
 

 

WYORK NYSERDA 
:TEOF 
ORTUNITY. 

Wood Heat and Biopower 
Life-Cycle Assessment 

Literature Review 
Final Report 

March 2017 Report Number 17-05 



 
 

 

 

NYSERDA’s Promise to New Yorkers: 
NYSERDA provides resources, expertise, 
and objective information so New Yorkers can 
make confident, informed energy decisions. 

Mission Statement: 
Advance innovative energy solutions in ways that improve New York’s economy and environment. 

Vision Statement: 
Serve as a catalyst – advancing energy innovation, technology, and investment; transforming 

New York’s economy; and empowering people to choose clean and efficient energy as part 

of their everyday lives. 



 
 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 
  

 

 
 

 

 

 

 

 

 

 

     

Wood Heat and Biopower Life-Cycle
 
Assessment Literature Review
 

Final Report 

Prepared for: 

The New York State Energy Research and Development Authority 

Albany, NY 

Judy Jarnefeld
 
Project Manager
 

Prepared by: 

Antares Group Inc. 

Lanham, MD
 

Anneliese Schmidt
 
ANTARES Project Manager
 

Chris Lindsey
 
ANTARES Principle-in-Charge
 

NYSERDA Report 17-05 NYSERDA Contract 99702 July 2017 



 

 
    

  

   

 

  

    

   

     

  

  

 

  

   

    

     

  

 

   

 

 

  

Notice
 

This report was prepared by ANTARES Group Inc. (hereafter “ANTARES”) in the course of performing 

work contracted for and sponsored by the New York State Energy Research and Development Authority 

(hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of 

NYSERDA or the State of New York, and reference to any specific product, service, process, or method 

does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, 

the State of New York, and the contractor make no warranties or representations, expressed or implied, 

as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the 

usefulness, completeness, or accuracy of any processes, methods, or other information contained, 

described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor 

make no representation that the use of any product, apparatus, process, method, or other information will 

not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting 

from, or occurring in connection with, the use of information contained, described, disclosed, or referred 

to in this report. 

NYSERDA makes every effort to provide accurate information about copyright owners and related 

matters in the reports we publish. Contractors are responsible for determining and satisfying copyright 

or other use restrictions regarding the content of reports that they write, in compliance with NYSERDA’s 

policies and federal law. If you are the copyright owner and believe a NYSERDA report has not properly 

attributed your work to you or has used it without permission, please email print@nyserda.ny.gov. 

Information contained in this document, such as web page addresses, are current at the 

time of publication. 
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1 Introduction 
This report summarizes the results of a literature review prepared for NYSERDA. The purpose of 

this effort is to review the different approaches and methodologies for life cycle assessments (LCAs) 

of woody biomass heat and power, particularly in the context of assessing the climate effects of 

bioenergy, and to provide recommendations on additional analysis or research needed to support 

policy considerations for New York State. 

NYSERDA’s goal is not to determine best use of biomass resources, but rather to understand how 

existing resources, if used to their potential, will help NYS achieve statewide goals such as renewable 

electricity mandates under the Clean Energy Standard, and greenhouse gas (GHG) reduction goals 

(e.g., New York City’s 80 x 50). This effort is intended to help NYSERDA determine how to treat 

biomass in energy guidance and understand the related issues associated with carbon accounting for 

bioenergy. In particular, to provide a primer on the issues and methods for bioenergy LCA to identify 

what is needed regarding bioenergy LCA guidance for NYS and any gaps to be addressed through 

additional research and/or analysis. 

There is an enormous amount of publicly available information on bioenergy LCAs spanning 

several decades. In order to cull the material to a manageable and useful level, the review is focused 

on information relevant to NYSERDA’s current needs. The first consideration is gearing NYSERDA’s 

work in this area toward policy and decision-making efforts. Furthermore, since this is intended as a 

guidance document for shaping additional analysis, it is important to focus on the approaches that 

make sense for the State. That said, other approaches and options are still considered and summarized  

for context. Although LCAs can include a wide range of environmental and social factors, GHGs are the 

primary component of interest to NYSERDA. The focus is on applicable technologies and feedstocks that 

are, or will be, commercially available in the near-term (five to 10 years), although policy relevance may 

extend further (20 years or more). 
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The report is based on a review of publicly available documents including journal articles and academic 

papers, research papers, governmental reports, and sustainability standards. In addition to the 

considerations described above, the documents reviewed were generally limited by the following criteria: 

•	 Publicly available documents in English, published 2005 or later (although some older
 
documents were included if relevant).
 

•	 Documents specifically discuss LCAs for bioenergy, and include evaluation of GHGs. 
•	 Applicable feedstocks are woody biomass resources, particularly the types of resources 

with significant near-term availability in NYS. 
•	 Applicable conversion technologies are commercially available biomass power and heat 

conversion technologies pertinent to NYS. Biofuel conversion technologies are not included 
in this report. However, since there is overlap in the biomass feedstock components, some 
of the literature does discuss biofuels. 

Selected papers are a comprehensive cross section of available documentation meeting the criteria 

above. These materials were identified from searches in the following sources: ANTARES internal 

library, internet (Google, Google Scholar), and publisher databases (e.g., Wiley). Additional 

documents were included based on recommendations from subcontractors who are experts in the field. 

Chapter 2 provides a summary of biomass resources and bioenergy technologies applicable to NYS 

for context. Chapter 3 summarizes the relevant policy considerations for bioenergy life cycle impacts 

in the State and the U.S., including an overview of the U.S. Environmental Protection Agency (EPA) 

Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, which is under development. 

A qualitative discussion of the approaches, methodologies, and inputs for LCA studies is provided in 

Chapter 4. The extensive variation in analysis methods and inputs contributes to the differences in results 

seen in LCA studies. Analysis inputs that can have a tremendous impact in results include the geographic 

scope and spatial scale, timeframe for analysis, bioenergy technology mix and counterfactual energy 

system, biomass feedstock, land use impacts, and local forest management and industry practices. 

These are characterized and discussed throughout the report. Chapter 5 provides a summary of the 

LCA considerations that have general agreement as well as those that do not, and a discussion of the 

areas with ongoing debate. Recommendations are provided in Chapter 6. 
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1.1 Limitations and Exceptions 

As previously noted, this study was completed by reviewing existing literature on biomass and bioenergy 

LCAs. No original analyses were performed in this effort, and no attempt was made to compile or align 

LCA results from various sources. 

Only woody biomass resources were considered in the study—other feedstock types are not included. 

Furthermore, the review was focused on consideration of direct GHG impacts associated with bioenergy 

(particularly CO2, CH4, and N2O), following NYSERDA’s objectives and direction. Other types of 

emissions (e.g., GHG precursors, black carbon, or criteria pollutants) are not often factored into LCAs 

and therefore not covered in detail. This study also does not cover other impact categories that are 

periodically included in LCAs, such as other environmental factors, biodiversity, or socioeconomic 

considerations. 

It is important to note that results from specific papers are included in a few of the sections for illustrative 

purposes. Such examples not intended as an endorsement of a particular analysis or a critique of the 

methods or results presented.  
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2 New York State Context 
This chapter reviews the current policy environment supporting biomass heat and power generation 

in the State, provides an overview of available biomass fuels, and describes commercial energy 

conversion technologies. 

2.1	 Policies Related to Biomass Energy Development in 
New York State 

Governor Andrew M. Cuomo’s Reforming the Energy Vision Initiative is a comprehensive energy 

strategy designed to spur clean energy innovation and align energy markets with the regulatory landscape 

to promote more efficient energy use, increase reliance on renewable energy resources, and deploy 

distributed energy resources and energy storage technologies (NYS Department of Public Service 2016). 

Governor Cuomo’s Office initiated a number of programs and policies designed to help meet the goals 

outlined in the Reforming the Energy Vision. Among these is the Clean Energy Standard (CES). The 

New York Public Service Commission (PSC) recently approved the CES, which requires that 50% of 

the State’s electricity come from renewable energy resources by 2030. Tier 1 of the program requires 

load serving entities to procure new renewable resources on an incremental basis. The PSC order 

adopting the CES suggests that resources eligible to meet the Tier 1 requirement will mirror eligibility 

rules for the main Tier of the Renewable Portfolio Standard (RPS), which includes biogas, biomass, 

and liquid biofuels (Voegele 2016). Section 2.2 summarizes the eligibility rules related to biomass 

technology/fuel combinations. Note that for cogeneration projects, only the renewable electric 

generation is eligible, as the CES does not include thermal energy resources. 

The New York Department of Public Service (DPS) issued a white paper analyzing the cost implications 

of the State’s CES on electric prices in April 2016 (New York State Department of Public Service 2016). 

Projections of the post-2015 Tier 1 deployment of large-scale renewable power generation by technology, 

including biomass, were key elements used to estimate the costs and benefits of implementation of the 

CES. The study evaluated possible scenarios for repowered fossil fuel power plants and greenfield 

biomass Integrated Gasification Combined Cycle (IGCC) projects. Figure 1 shows a projected 

increase in biomass power capacity of 89 MW by 2023 in New York State. 
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Figure 1. Projected Post-2015 Tier 1 Bioenergy Technology Deployment – Cumulative Increase 
(MW) 

Source: (New York State Department of Public Service 2016) 
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The scenarios examined model project locations within individual NYISO regions, taking into account 

access to biomass fuels, locations of potential repowering projects, development lead times and other 

factors. New biomass power plants under this projection would produce an estimated 590 gigawatt-hours 

(GWh) of new renewable electric generation. This represents 5% of the 12,365 GWh targeted for the 

Tier 1 program by 2023 (New York State Department of Public Service 2016). Therefore, biomass 

energy is expected to play a small but significant role in meeting overall renewable energy goals for 

New York State. 

The biomass technologies chosen in the DPS study on large-scale renewable deployment differ 

from those that make up the bulk of existing biomass power capacity today, and were selected on 

the assumption that these options have a greater likelihood to be permitted and be economically viable. 

For greenfield projects, the study focused on gasification technologies, specifically IGCC. Direct-fired 

biomass projects were also considered for repowering. This does not preclude development of projects 

using other, currently commercial technologies that may meet permitting/regulatory requirements and 

provide reliable and economical power. Among these other technologies are greenfield direct-fired or 
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fluidized bed combustion, cofiring, and Combined Heat and Power (CHP) projects. These technologies 

are currently eligible for participation under the New York State RPS program, subject to eligibility 

requirements promulgated by the PSC, and appear likely to remain eligible under the CES, at least 

in the short term. 

NYSERDA also supports the development of biomass thermal energy applications through research and 

development and market conditioning programs such as the Renewable Heat New York Program. This 

program seeks to recruit installers to participate in an incentive program (Program Opportunity Notice 

3010) designed to install pellet and advanced cordwood boilers with thermal storage to residential and 

commercial customers (NYSERDA 2015). NYSERDA also offers incentives for installation of qualified 

wood pellet stoves. 

Municipal governments in NYS have also enacted policies that affect the potential for biomass and 

other renewable energy sources. New York City’s announced commitment for an 80% reduction in 

GHG emissions by 2050 relative to 2005 (known as 80 x 50) could have implications for the deployment 

of new, advanced technology biomass power and CHP systems to replace older in-city power stations.1 

The City is in the process of evaluating ways in which the efficiency, reliability, and GHG benefits of 

new in-city power generation may be valued under NYISO, State and federal regulations to eliminate 

financial hurdles to implementing these types of projects (City of New York). 

While there are no federal requirements imposed on energy service providers to sell or generate heat 

or power using biomass, there are federal agency requirements to utilize renewable energy (including 

biomass) and decrease GHG intensity. These policies have direct roles in the development of biomass 

energy facilities, such as the ReEnergy-owned and operated 60 MW biomass power facility in Fort 

Drum, NY. The U.S. Defense Logistics Agency signed a 20-year contract with ReEnergy in 2014 to 

supply power to their military installation at Fort Drum (ReEnergy Holdings 2014). The 2007 National 

Defense Authorization Act called for a quarter of the energy used by the U.S. Department of Defense 

to come from renewable sources by 2025 (Block 2015).  

