the target wells. The calculated site-wide average half-life for TCE was 28 days. The average half-life of cDCE was 60 days, and in the barrier area, Geovation was able to calculate a half-life for VC of 63 days.

When combined, the data collected from multiple lines of evidence, including control points and third-party split sampling, indicate that application of SRCTM product is capable of effectively degrading site contaminants in both a source area and in a bio-barrier configuration.

Problems Identified and Planned Solutions

As discussed in the progress reports, the amount of SRCTM product that Geovation was able to apply to the subsurface at most of the treatment locations in the front area decreased throughout the duration of the project. Enzyme solutions were applied to the treatment wells on July 11, 2007, to attempt to open up some of the pore space and not negatively impact the biological communities. The results of the use of the enzymes were inconclusive, but the technology warrants a reapplication of the enzymes over a longer duration. Due to the time constraints of this demonstration project, SRCTM additions were continued, and the reapplication of enzymes will not be implemented until after the conclusion of the pilot.

Project Schedule

After a significant delay in starting the nutrient applications, the project was conducted and completed on schedule. As evident during the review of this report, the volume of data collected over the project period is significant, which resulted in a delay in the completion of this report.

Financial Report

As discussed in the progress reports, the budget for Geovation's labor and outside laboratory testing was used ahead of schedule. No funds remain in the budget. The co-funding property owner picked up the costs beyond those budgeted, which increased the co-funding obtained on this project. The success of this project most likely will result in the continued application of this bioremediation technology at this property. However, the pilot-phase demonstration project has been completed, and no further expenditures related to this phase of the project remain outstanding.

For information on other NYSERDA reports, contact:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, New York 12203-6399

> toll free: 1 (866) NYSERDA local: (518) 862-1090 fax: (518) 862-1091

> > info@nyserda.org www.nyserda.org

Co-Metabolic Bioremediation Demonstration Project

FINAL REPORT 08-19

STATE OF NEW YORK David A Paterson, Governor

NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY VINCENT A. DEIORIO, ESQ., CHAIRMAN