Note that strict emissions regulations in NYC would likely limit development of direct fired solid biomass projects, 
but gasification technologies with low emissions may be feasible to some extent. Furthermore, other types of biomass 
such as anaerobic digestion of recovered organic waste materials and wastewater could be used to address multiple 
goals simultaneously (distributed renewable energy generation, GHG emissions reductions, and resource recovery), 
although they are outside of the scope of this study. 
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Federal efforts under the EPA Clean Power Plan (CPP) to reduce carbon emissions from power plants 

also have implications for the future of biomass energy. While the implementation of the CPP stalled 

while State-sponsored litigation against it is being resolved, the EPA developed a draft accounting 

framework that would factor in the impacts of biomass utilization on above- and below-ground carbon 

sequestration and link that to the net atmospheric carbon benefits of biomass energy. Section 3 discusses 

this effort and the future of the rulemaking process in detail. 

2.2 Biomass Fuels – an Overview 

Specific biomass feedstocks used for energy production have a big impact on the LCA results and 

GHG emissions profiles. This section provides a summary of the types of resources considered in 

this study –feedstocks applicable to bioenergy production in New York State in the near term. 

2.2.1 Resource Types of Interest 

There are a variety of wood biomass resources that contribute to a reliable, sustainable biomass fuel 

supply for biomass heating and power generation. These include various forest-derived biomass materials 

as well as urban wood that meets eligibility criteria with some restrictions under the New York RPS/CES. 

Energy crops such as short-rotation woody crops (e.g., willow and poplar) are also of interest, but due to 

the time required to develop a willow supply, it is unlikely these resources could be available in 

significant quantities within the five to 10 year timeframe of interest for this study.2 

The specific eligible unadulterated wood biomass sources under the above policy regime includes 

(NYSERDA 2014): 

•	 Harvested wood (from commercial harvesting) 
•	 Silvicultural waste wood 
•	 Mill residues 
•	 Site conversion waste wood (wood from clearing forestland for development) 
•	 Unadulterated source-separated wood from municipal solid waste or Construction and 


Demolition (C&D) debris
 
•	 Clean recovered C&D wood from a material recovery facility or C&D processing facility 
•	 Energy crops 

Although there are already some existing willow biomass resources in the State that are used for energy generation, 
they make up a very small proportion of the total current resource. 

7 
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Harvested wood or silvicultural waste wood must be harvested in accordance with the end user facility’s 

forest management plan to be considered eligible biomass under the RPS. According to the New York 

State RPS Biomass Power Guide, the plan must specify how the forest management practices contribute 

to conservation of biological diversity, maintain forest productivity and promote forest health 

(NYSERDA 2014). There are also additional hurdles that must be met for clean wood separated from 

C&D waste materials from a material recovery facility or C&D facility to be categorized as an 

unadulterated biomass resource. 

Adulterated biomass, including paper, paperboard, yard waste, plywood and particle board, and other 

adulterated wood waste must undergo a primary conversion to a liquid or gaseous fuel in order to be 

eligible (NYSERDA 2014). As this effort is focused on unadulterated biomass, these other wood 

waste materials will not be covered in detail here. 

2.2.2 Characterization of NY Forests and Resources in Context of LCAs 

New York State’s forest resource includes 19 million acres of forest land, about 63% of the total area of 

the State of New York. Approximately 16 million acres of forest land (84%) in New York is classified as 

timberland (i.e., “forest land that is producing or is capable of producing crops of industrial wood and not 

withdrawn from timber utilization by statute or administrative regulation,” as defined by (USDA Forest 

Service 2016), while approximately 3 million acres (16%) are reserved from harvest, primarily in the 

Adirondack and Catskill Preserve. Areas in the Adirondacks have the highest proportion of forest land 

(>70%) while the largely agricultural Lake Plain region of the State has the lowest percent forest cover 

at 40% (U.S. Department of Agriculture Forest Service 2015). Hardwood forests make up the majority 

of the forested area in the State. The most common forest type group is maple/beech/birch, making up 

53% of the forest land area while oak/hickory forest type groups make up 19% of the forest land area 

(U.S. Department of Agriculture Forest Service 2015). Important conifer species include eastern white 

and red pine and hemlock.  

Most active forest management that results in the generation of forest products including biomass 

comes from private land. According to the latest forest inventory report for NYS from the U.S. 

Department of Agriculture Forest Service, approximately 75% of the forest land in the State is 

privately owned (U.S. Department of Agriculture Forest Service 2015). 
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Figure 2. Forest Ownership Distribution Map 

Image Source: (U.S. Department of Agriculture Forest Service 2015) 

Landowner preferences and parcel size affect the likelihood that timber harvesting will take place on 

forest land in the State. While there is no absolute cut-off point in terms of parcel sizes for which active 

management can be performed cost-effectively, forests owned by large corporations and larger parcels 

are more likely to be managed for timber production. Based on information from U.S. Department of 

Agriculture Forest Service (2015), corporations own about 2.7 million acres of forest land (14% of the 

total) and family forest owners own 10.8 million acres (57% of the total). An additional 4% of private 

forest land is owned by nonfamily partnerships, non-governmental organizations, and tribal land. The 

remainder (25%) is public land. The majority of the private landowners in the State (588,000 +/- 133,000) 

are small landowners owning at least one, but less than 10 acres. Combined, these small landowners own 

only 1.6 million acres (+/- 249,000) of forest land, which is about 5% of the total in NYS. There are 

another 200,000 landowners that each own at least 10 acres of forest land; their combined total ownership 

covers 9.3 million acres, which is about half of the forest land in the State. 
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About 24% of forest landowners in the State rate timber production as important or very important 

reasons for owning forest land. Forest land near urban areas often is owned for other reasons such as 

recreation, wildlife habitat, water resources protection etc. In these areas, urban wood from construction 

debris and tree trimming can be significant potential sources of biomass feedstocks. In many cases, 

biomass fuel users would need to compete with landscaping markets for these materials. 

Of the 4.1 million acres of forest land owned by the State, 2.6 million acres are contained within the 

Adirondack Park, part of a six-million-acre patchwork of public and private lands in Northern New 

York known as the Adirondack Preserve. The Catskill Park consists of another 286,000 acres within 

a larger area known as the Catskill Preserve. The remaining public land is held by the State or federal 

government and is professionally managed. Together the Adirondack Forest Preserve and Catskill 

Forest Preserve (the State-owned portions of the respective Parks) make up the State’s Forest Preserve 

and are protected as forever wild due to their ecological, scenic, and recreational value (New York State 

Department of Environmental Conservation n.d.). However, a significant amount of active forest 

management occurs on private land in the Adirondack Preserve. 

Overall, annual forest growth is 2.1 times current annual removals on timberland in NYS (U.S. 

Department of Agriculture Forest Service 2015). There is potential for forest management to 

improve value and increase the sustainable flow of timber products from forests in the State. Only 

9% of family forest owners with parcels greater than 10 acres have forest management plans in place 

(U.S. Department of Agriculture Forest Service 2015). This is an indication of significant potential 

for improved forest management. However, there are site-specific technical and other challenges to 

improving forest management in NYS. Topography can be uneven and steep, increasing logging costs 

and posing challenges for pre-commercial thinning designed to optimize growth. Topography also 

limits the extent of plantation forestry. Landowner preferences also play a significant role in determining 

the realistic potential for improved forest management in NYS. Not all landowners are willing to pay 

extra to optimize forest productivity on their land for a variety of reasons, among them the long payback 

period on this investment. Revenue from the sales of forest products may not cover all of the up-front 

costs of forest management. 
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Analysis of the life-cycle carbon impacts of different timberland management strategies in the 

Southeastern U.S. suggests that forest management designed to increase forest productivity on 

commercial timberland while providing a steady stream of biomass has the potential to improve 

forest carbon sequestration compared to other biomass sources (Stephenson 2014). Timberland 

improvement activities could also improve the carbon implications of forest biomass utilization, 

although there are significant differences between the two regions in terms of forest types, climate, 

management regimes and other factors that combined make the potential for greater forest productivity 

in the Southern U.S. greater overall than in NYS.  

Management strategies need to be tailored to specific forest types and forest management practices. 

Additional work is needed to develop guidance on which management practices can optimize both 

GHG and economic outcomes for forest landowners and managers in the U.S. Northeast. Realizing 

this opportunity is likely a long-term effort. Investment in forest productivity also pays dividends in 

terms of maintaining forest land values. This helps keep land in forest cover and can reduce the rate 

of forest land conversion to other uses (Miner 2014). An estimated 331,000 acres of forestland was 

lost to non-forest uses between 2007 and 2012 in the State (U.S. Department of Agriculture Forest 

Service 2015). 

Comparing NYS to other areas of the U.S. where industrial timber management is the norm helps put 

the opportunity for improved management in the State in context. The percentage of forest landowners in 

the U.S. Southeast that view timber management as a primary purpose for owning land is approximately 

80%. By comparison, the value for NYS is 24%. Forest landowner motivations and drivers for managing 

their land are significantly different than in areas like the southeastern U.S., which has an impact on 

forestry investments. A significant commitment and effort would be needed to convince large numbers 

of small forest landowners, who manage land for other purposes, that increased carbon sequestration 

fits in with their management vision for their property. In the past, universities and the New York State 

Department of Environmental Conservation (DEC) had limited success with this type of outreach, in 

part due to limited resources and a lack of financial incentives for landowners. There is no guarantee 

of success even with an increase in commitment of resources, and outcomes will only be evident over 

the long term. 
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City: Unadilla City: Stamford 

City: Addison 

\ 
City: Deposit 

JL 

Existing biomass fuel consumers include residential and commercial firewood and pellet fuel users and 

biomass power and combined heat and power generation facilities. Firewood is produced using smaller 

low-grade trees that are harvested along with higher value timber or from land clearing operations. While 

some pellet fuels are sourced from out-of-state, a majority of the demand for pellet fuels and firewood is 

met using wood sourced from NYS. Figure 3 shows nine pellet mill operations, four of which border the 

Adirondack Preserve, and the rest distributed in the southern portion of the State. Note that the production 

capacities of these pellet mills vary significantly, ranging from around 1,000 tons per year up to more 

than 100,000 tons/year (Biomass Magazine 2016). The majority of the pellets produced in the State are 

hardwood pellets destined for residential markets, although mills with access to port facilities have the 

potential for export as well. Pellet mills rely largely on a combination of mill residuals, including sawdust 

and chips, and forest biomass for their feedstock supply. Biomass power generation and CHP generation 

facilities in the State rely on residues from sawmills, logging operations, and chipped or ground 

noncommercial3 trees for their fuel supplies. 

Figure 3. Existing Pellet Mill Operations in NYS 

Noncommercial in this context refers to trees that are unsuitable for higher-value uses such as lumber. 
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2.2.3 Biomass Resource Availability 

In 2013, NYSERDA published an assessment of biomass availability that considered forest and urban 

resources by county, including the following: 

• Forest based biomass (hardwood and softwood) 
• C&D wood 
• Willow (future cultivated crop) 

Forest Biomass. Potentially available forest biomass includes: logging residues, biomass from land 

clearing operations, harvest of noncommercial tree species, and commercial timber. Cornell University 

and SUNY College of Environmental Science and Forestry developed estimates of the total potential 

forest biomass resource in support of the Renewable Fuels Roadmap. That roadmap effort was led by 

Pace University under contract to NYSERDA (Pace University Energy and Climate Center 2010). Each 

biomass category is available at different price points. Merchantable biomass includes pulpwood, which 

is at the high end of value for this supply.  

The results of the Pace 2013 study indicated that there are 15.8 million acres in the state where wood 

biomass could be harvested. Further, a total of 8.1 million oven dry tons (ODT)4 are technically available 

and could be sustainably harvested per year in NYS, but when an estimate of landowner interest in forest 

management is factored in, the potentially harvestable biomass in NYS drops to 4.3 million ODT 

(Table 1). Though shown in terms of ODT, forest resources are typically sold as a green wood fuel, 

with an estimated moisture content of 45%. 

Table 1. New York Total Potentially Harvestable Forest Biomass 

Forest Biomass Million ODT per 
Year (2012) 

Total Potentially Available 4.3 
Portion from merchantable wood (up to pulpwood quality) 2.3 
Portion from noncommercial species 1.4 
Portion from logging residue and other recoverable 0.5 

Oven dry tons is used to indicate a 0% moisture content. This unit is used so that biomass materials are compared 
on an equal level, since the moisture content affects weight and energy value of the material. 
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¾ of ¾ of Waste 
TottJIC&D Wood Type Wood Only 

9.1% Untreated/ 27% Unpainted 

Non-Wood 2.4% Pallets & Crates 7% 

Portion of C&D 8.1% Engineered 24% 

6.5% Painted/Stained 19% 

1.6% Pressure-Treated 5% 
0.3% Wood Furniture 1% 
6.0% Other Wood 18% 

Construction and Demolition (C&D) Wood. The C&D Wood waste stream composition was estimated 

based on the DEC Beyond Waste materials management study (New York State Climate Action Council 

2010) as well as the DEC C&D Composition Analysis (NYSERDA 2015). The total NYS C&D waste 

stream has been estimated by these studies at 13 million as-received tons (11 million ODT assuming 

15% moisture content) per year. The wood waste portion of this C&D stream has been characterized 

as roughly 15 to 20% statewide, or 1.9 to 2.6 million as-received tons per year (1.6 to 2.2 million ODT 

per year assuming 15% moisture content) based on the same studies. The detailed makeup of the wood 

waste stream in Figure 4 was taken from a study conducted by DSM Environmental for the Massachusetts 

Department of Environmental Protection (DSM Environmental Services, Inc. 2008). This study includes 

a detailed characterization of both the C&D waste stream and a breakdown of the wood component of 

this stream for Massachusetts; NYS is assumed to have a similar C&D composition. 

Figure 4. Characterization of C&D Waste Stream and Woody Sub-Segment by Weight 

It is assumed that the eligible portions of the wood waste stream that contribute to the eligible biomass 

resources in NYS include “untreated/unpainted” wood and “pallets & crates,” which make up 34% 

of the wood waste stream combined. This would be approximately 0.56 to 0.75 million ODT of 

C&D wood. Additional material could potentially be used for gasification, as the current RPS 

regulation allows for a wider range of fuels to be used in these facilities, subject to a specific 

comparative emission test. Therefore, some additional portion of the approximately 42% of the 

C&D wood waste could potentially be utilized for energy generation if gasification technology is 

commercialized (e.g., IGCC), which represents approximately 0.7 to 0.9 million ODT of potential 

biomass fuel per year. The average as-received moisture content of C&D wood is approximately 15%. 

Not all of this material can be considered recoverable and available for use due to potential issues with 

commingling with other waste. 
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Wood Energy Crops. Short rotation willow and poplar crops are a potential future resource for 

bioenergy production. Based on the results of an assessment performed by Cornell University and 

SUNY College of Environmental Science and Forestry for the Renewable Fuels Roadmap (Pace 

University Energy and Climate Center 2010), the total annual wood energy crop potential in New 

York statewide is 2.1 million ODT. These results are based on an assessment of sustainable production 

of willow on potentially available lands currently in herbaceous (non-forest) cover, with yields applicable 

to local soil and climate data, assuming a three-year harvest cycle. There are currently only 1,200 acres of 

willow being grown in NYS. Biomass from these fields is being used in the Black River and Lyonsdale 

power plants. Extensive landowner outreach and education would be required to deploy wood energy 

crop systems. It is likely that it would take more than five years before wood energy crops could be 

available in any significant quantity, and as many as 10 years or longer for wood energy crop systems 

to be fully commercialized. As such, the 2.1 million ODT per year production can be considered the 

high-end of potential development over a long time frame. 

Summary of Wood Biomass Resource Availability. Table 2 summarizes total wood biomass 

resource potential and associated power generation potential for the State, based on the results from 

the DPS 2016 study. Note that this does not include mill residues, which are currently completely 

utilized for fuel and fiber by existing consumers. 

Table 2. Summary of Long Term Wood Biomass Resource Availability in New York State 

Type Quantity 
(Million ODT/year) 

Potential Power 
Generation 
(GWh/year)* 

Forest biomass 4.3 6,431 
Clean C&D wood 0.7 1,086 
Wood energy crops 2.1 3,141 
Total unadulterated biomass (subtotal) 7.1 10,658 

Adulterated C&D wood (gasification only) 0.9 1,398 

Total all wood biomass 8.0 12,056 

* Based on a wood heat content of 17.2 MMBtu/ODT (8,600 Btu/dry pound) and plant heat rate of 11,500 Btu/kWh. 
The plant heat rate is consistent with projections based on biomass IGCC technology (New York State Department of 
Public Service 2016) 
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2.3 Biomass Energy Conversion Technologies 

While much of the preceding discussion of biomass deals with large-scale biomass power applications, 

there is a wide spectrum of biomass energy conversion technologies and sizes that are feasible in New 

York State, ranging from efficient residential and small commercial pellet and cordwood heating systems 

to industrial CHP and utility-scale biomass power. The following discussion provides an overview of the 

various biomass energy conversion technologies currently in use, and near-commercial technologies that 

have the potential to play a role in the CES program. The energy conversion technology impacts the type 

of feedstock that can be used as well as the selection of counterfactual energy systems considered for 

LCA studies. The conversion efficiency of the bioenergy technology also has a significant impact on 

associated GHG emissions. 

2.3.1 Residential and Small Commercial Pellet and Cordwood Heating Systems 

Increased deployment of modern residential and commercial wood heating systems can support expanded 

reliance on renewable sources of thermal energy, save homeowners and businesses money, and reduce air 

emissions especially when compared to older wood burning appliances. 

The types of systems that NYSERDA is currently promoting include: 

•	 Residential pellet stoves and pellet stove inserts 
•	 Residential and small commercial advanced cordwood boilers 
•	 Residential and commercial pellet boilers with thermal storage 

Table 3 summarizes wood heating system sizes and efficiencies for systems eligible for incentives under 

the Renewable Heat NY Program. Additional discussion of the system types is provided below. 

Table 3. Wood Heating System Sizes and Efficiency for Systems Eligible for Renewable 
Heat NY Incentives 

Technology Sample system size range (Btu/hour), 
based on currently qualified systems 

Minimum thermal efficiency 
(% HHV) 

Pellet stoves* 10,800 – 50,000 (pellet stove) 
16,700 – 45,500 (pellet stove insert) 58% 

Cordwood boiler 70,000 - 200,000 60% 

Pellet boiler 
34,800 - 273,000 (small) 

300,000 – 2,470,000 (large) 
85% 

* 	 System sizes shown for pellet stoves are based on high output range. The minimum efficiency is based on reported 
efficiencies for the systems currently approved for the program. For the other system, the minimum efficiency is 
based on the lower limit to be eligible for incentives. 
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Pellet Stoves 

Pellet stove heating systems have higher efficiencies and lower emissions than traditional wood stoves 

and boilers. For example, the residential pellet stoves and pellet stove insert systems that are eligible for 

incentives under the NY Renewable Heat program must have particulate matter emissions of 2.0 grams 

per hour or less, and must also be on the EPA Certified Wood Heater list (NYSERDA, Residential 

Pellet Stoves n.d.). 

Cordwood 

Advanced cordwood boiler systems with full thermal storage for residential and small commercial 

applications offer significant improvements in efficiency and emissions over older wood boilers or 

furnaces. Modern systems can exceed seasonal efficiencies of 60% based on the higher heating value 

of the fuel. Thermal storage is provided by water storage tanks that can be pressurized or non-pressurized. 

Note that cordwood boiler systems eligible for incentives under the Renewable Heat NY Program are 

limited in size to 300,000 Btu/hour (NYSERDA 2015). 

Pellet Boilers 

Residential and commercial pellet boiler systems can reach thermal efficiencies of greater than 

85% based on fuel higher heating value. System that are currently on the approved Renewable Heat NY 

list range from about 30,000 Btu/hour to more than 2 million Btu/hour in maximum heat output. Modern 

pellet boilers are generally equipped with fully automatic feed systems and thermal storage, which are 

required for eligibility for incentives under the Renewable Heat NY Program (NYSERDA 2015). 

2.3.2 Direct Combustion—Thermal, CHP, and Power Applications 

Direct combustion of solid fuel biomass in a boiler to generate steam for industrial process heating and 

power generation remains the most common way of converting biomass into a usable form of energy. The 

technology is well established, with a variety of combustors and boilers on the market to choose from.  

Stoker and fluidized bed furnaces combined with steam turbines represent the most widely used biomass 

power technology combination in the U.S. They are both mature technologies. The heat rates are mainly 

determined by the fuel moisture content, steam pressure, temperature and turbine selection. 
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Table 4 shows the two predominant types of boiler technologies available on the market today. Each 

boiler is capable of handling a range of fuel moisture contents and fuel particle sizes. Each technology 

has its advantages and disadvantages in terms of complexity, efficiency, and cost. The added cost for 

higher-pressure boilers must be compensated by the improved efficiency—this is mainly implemented 

in larger facilities. Fluidized bed systems have similar efficiencies, but tend to cost 15 to 20% more 

than stoker units of similar capacity. 

Table 4. Summary of Direct Combustion Technologies 

*Source: (U.S. Environmental Protection Agency 2013) 

Stoker Grate Fluidized Bed 

Relative Cost Less costly More costly 

Complexity Simple Complex 

Thermal Efficiency (%)* 63-71 67-75 

Biomass Size Requirement 0.25'' - 2'' 1.5'' - 3'' 

Biomass Max. Moisture Content 
Requirement 

10-50%, depending on 
manufacturer 

up to 60%, depending on 
manufacturer 

2.3.3 Biomass Gasification—Thermal and CHP Applications 

Gasifiers convert biomass into a syngas containing carbon monoxide and hydrogen (and other 

components) by reacting the raw material at high temperatures (1,800°F) with a controlled amount 

of oxygen and/or steam. This low- to medium-Btu gas5 can be used as a fuel to replace natural gas in 

many applications, depending on purity requirements. Char is often a coproduct of the gasification 

process, but it is usually used directly or indirectly to improve overall energy recovery. 

Gasification technologies are compared in Table 5. The overall efficiency of a gasifier project depends 

on whether the project is used for heating, power generation only, or CHP. The choice of combustion 

technology and prime mover (e.g., steam turbine, reciprocating engine) affects the overall system 

conversion efficiency. Section 2.3 discusses some of the efficiency issues for different gasifier, 

combustor, and prime mover configurations. 

Gas with less than 700 Btu per standard cubic foot (scf). 
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Table 5. Summary of Gasification Technologies 

Fixed Bed Fluidized Bed 

Relative Cost Less costly More costly 
Complexity Simple Complex 

Biomass Size <= 0.25” <= 3” 
Biomass Maximum Moisture 

Content 
20% Typically 20% to 30%, depending on 

manufacturer 
Applications Boiler fuel, process or space 

heat, reciprocating engine after 
cleanup 

Boiler fuel, process or space heat, gas 
turbine or reciprocating engine after 

cleanup 

The fixed bed gasifier is similar to a stoker grate furnace while the fluidized bed gasifier has a similar 

design as the fluidized bed furnace. Fixed bed systems are commercially dominant (across all scales), 

but tend to be limited to smaller district heating and CHP projects, generally less than 5 MWe in capacity. 

When used as gasifiers, fixed beds produce a lower Btu syngas than fluidized beds, though at lower 

complexity and cost. Fluidized bed gasifiers can be designed to handle a wider range of biomass fuels. 

Fluidized bed gasifiers have been used in larger utility-scale projects to generate electricity in conjunction 

with gas boilers and steam turbines. 

The potential to use biomass-derived syngas in biomass IGCC systems can result in an increase overall 

system efficiencies. The system replaces the traditional biomass combustor with a gasifier and a gas 

turbine. Exhaust heat from the gas turbine is used to produce steam that can be used in a conventional 

steam turbine. This technology is of potential importance in this discussion as at least one developer of 

this technology, Taylor Biomass Energy, has actively been persuing an IGCC/CHP project in the State 

for more than a decade. 

There are also several other less conventional gasification technologies currently in a demonstration 

phase, which are unlikely to make a significant market impact over the next ten years, but are worth 

mentioning. These include plasma arc gasification (currently applied only to small-scale commercial 

waste or medical waste processing units) and low temperature hydrothermal gasification, which uses 

high-moisture fuels in the presence of water and a catalyst. 
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2.3.4 Biomass Cofiring with Fossil Fuel 

Cofiring biomass with a fossil fuel, such as coal, is the most efficient and inexpensive method of 

combustion. This is because moderate cofiring percentages (up to 10%) can be achieved with relatively 

few changes to existing plant infrastructure. However, with the decline of coal-fired power in the State 

and nationwide, this technology is not expected to contribute significantly to future biomass energy 

production and is not discussed further in this report. 

2.3.5 Comparison of Different Conversion Technologies 

Table 6 shows the typical overall conversion efficiencies associated with the different types 

of technologies that have been discussed. Biomass power generation technologies have typical 

electrical conversion efficiencies ranging from 10 to 30% when used in power-only mode, meaning 

that approximately 10 to 30% of the energy that is put into the system leaves the system as usable 

energy. The rest of it is lost to the environment through the form of waste heat, emissions, incomplete 

combustion, and other process inefficiencies (Ecofys 2010). However, using a biomass combustion 

system in CHP mode can improve system efficiency to as much as 75% (NYSERDA 2009). Note 

that incoming biomass fuel may need to be resized and/or dried to work with the energy conversion 

technology. Biomass IGCC applications have the potential for significantly higher electrical conversion 

efficiencies than large-scale direct combustion applications. 

Table 6. Conversion Efficiencies for Various Technologies 

Technology 

Pellet stove/insert1 

Cordwood boiler with thermal storage1 

Pellet boiler with thermal storage1 

Small Scale CHP 
(Gasification + engine)2 

Large Scale Power 
(Fluid bed boiler + turbine)3 

Gasification + turbine (IGCC)2 

Type of energy Wood fuel types 
Thermal energy Overall thermal percent (%) of efficiency (%) total output 

Electric energy 
percent (%) of 

total output 

Heating Pellets 58-73% 100% 0% 

Heating Cordwood 60-69% 100% 0% 

Heating Pellets 85-90% 100% 0% 

Heat and power Hog fuel, bark, chips, 
pellets, sawdust 69% 60% 40% 

Power Hog fuel, bark, chips, 
pellets, sawdust 25% 0% 100% 

Power Hog fuel, bark, chips, 
pellets, sawdust 31% 0% 100% 

Notes: (1) Systems eligible for participation in Renewable Heat NY Program. (2) Source is (EPRI 2007). 
(3) Source is (NYSERDA 2009) 
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2.4	 Current Status of Biomass Energy Technology Deployment 
in New York State 

Biomass energy currently represents a significant component of renewable energy production including 

heat and power in the New York State, exceeded only by hydropower as source of renewable energy 

production (U.S. Department of Energy Energy Information Administration 2009). 

NYSERDA published the “New York Wood Heat Report” in 2016.6 This report presents detailed 

information on current wood heating use, trends, and potential. Key summary statistics from that report 

provide a good overview of the extent of wood heating use in residential and commercial applications. 

New York State is currently the second largest consumer of wood for residential heating, exceeded only 

by California. About one million wood-burning heating appliances are currently installed in homes across 

NYS, but the U.S. Census Bureau American Community Survey (five-year period from 2006–2010) 

reports that about 127,000 homes (approximately 2% of total households) in the State relied on wood as 

their primary heating source (Bureau 2011). In 2011, households burned approximately 1.5 million tons 

of wood in NYS, inclusive of pellet fuel and cordwood systems. Other states including Maine, New 

Hampshire, and Vermont have a significantly higher proportion of households that use wood for their 

primary heating source. There are a limited number of wood-fired commercial and industrial boilers in 

the State, mostly at wood processing facilities and some schools. The best indication of where wood-fired 

boilers are most likely to be installed is where there is a large concentration of oil-fired boilers and limited 

access to natural gas. There are a large number of boilers in heavily urban areas such as New York City; 

many of these are located in areas with access to natural gas and would be likely to be replaced with 

natural gas at the end of their useful life. More rural areas with limited natural gas availability that are 

located in areas with active forest removals are much more likely targets (Figure 5). 

Available on-line: https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Biomass-Solar-Wind/ 
15-26-NYS-Wood-Heat-Report.pdf 
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Percentage of boilers 

D 0%-6% 
D 6%-20% 
D 20%-58% 
• 58%- 91% 
• 91% - 100% 

Figure 5. Percentage of Industrial and Commercial Oil- and Propane-Fired Boilers, by County, 
Located Near Natural Gas Lines 

Source: (NYSERDA, New York State Wood Heat Report 2016) 

The cost-effectiveness of transitioning to wood fuel depends on trends in heating oil prices, the age 

of the existing boiler, and also on the cost differential between an oil-fired and wood-fired unit. 

Table 7 summarizes existing biomass power generation capacity with contracts under the State’s RPS 

Program. The Main Tier of the New York RPS includes two biomass power projects with a combined 

69.3 MW of electricity capacity. Two other projects with a total of 43 MW of wood-fired power 

generation capacity are included under the Tier 2 Maintenance program (NYSERDA 2016). 

Table 7. Summary of New York RPS Program Biomass Project Capacity 

Source: (NYSERDA 2016) 

Plant Name Fuel Type City County Program 
Tier 

Capacity 
MW 

ReEnergy Chateaugay Forest residues Chateaugay Franklin Tier 2 21.0 
ReEnergy Lyonsdale Forest residues Lyonsdale Lewis Tier 2 22.0 
ReEnergy Fort Drum Mill residues, Fort Drum 

forest residues, 
urban wood 

Jefferson Main Tier 43.3 

Niagara Generating 
Facility* 

Wood and tire- Niagara 
derived fuel Falls 

Niagara Main Tier 26.0 

Total 112.3 

* The capacity value is for wood-fired capacity only. The total capacity with wood and tire-derived fuel is 48 MW. 
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3 Relevant Policy Considerations for Life Cycle 
Impacts of Bioenergy 

Biomass energy is unique among renewable energy resources in that it requires conversion of a solid 

fuel through combustion or other energy recovery process. Wood fuel has implications for land use and 

biogenic carbon sequestration that should be taken into account in GHG life cycle analysis, in addition to 

emissions associated with the production, harvest, transport, and conversion of wood biomass to energy.  

The current policy environment in NYS considers that not all biomass is carbon neutral, but stops short 

of advocating a specific carbon accounting framework. In Part 242 of the State’s Air Resources codes, 

rules and regulations that govern the CO2 budget trading program, the DEC clarifies that “The premise 

of biomass carbon neutrality, or low carbon intensity, cannot hold true over time without adequate future 

re-growth and attendant carbon sequestration to offset the CO2 emissions from biomass combustion” 

(New York State Department of Environmental Conservation 2010). The New York Climate Action 

Plan assumes that biomass is carbon neutral and can provide meaningful carbon emissions reductions but 

acknowledged that consensus on how to appropriately assign carbon intensity is lacking (New York State 

Climate Action Council 2010, 5-5). The Regional Greenhouse Gas Initiative has eligibility requirements 

for biomass to ensure that the CO2 emitted from the burning of biomass is re-sequestered as the forest 

grows. The burgeoning need to ensure that renewable energy resources contribute to stabilization and 

eventual reduction of GHG emissions is broadly driving pressures to adopt more explicit carbon 

accounting methods that verify GHG emissions reductions claims made by projects.  

There are many existing GHG protocols that address some or all of the biogenic and land-use factors that 

affect the GHG profile of biomass energy facilities. The definition of supply shed boundaries,7 estimates 

for baseline emissions and measurement protocols for change in carbon stocks are important elements 

of any biomass GHG accounting method. Decisions about these elements affect the extent to which an 

accounting framework creates increased or decreased value for biomass projects in NYS relative to other 

The term supply shed refers to the geographic area where biomass resources may come from to serve a project or 
group of projects. 

23 

7 



 

 

   

  

  

 

 

  

   

 

   

    

   

   

   

 

   

  

    

  

   

    

    

  

 

   

       

    

    

   

  

compliance measures (wind, solar, energy efficiency, conversions to natural gas, etc.). New York 

RPS/CES bioenergy projects have a stake in the decisions on reporting and accounting for CO2 emissions. 

How the boundaries for accounting are drawn and the methods for carbon stocks measurement are applied 

will be the key determinant of whether projects are perceived as offering renewable energy benefits and 

carbon emissions reductions in a given policy portfolio.  

The most recent effort by the EPA under the auspices of the CPP addresses a wide range of variables 

that affect the GHG profile of a biomass energy project. The draft “Framework for Assessing Biogenic 

CO2 Emissions from Stationary Sources” released in November 2014 factors in the impacts of biomass 

feedstock production on land use, in addition to aboveground and belowground carbon sequestration 

on the net atmospheric carbon dioxide concentration due to biomass energy. The EPA framework is 

significant in that some version of the document is likely to be adopted by federal regulators to assess 

compliance with GHG emissions limits for power plants under the CPP. As such, the final Framework 

would directly relate to development of state or regional compliance plans. It would provide guidance 

to policymakers on how to calculate GHG emissions related to biomass energy. 

Fundamentally, biomass carbon cycling, or the process of carbon uptake and release by plant systems,  

is the crux of biogenic emissions calculation methods. The EPA framework addresses the issue of 

biomass carbon cycling using the Biomass Accounting Factor (BAF). The BAF adjusts stack emissions 

from a stationary source to account for impacts of biomass use on above and below-ground carbon 

stocks, avoided emissions (e.g., changes in methane emissions from decomposition of biomass), 

leakage (indirect impacts of biomass use such as land use change resulting from biomass use) and 

several other factors. Notably, the EPA framework does not provide a specific calculation method 

for the leakage factor, which is very difficult to quantify. A BAF of zero equates to zero net CO2 

emissions. A negative BAF value corresponds to sequestration of more carbon than emissions 

resulting from biomass fuel production and use. 

The land use and biogenic carbon implications of wood fuel use depend on a variety of factors including 

forest type and associated soils, forest management practices, and extent and type of existing wood 

product industry accessible to the end user. The policy/decision-making timeframe is also important in 

terms of the interpretation of the results. Additional research is needed to develop data and methods to 

estimate BAF factors tailored to forests and existing forest management practices in NYS. The draft EPA 
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Framework treats the use of fuel quality mill residues (e.g., sawdust and bark) as carbon neutral, 

however, this could change in the final version. Additionally, illustrative analysis provided with the 

EPA framework (U.S. Environmental Protection Agency 2014) in other regions of the U.S. suggest 

that use of harvest residues in accordance with best management practices for logging residue 

utilization in many cases could be carbon neutral under this approach. 

The timeframe for finalizing the biogenic carbon accounting framework and the pathway for doing so is 

currently uncertain. The EPA established a Science Advisory Board (SAB) in 2011 to review and make 

recommendations to the EPA administrator. The SAB Ad-Hoc Panel (Panel) was charged with reviewing 

the draft framework and developing a peer review report on the draft framework (Gunning 2015). The 

Panel provided its latest review effort in February 2016. In March 2016, the full SAB provided the Panel 

with its comments on the latest review report. The SAB did not approve the submission of the latest Panel 

review to the EPA administrator (Environmental and Energy Study Institute 2016). On October 12, 2016 

the SAB held a conference call to assess the path forward to resolving remaining issues with the Panel 

review.8 Finalization of the review along with conclusions and recommendations for addressing 

remaining technical and scientific questions regarding the framework would facilitate finalization 

of the accounting framework. 

Comments from the SAB published on March 28, 2016 (Science Advisory Board 2016) listed a number 

of issues with the Panel report. Some of the issues dealt with the overall clarity of the report, but many 

indicated divisions as to whether the Panel stayed within its defined review role. The volume and 

complexity of the comments suggested there was a lack of a clear path forward to finalizing the 

framework. One criticism was that the Panel review made assumptions regarding policy goals and 

timeframes beyond the scope of the Panel’s charge. However, another SAB reviewer noted that 

constraining the Panel’s ability to evaluate policy context limited the ability to assess the report. 

Another noted that the BAF framework could inform temporal scales for policy development. During 

the conference call held on October 12, 2016, the SAB made substantial progress on how to separate 

the science of biogenic carbon emissions from policy or judgement calls that many considered beyond  

the Panel’s charge. This bodes well for a successful resolution of many of the technical issues with the 

Panel report, although the timing for the finalization of the Panel report is unclear. 

Meeting notice and documents available online, https://yosemite.epa.gov/sab/sabproduct.nsf/Meeting 
CalBOARD/BD5980491F4F4FBB85257FEF0048CBC4?OpenDocument 
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Under the current plan, the Framework will allow State or regional policymakers significant leeway 

to specify key factors in the analysis methodology, such as timeframe for analysis, spatial scale, and 

baseline approach. The SAB’s rationale for doing this is that their purpose is to provide a scientific basis, 

and they do not know what all of the policy goals will be. Different approaches may be applied to address 

different objectives. 

Considerations of timeframes for analysis contributed to a significant portion of the review comments 

and associated discussion during the teleconference. The SAB clearly indicates that it cannot make a 

specific recommendation regarding a timeframe for considering the biomass carbon emissions. The 

relevant timeframe differs between feedstocks and geographic regions, and the selected timeframe 

will have a significant impact on results. Instead of a specific recommendation, the SAB intends to 

illustrate how the BAF changes over time for different scenarios, as a way to provide guidance for 

policy makers to establish appropriate guidelines to help meet different policy objectives. 

Another consideration is whether existing econometric and other models are capable of adequately 

providing information on economic and biophysical parameters needed to assess biomass GHG impacts. 

The SAB recognizes that the existing models used to develop the Framework may need some revision. 

At the same time, the SAB recognizes that care must be taken to correctly specify the model to balance 

accuracy and precision. A complex model with many inputs, many of which can be highly uncertain, 

runs the risk of poor precision, while a model that ignores significant variables may be more precise, 

but is also more likely to provide inaccurate results. Several SAB members noted that accuracy is more 

important than precision in this context. At a minimum, a process is needed to validate existing models 

and update/calibrate them using physically observed data. 

SAB members support the Framework having options for selection of baseline, as these can have 

a significant impact on the analysis results and different baselines may be appropriate for different 

objectives. This includes the reference point baseline as conceived in the original draft, and the 

anticipated future baseline approach. A reference point baseline considers the carbon stocks and 

emissions at a specific point in time as a benchmark for comparison. In an anticipated future baseline 

(also called a “dynamic” baseline), projected emissions are estimated based on the expected activities 

that would occur in a business as usual scenario without use of new biomass feedstocks for energy. 
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Treatment of non-CO2 GHGs needs to be clarified in terms of their role in the framework. There is 

disagreement in terms of the boundaries of the BAF analysis; some members suggest that the BAF is 

about GHG emissions only, while others believe it must incorporate mechanisms by which atmospheric 

carbon dioxide influences climate and climate feedback loops (e.g., consideration of radiative forcing 

and maximum temperature). 

Most reviewers note that the need to consider variety and quality of forests managed to produce 

biomass is not fully addressed. Ultimately, the Framework needs to be robust enough to be able to 

handle all different types of forests and management regimes in the U.S. 

One issue that is not addressed in comments regarding the modeling approaches is the issue of 

responsibility for developing, maintaining, and operating the suite of models and populating databases 

to support modeling efforts. The framework is likely to be implemented on multiple scales, incorporating 

project-specific inputs and State and regional regulatory agencies. Access to and support for complex 

modeling tools and data appears to represent a gap in current planning efforts. 
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4 Overview of Bioenergy LCA Methods and Inputs 
This chapter provides a discussion of the various considerations and inputs for bioenergy LCA studies. 

This includes a summary of different methodologies and analysis choices for the major components of 

LCAs. Note that many of these items are interrelated, so one decision or approach impacts other choices. 

In general, the approach and inputs selected for an LCA study will depend on the goal and scope of the 

study, and each choice will have an impact on the results of the assessment. The inputs for an LCA will 

vary not just by location and specific scenarios considered, but also based on the reference or baseline 

system that will be used for comparison. As a result, it is expected that different studies will have various 

results and outcomes. In addition to site-specific factors and different project types, analysis timeframe, 

spatial scale, and reference or baseline scenario have a tremendous impact on LCA results for biomass 

energy. If the goal of the study is to compare systems, then this needs to be determined at the start so 

all the systems use the same system boundaries and methodologies and deliver equivalent service. 

As stated by Matthews et al. (2014), “a superficial consideration of the scientific literature on 

GHG emissions associated with forest bioenergy would most likely arrive at the impression that the 

outcomes and conclusions of different publications are highly variable and that the overall picture 

of forest bioenergy is confused and sometimes contradictory. However, on closer examination, it 

becomes evident that there is a certain level of fundamental agreement or at least consensus on some 

basic phenomena.” Ultimately, the results from LCA studies vary because different system boundaries 

and methodologies are applied, which relates to the different goals and objectives of the assessments. 

There is no one right way to perform an LCA, or one right answer, it all depends on what the analysis is 

trying to achieve and the question being asked. 

4.1 Modeling Approach/Purpose—A Critical Differentiator 

Life Cycle Assessments are used to evaluate the environmental impacts associated with a product or 

service throughout its life cycle (i.e., “cradle to grave”), including acquisition and processing of input 

materials, production processes, product use, and disposal. 
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As stated in the International Organization for Standardization (ISO) 14040, which provides a general 

framework for life cycle assessment (2006), “LCA can assist in: 

•	 Identifying opportunities to improve the environmental performance of products
 
at various points in their life cycle.
 

•	 Informing decision-makers in industry, government, or non-government
 
organizations (e.g., For the purpose of strategic planning, priority setting,
 
product or process design or redesign).
 

•	 The selection of relevant indicators of environmental performance, including
 
measurement techniques.
 

•	 Marketing (e.g., Implementing an ecolabelling scheme, making an environmental
 
claim, or producing an environmental product declaration).”
 

The first two items are of particular relevance for this effort, as the political and public interest in 

understanding the potential benefits for bioenergy and its potential to help reduce anthropogenic GHG 

emissions has led to numerous reports and publications on biomass and bioenergy LCAs in recent years. 

However, it is important to realize that there are various purposes for completing an LCA and the specific 

goal of the assessment will ultimately determine the specific boundaries, methods and data used, and 

therefore the results of the study. In addition, we note that while LCA is designed to assess environmental 

impacts across a range of impact categories, the majority of LCA studies for bioenergy consider only the 

climate change category, and this is the focus of this review. 

ISO delineates four phases of an LCA study (International Standard Organization 2006): 

•	 Goal scope and definition – Identify the purpose of the study, as well as the intended audience. 
The ultimate goal impacts the level of detail and modeling approach. The scope considers the 
system boundary, functional unit, allocation procedures, data requirements, analysis limitations, 
and other methodological choices. 

•	 Life cycle inventory analysis – Identify and collect data on all relevant inputs and outputs of 
the product system necessary to perform the assessment. This can include data on energy 
use, material inputs, products and by-products of processes, waste materials, and emissions. 
Calculations are performed to compile inputs and outputs, convert data to applicable functional 
unit, and allocate flows as applicable. 

•	 Life cycle impact assessment – Evaluate inputs and outputs to determine the net environmental 
impacts of the product or process by impact category.  

•	 Interpretation of results – Summarize results and provide conclusions and recommendations for 
decision making activities. 
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Life cycle assessment framework 

Goal and scope 
definition 

Inventory 
analysis 

Impact 
assessment 

Interpretation 

Direct applications: 

- Product development 
and improvement 

- Strategic planning 
- Public policy making 
- Marketing 
- Other 

Figure 6. Stages of an LCA 

Image reproduced from (International Standard Organization 2006) 

LCAs have generally evolved and become more complex over time, spurred in part by the political and 

public interest in energy, particularly bioenergy. LCAs were originally conceived as an evaluation tool 

for resource management for a specific company or product, but usage has expanded to development 

of standards and policies (McManus and Taylor 2015). Figure 7 shows the rise in the number of LCA 

related papers published annually since the late 1970s, which covers various products and systems,  

not just bioenergy. It is important to note that the earliest LCAs were company-specific and were not 

published as they contained proprietary information. McManus and Taylor stated that the published 

LCAs were divided between regulatory topics and policy, with a significant increase in the proportion 

of policy studies at the turn of the century. This increase in policy related studies was largely driven by 

energy considerations, including GHG accounting. They further indicate that bioenergy made up about 

half of the policy related studies; for example, in 2013 there were more than 350 publications addressing 

bioenergy related topics, and an even greater amount dealing with biofuels. 
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Figure 7. Increase in LCA Publications Over Time 

Image reproduced from (McManus and Taylor 2015). 

There are two distinct categories for LCAs, according to the purpose of the assessment. 

•	 An assessment that is used to quantify the direct impact, across its life cycle, of a particular 
product or service is called an attributional LCA (aLCA). An aLCA is used to evaluate direct 
impacts associated with the processes related to a product, and does not include indirect effects 
related to changes in the amount of production or use. It is useful for “consumption-based 
carbon accounting,” allowing for comparison of environmental impacts from similar products 
(Brander et al., 2009). Specifically, an aLCA is used to answer the question, “What are the total 
emissions (and resulting impacts on the environment) from the processes and material flows 
identified as associated with the life cycle of a product?” (Matthews et al., 2014, modified 
from Brander et al., 2009). 

•	 An LCA used to evaluate the impact of a particular decision can be categorized as a 
consequential LCA (cLCA). This type of LCA models the implications of producing more 
or less of a specific product or service, including the causal impacts on other products or 
markets (indirect effects). A cLCA is used to answer the question, “What is the change in 
total emissions (and resulting impacts on climate) as a result of a marginal change in the 
production (and consumption and disposal) of a product?” (Matthews et al., 2014, modified 
from Brander et al., 2009). 

The type of LCA impacts many facets of the model and results. Some of the relevant key differences 

are summarized in Table 8, and include application and scope of the effort, system boundary, time scale, 

allocation procedures, data type, and market effects. Many of these items are discussed further in 

subsequent sections of the report. 
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Table 8. Comparison of aLCA and cLCA methods and inputs 

Adapted from: (Brander et al., 2009; Brandão et al., 2014; Matthews et al., 2014) 

aLCA cLCA 

Application 

Understanding emissions and 
environmental impacts associated with 
life cycle of a product. Can be used for 

comparison and improvement of 
product systems 

Understanding the total environmental impacts of 
an increase or decrease in production of a product. 

Supports decision and policy making 

Scope Steady State/static analysis, product 
specific accounting 

Dynamic analysis. Considers direct and indirect 
effects associated with changing the output of a 

product system 

System Boundary 
Include all activities (processes and 
materials) directly related to product 

production, consumption, and disposal 

All activities directly or indirectly affected by a 
change in the output of a product system, both 
within the system and impacts associated with 

other outside systems 

Time scale Quantify impacts/emissions at a given 
level of production at a specific time 

Quantify change in impacts/emissions associated 
with a change in production. 

Allocation 
Approaches 

Emissions allocated to coproducts 
based on common characteristics (e.g., 

mass, energy, economic value) 

System expansion to include alternate methods of 
producing coproducts in reference case 

Data Type* Average data Marginal data 

Market Effects** 
(for production 

and consumption 
of product) 

Not included Included, as related to decision under 
consideration 

Model Scale Project specific; microscale Regional to global models; macroscale 

* 	 As an example for marginal data, if a process results in increase in electric consumption, the electric usage would be 
evaluated based on the electricity mix used to meet the increased demand, not grid average (Brander et al., 2009). 

** 	 Market effects consider the pricing impacts associated with changes in production of a product. This can include 
impacts on demand for the product itself, coproducts, or substitute goods. 

Although not everyone in the LCA community agrees, it is generally suggested that cLCA is the 

most appropriate type of analysis to support policy decisions, particularly for evaluating climate 

change mitigation potential as it is based on change relative to a baseline scenario and includes the 

total impacts (Plevin, Delucchi, and Creutzig 2014a). By allowing comparison of different options 

and scenarios, cLCA can evaluate the impact of a particular decision on a broad scale and guide policy. 

By including indirect effects in cLCA, the shifting of environmental impacts to different geographical 

areas or processes is evaluated, which is a significant concern and consideration in any energy system 

including bioenergy. 
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aLCA can compare the direct impacts of different energy producing systems. One of the arguments 

against using it for estimating climate mitigation impacts is that is does not include indirect effects. 

However, Dale and Kim (2014) point out that while cLCA studies consider indirect effects for biofuels, 

indirect effects are often not considered for the fossil fuel system they replace, thereby creating an 

imbalance and bias against the biomass system. This is one reason they support the use of aLCA. If 

included, indirect effects must be assessed for all considered systems in an LCA study, regardless of 

the type of analysis. It is important to provide equivalent analysis and boundaries for the bioenergy 

system as well as the comparison or baseline system to ensure a fair comparison. 

Others note that while “ALCA is not an appropriate basis for development of policy… it may be 

applicable in the implementation of policy” (Brandão et al., 2014). This is an important point. cLCA 

is geared towards comparison to inform decision making, while aLCA is more typically used for 

project-specific accounting and can track and compare environmental impacts attributed to specific 

products as long as they are conducted using similar boundaries and methodologies. The inclusion 

of both direct and indirect effects in consequential approaches is important for policy considerations, 

but once a specific bioenergy system has been identified as beneficial and a policy is developed, it may 

be adequate to use an attributional approach to assess compliance. One reason for this is that in policy 

implementation, the economic operator should report on the processes over which they have control 

and have the data to support. This would not generally be the case for indirect effects that the operator 

cannot directly influence. The complexities of cLCA modeling could create a burden for individual 

entities, and they cannot reasonably be expected to predict future markets to determine displaced 

products (for example). The high uncertainty of cLCA results creates a further challenge to its 

application in meeting regulatory compliance requirements. aLCA methods are likely to be 

more practical and straightforward for implementing policies. 

As other literature reviews have pointed out, many bioenergy LCA studies are not clear which type of 

assessment is used, causing confusion and making comparisons difficult.9 Some researchers argue that 

many actual LCAs combine components of each (Suh and Yang 2014), which may reflect the gradation 

of approaches to cLCA ranging from relatively simple substitution assumptions to complex economic 

modeling. The typical analysis approach likely contributes to this as cLCA studies model a few processes 

Furthermore, Brander (2009) noted that some European policies are inconsistent in type of approach applied, and use 
hybrid methodologies. For example, the UK’s Renewable Transport Fuel Obligation would be characterized as a 
partial cLCA, while the EU’s Renewable Energy Directive is mostly aLCA, except for excess electricity generated 
from CHP. The inclusion of indirect effects in these policies is also somewhat inconsistent in these examples. 
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consequentially, while the rest of the analysis is based on aLCA tools and databases for other processes 

making up the rest of the system (Dale and Kim 2014). However, others warn that the combination of 

the two approaches can lead to misinterpretation or unfair comparison of results (Brander et al., 2009), 

or even an incoherent analysis that therefore doesn’t clearly meet the needs of either approach (Plevin, 

Delucchi, and Creutzig 2014b). “The problem with combining ALCA and CLCA methods is that the 

output is not suitable for either the normal purposes of ALCA (product comparison, supply chain 

improvements, and consumption-based carbon accounting) or for accurate policy impact analysis” 

(Brander et al., 2009). 

Ultimately, it is useful to keep perspective on the fact that aLCA and cLCA are concepts and ways to 

categorize LCAs, and not basic principles on how to conduct LCA. The guiding principles of LCA 

from ISO or other guidelines still apply regardless of what type of LCA is being done. Furthermore, 

many of the actual methods used in these two types are similar when bioenergy is the determining 

product. The main differences are related to the scope and boundaries that are set for the study, the 

input data used for analysis, and the allocation approach. 

Subjective choices and simplifying assumptions must be made regardless of the type of model, due 

to data gaps and practical limitations. Overall, aLCA is relatively simple since it only considers direct 

impacts of a particular product or process, it mainly requires an accounting of activities and material 

flows and emissions factors. In theory, the main uncertainties for an aLCA are due to the fact that these 

are all imperfectly known (Plevin, Delucchi, and Creutzig 2014). By comparison, cLCA includes systems 

outside of the one being studied. This makes it seem more uncertain since the same uncertainties in an 

aLCA apply as well as the additional uncertainty of analyzing systems outside the control of the economic 

operator, and impacts on future events and markets. However, several researchers have argued that aLCA 

may be more precise (less statistical uncertainty), but cLCA may be more accurate (in terms of assessing 

climate change impacts) due to the inclusion of indirect effects (Plevin, Delucchi, and Creutzig 2014b; 

Brandão et al., 2014). Furthermore, cLCA can include multiple scenarios, which can identify components 

that have either large or small impact on the end results (Brandão et al., 2014). This helps to provide 

insight into a complex system. 
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4.2 Analysis Boundaries 

The analysis boundary for an LCA is used to delineate all of the activities included in the assessment; 

anything outside of the boundary is ignored. The boundary must be clearly defined, and boundary 

selection depends on the study goals. As stated by Matthews et al. (2014), “the system boundary in 

an LCA study needs to be drawn as wide as necessary (and no wider), in order to encompass all of the 

activities and processes relevant to addressing the research question that has been posed.” The different 

boundary selections contribute to the wide variations from one LCA to the next, and leads to significant 

differences in results. 

An LCA considers all flows within a system boundary, including input and output flows that pass 

the (imaginary) boundary line. These flows should include all items related to the impact categories 

considered in the particular analysis, such as raw materials, energy use, and emissions. Figure 8 shows 

a general example of flows within a system boundary for a product system. 

It is important to recognize that the analysis boundary has both a physical and temporal scale. The 

physical scale defines the geographic area considered, which may be a particular forest management 

area, region, country, or even groups of countries. The temporal scale defines the time frame for the 

analysis, which could range from one year to 100 years or more. As with the physical scale, the analysis 

timeframe should reflect the study goals. Ultimately, “the temporal scale needs to capture the variable 

effects of forest bioenergy on GHG emissions over time” (Robert Matthews et al., 2014). 
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Figure 8. Generalized LCA System Boundary for Product System 

Image Source: (International Standard Organization 2006) 

Figure 9 shows a relatively simple example of boundary selection and the impacts it has on the net 

emissions for a forest related system from Matthews et al. (2014). This example for illustrative purposes 

only, and is not representative of a full LCA study. Also, only CO2 emissions are included in this example 

for the sake of simplicity. For each system considered, the CO2 emissions are calculated by identifying 

and quantifying all CO2 flows that cross the system boundary and adding them together, considering 

whether each flow is positive (flow into the system) or negative (flow out of the system). 

This example shows how the boundary definition can impact the LCA results. None of these examples 

are necessarily right or wrong, it all depends on the specific purpose and scope of the LCA. Matthews 

et al. (2014) provide specific examples for when boundary conditions may apply. For example, the first 

case (example A) could be useful for monitoring management of a forest stand. The second example 

(B) applies for calculating GHG emissions from forest and harvested wood products, as in national 

reporting schemes. Meanwhile, the last example (C) could be used to calculate the GHG emissions 

for the production of raw harvested wood. Note that the appropriate time scale for each of these 

applications may differ from the 10-year period used in the example. 
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Figure 9. Example System Boundaries and Emissions Impact for Forest Cases 

Image Source: (Robert Matthews et al. 2014) 

A. Boundary: one-hectare forest stand 
over a 10-year period. 

There is an accumulation of carbon 
in the forest stand as trees grow. 
Some trees are removed through 
thinning, which moves stored carbon 
in the wood across the system 
boundary. There are carbon 
emissions from decomposing 
residues and soil organic matter. 

The net result is carbon 
sequestration (negative emissions) 
in the system over the timeframe. 

B. Boundary: one-hectare forest stand 
and harvested wood over 10 years. 

Similar to case A, except the 
harvested wood is included in the 
boundary. This wood is converted 
to products, which still exist at the 
end of the 10-year period, retaining 
the stored carbon. A portion of the 
harvested wood decays or is 
destroyed during processing, 
resulting in some carbon emissions. 

The net result is additional carbon 
sequestration over the timeframe. 

C. Boundary: one-hectare forest 
stand, harvested wood, and 
machines used for forest 
management over 10 years. 

In addition to case B, this case 
includes fossil fuel energy sources 
used for forest management 
operations, as well as emissions 
associated with the production and 
maintenance of the equipment. 

This reduces the net carbon 
sequestration somewhat relative 
to the previous example. 
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Analysis Boundary

Although not required for aLCA studies, most LCAs related to bioenergy production and use compare 

two or more activities or products. For cLCA studies in particular, the analysis boundary needs to 

include the bioenergy activities to be studied, as well as activities for a reference case providing 

equivalent services (Bird et al., 2011). In order to evaluate the full life cycle environmental impact, 

an LCA should consider the following main components for each system: land use, alternative fate 

of the fuel or feedstock (i.e., the alternative fate of the biomass feedstock or fossil fuel resource if 

not used to provide the energy service), and all activities associated with the production and use 

of the energy service (Figure 10). The disposal of any waste products generated, as well as emissions 

related to the construction, operation, and maintenance, and dismantling of facilities and equipment 

used for each component should also be included. The system components will be described in more 

detail in the following subsection. 

Figure 10. Basic Components in cLCA Boundary for Bioenergy 

Reference 
System 

Land Use 

Alternate 
Resource Fate 

Energy Carrier 
Production and 

Use 

Bioenergy 
System 

Land Use 

Alternate 
Resource Fate 

Energy Carrier 
Production and 

Use 

4.3 Reference System 

As described previously, cLCA studies are used to evaluate the change in GHG emissions associated 

with a particular action or decision associated with each scenario. For example, a bioenergy scenario 

may evaluate the impact of a particular policy on bioenergy production and use, in comparison with 

an alternative in which the policy does not exist. The reference scenario (or baseline) could be based 

on existing conditions, or business as usual (BAU), essentially a “no change” scenario from current or 
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planned activities. As stated by Matthews et al. (2014), “for each scenario, it is necessary to describe 

‘what the world looks like’ if the scenario were to be [realized]. This description takes the form of an 

appropriate definition of a system and its associated system boundary.” It should be noted that although 

it is not necessary to include a reference system in an aLCA study, this type of LCA can also be used 

to compare two or more different systems. In this case, each system would essentially be evaluated in 

a separate LCA analysis; when the analyses use the same (or equivalent) boundary, methods, and data, 

the systems could be compared side by side. 

The reference system selection has a tremendous impact on how the LCA results portray the net benefits 

of bioenergy. The reference system should be equivalent to a bioenergy system, and evaluated in a similar 

way (Bird et al., 2011). Equivalent systems would include relevant activities needed to provide the same 

amount of the end product being evaluated. However, there is no set requirement for what is included in 

any given study; the specific inputs depend on the goal and scope of the study. For a bioenergy LCA used 

for policy decisions, the reference system boundaries may include other factors besides the production 

and use of an alternate energy source such as impacts related to land use, and the alternate fates for the 

biomass feedstock (i.e., what would have happened if the biomass was not used for energy production). 

This is critical. For example, if land is included in the bioenergy system (i.e., if the boundary includes 

growing the biomass) then the same land must be included in the reference (whatever its alternative use); 

if the study is focused on a specific biomass resource, then the alternative fate of that biomass must be 

included in the reference. This is necessary to ensure fair comparison of the different scenarios. It is also 

worth noting that since cLCA typically uses system expansion10 (instead of the allocation methods used 

in aLCA), each scenario may need to capture multiple products and services. As such, the reference 

scenario may need to include the production of an alternative product that would be used instead of a 

product generated from the bioenergy production process. All of these considerations require making 

choices regarding reasonable counterfactual options for the baseline scenario. It is important to recognize 

that these choices and assumptions about various planned or hypothetical activities and their impacts may 

be difficult and uncertain. 

The diagram in Figure 11 provides an illustration of the major components in a bioenergy LCA that 

compares a bioenergy system with a reference system. These are described below. 

10 In the system expansion method, the system boundary is extended in order to compare two systems that are equal 
in scope including all products generated. This is described further in Section 4.9. 
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Energy Carrier Production and Use: The lower portion of the figure breaks out the components 

associated with the production and use of the energy service—since this section is likely familiar to 

anyone who has experience with energy-related LCA studies it will be discussed first. The energy carrier 

production and use for a bioenergy system may include biomass harvesting and collection, transportation 

to a conversion facility, resource conversion to an energy carrier (e.g., electricity, heat, and/or liquid 

fuels), energy distribution, and use of the energy. Components that occur prior to the conversion to 

energy are called upstream processes, while components occurring after the conversion are referred to 

as downstream processes. The associated emissions at each stage should be included in the LCA, and 

should consider the use of energy and raw materials as well as any direct emissions from the processes 

or activities themselves. The construction, maintenance, and dismantling of facilities and equipment 

should also be considered, as well as the disposal of any waste products generated. 

The reference case should consider equivalent steps for the energy service. As discussed above, the 

reference energy source and conversion technology selected for comparison will depend on the goals 

of the study. For fossil fuel, this may include: resource extraction, transportation to a conversion facility, 

resource conversion to an energy carrier, energy distribution, and use of the energy. Facility and 

equipment-related emissions and disposal of wastes must be included in the reference system as well. 

In order to be equivalent, the scenarios should typically be designed to provide the same quantity of 

end product (e.g., useful energy). For each subcomponent, only the emissions attributed to the production 

and use of the specific fuel/feedstock (or mix) being compared should be counted. For some studies, 

this requires allocation of emissions to the various coproducts generated during a process or activity.11 

A preferred approach for cLCA studies is to expand the boundary so that equivalent products are included 

in both systems. System expansion and allocation are discussed further in Section 4.9. 

It is important to note that even for the same energy service, the distribution and use of the energy may 

be different between the bioenergy and reference case due to facility locations and scale, which impacts 

the end results. Distributed energy projects will have different loss factors than large-scale utility projects 

that are typical for fossil fuel conversion. Efficiencies for both conversion and use of different energy 

types can also vary significantly and have a large impact on the GHG emissions profiles. 

11	 For example, coproducts generated during forest harvest activities including sawlogs, roundwood, and harvest 
residues all have different end-uses and values. 
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Figure 11. Example Life Cycle Components for Bioenergy and Fossil Fuel Reference Systems 

(Diagram developed by ANTARES for this report) 

Ex: biomass remains in forest, used Ex: biomass cultivation, procurement 
for wood product, or goes to landfill. of residues or waste materials 

Raw fossil fuel Biomass feedstock 

Processed biomass Fossil fuel 

Electricity; Heat Electricity; Heat 

Note that many of the subcomponents shown in the diagram appear to be the same for the reference 

and bioenergy systems. However, it is critical to realize that while the steps may be the same, the actual 

processes will be different for each system, and are likely to contain different activities occurring at 

different scales. Showing the same components on each side of the diagram also illustrates equivalency. 
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If the considered bioenergy system uses biomass as a direct replacement for another fuel, such as 

with co-firing; in this case the reference energy system is generally clear. However, in many other 

cases it is not so straightforward to select an appropriate reference system, as the energy production 

could come from a particular fossil fuel (e.g., coal, oil, or natural gas) or a mix, and could even be 

compared to other renewable energy sources. In a review of nearly a hundred bioenergy LCAs, 

Cherubini et al. (2011) noted that about three quarters of them used a fossil fuel reference system,  

while a much smaller percentage (12%) used another biomass resource or bioenergy conversion 

technology as a reference (e.g., comparison of new pellet stoves with older pellet stoves). The rest 

were categorized as aLCA studies and did not use a reference system. 

Schlamadinger et al. (1997) suggested that when the choice of reference system for energy is not clear, 

the best choice is “the least cost fossil energy system with the lowest GHG emissions and minimized 

environmental impact, fulfilling the same goals as the bioenergy system.” This guidance is based on 

the logic that a new plant would be needed either way, so that if bioenergy was not developed to meet 

demand, a fossil fuel plant would be built instead. However, in practice, it is unlikely that biomass energy 

will replace the least cost fossil energy system, at least based on the current conditions in the U.S. It is 

more typical that bioenergy would replace marginal, higher cost sources of energy. For example, biomass 

may be used to replace oil or propane for heating in areas that do not have access to natural gas. 

Bird et al. (2011) state that “ideally, in the most realistic evaluation, the bioenergy system should be 

evaluated against the energy system most likely to be displaced. However, in many real-life systems it 

is difficult to know which energy source will be replaced.” Potential options include using the emissions 

impact based on the average energy source mix or, for new capacity, using emissions attributes for the 

most likely technology to be implemented if bioenergy is not used. Using the best performing fossil fuel 

technology (from a GHG emissions basis) would provide a conservative estimate of the GHG impact. 

This is consistent with the recommendation from Schlamadinger et al. (1997) referenced above. In 

general, it is clear that comparisons of the considered systems are complicated by the fact that that 

it is difficult to even know what the baseline scenario should be. This is why it is useful to consider 

a few different scenarios, and why many LCAs do a comparison both with coal and with natural gas. 

The bioenergy scenario and reference scenario should generally use the same level of technology (such 

as best available) in order to avoid bias, unless there is a specific reason to consider a future technology 

that is not yet commercially available such as IGCC (Schlamadinger et al., 1997). 
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For a fossil fuel reference case, the study must also consider the technology and processes used 

to extract and process the fuel. For example, will it be based on the average of all the resource 

extracted such as conventional oil or natural gas, or a marginal resource such as shale oil or natural 

gas generated from fracking. 

Alternate Fate of Resource: The first component shown in Figure 11 considers the alternate fate of 

the resource, which is not used to provide the energy service being evaluated. This considers what would 

have happened to the resource if it was not used to provide that service. For example, if the biomass was 

not used as a feedstock for bioenergy generation, it may be landfilled or used in manufacturing a wood 

product. Typically, the alternative fate of the fossil fuel is that it would be left in place, unextracted from 

underground reserves, therefore having no emissions impact (R. Matthews et al., 2014). 

For forest biomass, the alternative fate of the material will depend on the specifics of the resource. For 

example, trees may be left to stand in the forest; harvest residues may be left in the forest to decompose; 

clean wood chips may be used to produce paper products; milling residues may be used for animal 

bedding or mulch; and wood waste products may end up in the landfill. Each of these alternative fates 

would have a different impact on the life cycle GHG emissions associated with the system. These are 

discussed further in Section 4.6. 

Biomass Production/Procurement: The bioenergy system should include impacts associated with 

production and procurement of the biomass feedstocks used to provide the energy service. This may 

include biomass cultivation activities and can include planting and management for energy crops or 

managed forests, which is directly related to the land use impacts described further below. 

Land Use: Changes in land use and land management is an important consideration in bioenergy 

LCA studies. For biomass resources generated from the land such as forest and agricultural biomass 

(in contrast to recovered materials from secondary processes, such as sawmill residues or urban wood 

waste), the land use activities will be considered in the bioenergy system. The reference system would 

consider what would have happened to that same land if it was not used to grow biomass for bioenergy. 

In a fossil fuel reference system, there will also be some land impacts associated with the fossil fuel 

extraction. The alternative use of this land should also be considered in the bioenergy system scenario, 

although this is not explicitly shown in the figure for simplicity. For both the bioenergy and fossil fuel 

scenarios, the land use impacted can include roads or other transportation networks to move the material, 

if those roads and networks can be attributed to the system under consideration. The LCA considers the 
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environmental impact of any changes made to the land, including changes in the carbon sequestration in 

vegetation or soil. For example, beginning to extract wood from a forest that was not previously managed 

or harvested would reduce the carbon stocks, while planting trees on marginal lands that were not 

previously forested could lead to an increase in carbon stocks. 

Indirect land use change can also be an important factor. Although particularly relevant for bioenergy 

systems using agricultural feedstocks, it can also be a consideration for forest biomass. This type of 

land use change refers to activities that occur outside of the system boundary, as an indirect result of 

biomass cultivation or use. For example, if bioenergy development or activity supplants cultivation or 

development of another product (e.g., a food crop) as part of direct land use change, this may result in 

a subsequent land use change elsewhere in order to produce the product that was offset by bioenergy. 

Further discussion of land use change (both direct and indirect) is included in Section 4.11. 

There has been controversy in the LCA community regarding appropriate baseline scenarios for aLCA 

studies, particularly with respect to Land Use. On one side of the debate, it is argued that aLCA should 

be solely based on the impact of the system under consideration, essentially an accounting of the 

absolute emissions associated with the product or activity (Soimakallio et al., 2015). This has been 

described as a no-baseline scenario, or a zero emission baseline scenario. The other side considers the 

fact that bioenergy can have a significant impact on land use and associated carbon stocks, and argues 

that without any human intervention the land would revert back to its original state (i.e., ‘natural 

relaxation’) (Milà i Canals et al., 2007; Helin et al.). For forestland, this would imply a baseline 

scenario in which all forest management and harvest activities are stopped, so that forests would 

continue to develop naturally and sequester carbon (potentially indefinitely, considering long-term 

forest cycles and barring natural disturbances such as diseases or wildfires). This situation has been 

described as a “no use” baseline scenario. 

Matthews et al. (2014) note studies that argue this second point appear to assume that if all forest 

management activities were stopped, the land would be left to develop naturally. This is not necessarily 

intended as a realistic option, but is proposed to provide a clear separation between the effects of “human

induced land-use” in a study system as compared to natural processes (Soimakallio et al., 2015). This type 

of baseline essentially assumes that there is no other use for the wood in this forest and that bioenergy is 

the only end use. However, forest management and harvesting typically result in a variety of output wood 

products; biomass fuels are often a byproduct of other higher-value products from the forest. Forests are 

rarely managed for just biomass alone. 
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That said, “It may be possible to justify the application of a ‘no use’ baseline in attributional LCA 

in contexts where the objective is to quantify the effects on the environment of an existing system, 

representing an existing activity, in comparison to the situation where the activity does not take place. 

It is certainly possible to understand the thinking of the proponents of such an approach by drawing an 

analogy with the calculation of GHG emissions associated with the use of fossil fuels” (R. Matthews et 

al., 2014). The point regarding fossil fuels refers to the fact that in many biomass LCAs, the alternative 

fate for fossil fuels is that they are not used (see discussion for the “Resource Use” category above). 

However, this type of argument is not analogous on both sides when the comparison is applied only 

to bioenergy, since a ‘no use’ baseline for fossil fuels assumes they are left in the ground undisturbed, 

but a ‘no use’ baseline for wood from a forest assumes there is no other managed use for the land and 

that natural relaxation would continue unhindered. 

4.4 Temporal Considerations and Impacts 

As mentioned in Section 4.2, it is important to consider the analysis timeframe in the system boundary, 

because there are a number of components and factors influenced by the selected period. Both aLCA 

and cLCA can have time dependent components. This includes potential changes in technology 

development over the considered period (such as improvements in process or conversion efficiency, 

or commercialization of advanced technologies), changes in biomass yield factors, market variations 

influencing demand for products included in the study, as well as the time difference between carbon 

uptake in the biomass and release during the energy conversion process or decomposition in the case of 

reference scenario (McManus and Taylor 2015). The latter point (and related considerations) regarding 

the time delay between emissions and removals is possibly the most important, particularly for forest 

biomass, which has long growing cycles. It is also an area that has inspired a lot of debate. 

While LCA studies associated with policy decisions may use relatively short timeframes associated with 

the policy horizon (20 years, for example), the climate impacts of bioenergy can extend much further. 

Furthermore, there is general agreement that while net emissions from bioenergy systems may initially 

be greater than the reference case, the cumulative emissions are often lower over an extended period. 

As such, some researchers stress the importance of considering longer timeframes to evaluate long-term 

impacts as well (e.g., Berndes et al., 2013; Miner and Gaudreault 2013). It is important to recognize that 

conventional LCA studies typically do not consider when emissions and removals occur; all emissions 
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and removals are assumed to occur at the same time. Since there is no set standard or requirements 

for such considerations, temporal issues are considered on an “ad hoc basis” for bioenergy systems 

(McManus and Taylor 2015). This means assumptions in the model and what is included can vary 

from one LCA to the next. The time frame for analysis will also vary based on the period of interest 

for the analysis goal and the associated system boundary. 

Forest systems have both short- and long-term carbon cycles. Carbon is sequestered as the trees grow; 

the rate of uptake varies based on tree age, forest type, and growth rate. However, since it can take 

decades for trees to reach maturity, this is a long-term sequestration process. Emissions or removals 

occur as a result of decomposition, harvest, and disruptions such as wildfires, diseases, or pests. In 

contrast to the sequestration activities, these releases can occur in very short timescales. Decomposition 

is a possible exception; depending on the environmental factors the process can occur relatively quickly 

or take a very long time for the material decompose fully. “Different components of forestry systems 

(e.g., vegetation, litter, soil and harvested wood) can also respond to management with different reaction 

times” (Robert Matthews et al., 2014). 

There is general consensus that the carbon sequestration and emission cycles have an impact on the 

timing of the net GHG benefit of bioenergy systems. “For a number of possible sources of additional 

forest bioenergy, there must be an initial period during which associated GHG emissions are increased, 

followed by a ‘switch-over’ to net decreases in GHG emissions. A number of research studies have 

reported such a pattern in GHG emissions of forest bioenergy sources, with estimates of the period to 

the point of switch-over ranging from one year to 100 years or more” (Robert Matthews et al., 2014). 

As a result, for some biomass sources the time period considered in the LCA study is critical, and can 

impact whether bioenergy has a net carbon benefit or liability. 

These types of temporal considerations vary among biomass feedstocks. For example, agricultural 

resources and short rotation energy crops have much shorter growth cycles, so the timescale is less 

important. For wood waste materials, the reference scenario has the most impact on time considerations, 

since the alternative fate of these resources is likely to be disposal in a landfill. Since the decomposition 

process can take a very long time in landfills, the carbon in the wood is also being stored for some time 

(Bird et al., 2011). 
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As noted above, the analysis period also impacts assumptions in the reference case. For example, for short 

time frames current or near-term technologies will be adequate, while for long time frames it would be 

appropriate to consider changes in technology and fuel type (Agostini, Giuntoli, and Boulamanti 2014). 

4.5 Spatial Scale 

The spatial boundary is used to define the area that will be included in the analysis. For forest biomass, 

the spatial scale or geographical extent of the analysis impacts the LCA in terms of forest dynamics and 

carbon stock changes. This is related to the temporal impacts described in the Section 4.4, as the carbon 

stock can vary significantly for an individual stand of trees associated with forest management, but may 

average out over an entire forest area depending on the level and type of harvest activities. As described 

by Miner and Gaudreault (2013), “the importance of spatial boundaries depends on how temporal 

boundaries are established and on whether it is important to understand the timing of transfers of carbon 

to and from the atmosphere.” The latter point is based on when the analysis timeframe begins, as some 

analyses start the assessment at the time of harvest, resulting in a significant ‘carbon debt’ due to the 

removal of standing carbon in the forest. 

Thus, particularly for forest biomass there is an important link between the area included in the 

assessment and the timeframe considered. As an example, the well-known and much debated Manomet 

study considered only the stand of trees harvested in a given year, defending the position by stating that 

“when a complete representation of the baseline is taken into account, the landscape-scale and the stand-

level frameworks may yield the same result” (Walker et al., 2010). This decision led to a number of 

critiques from bioenergy defenders, such as Strauss (2011) who noted that the selected scale “ignore(s) 

the fact that the forest is a system.” The study’s stand level analysis contributes to its conclusions that 

a relatively long period (referred to as ‘carbon debt payoff’ period) occurs during which bioenergy has 

greater GHG emissions than a fossil fuel reference case for many of the considered scenarios in the 

study (Walker et al., 2010). 

Other researchers have suggested that the spatial scale for forest bioenergy systems should at least be 

the entire supply area (Miner and Gaudreault 2013). Furthermore, on a large scale, changes in forest 

management resulting from bioenergy demand can lead to net additional carbon sequestration overall, 

even if some of the stand level impacts lead to a reduction in carbon sequestration relative to the reference 

scenario (Cowie, Berndes, and Smith 2013). 
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Considering the impact that scale can have on analysis results, Cowie, Berndes, and Smith (2013) suggest 

that for policy decisions, GHG impacts should be evaluated on landscape scale, referring to the overall 

area that is important to the policy and climate change mitigation (e.g., national or regional area). Miner 

and Gaudreault (2013) note that spatial boundaries for policy studies are often based on the area where 

the policy will be implemented (e.g., state of interest for state-level policies). However, larger spatial 

boundaries can help to reduce sources of leakage and other indirect effects, such as by including areas 

where forest activity may be shifted as a result of bioenergy system activities (Miner and Gaudreault 

2013). This could include nearby states or counties at a minimum. However, larger spatial boundaries 

do add additional complexity to the analysis. 

4.6 Biomass Resource Type and Alternate Fates 

The biomass resource type used for bioenergy, and its alternate fate in a reference scenario, both have 

a significant impact on the results of the LCA. In a prospective analysis, the LCA will need to consider 

the likely source of material and evaluate accordingly. For biomass systems using forest resources, 

changes in forest management associated with obtaining new resources must be considered since 

they can have a significant impact on the GHG impacts. 

Bioenergy feedstocks used to generate heat and power typically comprise: 

•	 Wood from commercial harvests 
•	 Silvicultural waste wood (e.g., harvesting residues, small and unmerchantable trees 


from thinning operations)
 
•	 Mill residues (e.g., by-products of sawmills) 
•	 Site conversion waste wood (wood from clearing forestland for development) 
•	 Recovered wood waste from products at end of life (e.g., recovered C&D wood or
 

source-separated wood from municipal solid waste)
 

The carbon cycles in forest systems are complex. Figure 12 illustrates how carbon is naturally 

sequestered, released, and exchanged amongst the five carbon pools in forests: aboveground biomass, 

belowground biomass, litter, coarse woody debris, and soil. Another related carbon pool is harvested 

wood products, which may be considered when human interaction and forest management is included. 
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Figure 12. Forest Carbon Pools and Naturally Occurring GHG Dynamics 

Image Source: (Robert Matthews et al., 2014). 

Forest management activities can impact all of these carbon pools. Various methods could be used 

to intensify harvesting or removals in order to obtain additional woody biomass resources from forests. 

Some activities can increase forest carbon stocks, while others are more likely to reduce long-term 

carbon stocks. Table 9 lists a number of potential activities that could be implemented in order to obtain 

additional forest biomass materials for bioenergy production, and describes examples of what may be 

expected to happen without that change. The alternative fate of the resource is relevant for the reference 

scenario in a cLCA study, for example. Some of these potential management activities are very unlikely 

to occur in any near-term practice, unless there are drastic changes in incentives or value for bioenergy 

or other drivers, and are noted as such. The right-most column of the table indicates the activities that 

are most relevant to the State, based on ANTARES internal knowledge of forestry in the area. 
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Table 9. Examples of Potential Changes in Forest Management to Meet Increases in Bioenergy Demand 

Table adapted and modified from (Matthews et al., 2014, pp.47-50), except last column “Relevance to NY” added based on ANTARES experience. 

Activity to obtain additional biomass resources Examples of what would happen otherwise Relevance to NY 

Extraction of harvest residues that were previously not 
harvested. 

The harvest residues would be left on site to decompose, or burnt 
on site as part of site management for new tree establishment. 

Likely, except burning of 
residues not common 

Introduction of thinning of small-diameter trees that
were previously uneconomic to harvest. 

The thinning operations would not be carried out. By not thinning, it 
is likely the forest stand may not develop as well (e.g., higher tree 
density, less vigorous stand, lower-value trees in the stand, smaller 
tree sizes, suppressed understory vegetation). 

Possible, not likely 

Introduction of harvesting for co-production of 
materials and bioenergy in forest areas previously not 
managed for production (e.g., because this was
uneconomic). (Note 1) 

The harvest would not be carried out at all. Consequences would be 
site-specific (e.g., depending on the details of harvesting, tree 
species involved, whether stands are plantations or semi-natural). In 
some situations, a private landowner may decide to convert the land 
to another productive use (potentially involving deforestation). 

Possible, not likely 

Diversion of harvest residues or sawmill coproducts 
from use in alternate products (such as paper products 
or engineered wood products) for use as bioenergy
instead. 

Depends on future demand and prices for alternate products 
compared to bioenergy. Possible, not likely 

Enrichment of areas of degraded forest to create more 
productive forest that is managed for co-production of 
materials and bioenergy feedstocks. (Note 1) 

Most likely the land areas would remain as degraded forest. In some 
situations, a private landowner may decide to convert the land to 
another productive use (potentially involving deforestation). 

Not likely 

Shortening of rotations in forest areas that are already 
harvested to optimize for total biomass production. Rotations would remain longer, to optimize for other products. Not likely 

Conversion of cropland or grassland areas to ‘short 
rotation biomass forests’ for bioenergy as a sole 
product. (Note 2) 

Land would remain as cropland or grassland. Not likely in the near 
term 

Conversion of cropland or grassland areas to forest 
stands managed for production. Silvicultural wood 
waste used for bioenergy. (Note 2) 

Land would remain as cropland or grassland. Possible, not likely 

Note 1 - Biomass demand for energy results in added value that helps to make activity economic. 
Note 2 - Extreme scenario, unlikely without external driving force (policy or incentives). 

50 



 

  

   

    

    

 

    

   

    

   

 

   

  

   

  

     

   

 

      

    

     

      

  

    

  

   

       

                                                           

     
    

 

Forest systems and wood markets are complex, and there are a variety of pathways to obtaining 

potential bioenergy feedstocks. Since wood can be used to make a lot of different products, many 

of the components of trees have a variety of potential uses. It is important to consider this in LCA 

studies, as the alternative fate of the material impacts the carbon emissions for biomass. 

Although it is very unlikely that bioenergy demand would divert wood from high-value sawtimber 

products, there is a possibility that woody residues and coproducts used for lower value products like 

paper and engineered wood products could be diverted to bioenergy if prices for this material at different 

end users are similar. This can have a subsequent impact on the bioenergy GHG emissions (relative to the 

reference scenario) if alternate materials or products are needed to meet market demands. Using urban 

waste wood (such as recovered C&D debris) for bioenergy is generally preferable from a GHG emissions 

perspective to disposal in a landfill.12 However, this is not necessarily the case if the wood waste that was 

diverted for bioenergy would otherwise be recycled for manufacture of a wood product (like engineered 

wood) (R. Matthews et al., 2014). 

Another likely target for additional biomass supply is extraction of harvest residues in areas where it is 

not already done. This can lead to an overall decrease in carbon stock of the forest (such as in the coarse 

woody debris carbon pool), when accounting for the cycles of accumulation and decomposition over time 

(Cowie, Berndes, and Smith 2013). An example of this is illustrated in the simplified graph in Figure 13, 

which shows a total reduction of about 2% of total forest carbon over a 50-year period. The harvesting 

cycle occurs throughout the entire period shown, but only on a small portion of the forest area considered. 

The extraction of harvest residues starts at year 10 in the graph, and assumes removal of half of the 

branches and deadwood. Note that the y-axis does not go to zero; the small scale emphasizes the 

relatively small reduction in carbon stocks. 

The main point here is that if forest management practices change to start removing harvest residues in 

areas where residues were not previously collected, this can have a long-term impact on forest carbon 

stocks, all else being equal (Holtsmark 2013). Specifically, when considered on its own and without 

additional forest management changes, additional removal of harvest residues will decrease forest carbon 

12 However, wood typically takes a very long time to decompose in landfill, so the carbon in the wood is essentially 
“stored” in the landfill. The relative merit of storing wood in a landfill vs. using it for bioenergy will depend on the 
reference energy product displaced and the efficiency of the bioenergy system. 
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stocks, reaching a new equilibrium once all stands are brought into the new management regime, after 

a period equal to the rotation length of the forest management system. This means that harvest residues 

cannot be assumed to be a carbon neutral feedstock, even if they would otherwise decompose in the forest 

over time.13 This should be a factor in LCA studies for bioenergy. 

Figure 13. Example Impact of Additional Residue Extraction on Forest Carbon Stock 

Image Source (R. Matthews et al., 2014). Note that soil carbon impacts are not included. The wavy lines indicate natural changes in carbon 
stocks due to decay and growth. 

Furthermore, LCA studies should consider the level of additional biomass demand for bioenergy 

relative to the available resource. “The contribution of biogenic carbon to GHG emissions of forest 

bioenergy is sensitive to the scale of consumption” (R. Matthews et al., 2014). This is because the 

level of consumption can impact the type of resources used, and can also influence the types of 

forest management activities that are used to supply the resource. In the long run, this may or may 

not have significant impact on forest carbon stocks depending on activities used and site- and  

region-specific factors. 

13	 There are some areas, particularly hot and wet climates where the decomposition process produces methane. 
In these cases, removal of harvest residues may provide a net benefit. However, such conditions do not apply in 
New York State. 
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4.7 Impact Categories Included in Analysis 

While all LCAs consider the environmental impacts of a product or system, there can be significant 

variation in terms of the specific impact included. The ultimate goal of the study should inform 

selection of what impacts to consider, although in some cases data availability may limit the selection. 

As stated in Chapter 1, GHG emissions is the main factor of interest in this report. However, this section 

also describes some of the other factors that may be included in LCAs for informational purposes. 

Most, but not all, bioenergy LCAs consider GHG emissions. Carbon dioxide is one of the main GHG 

emissions associated with forests and energy production. Bioenergy LCAs also typically account for 

CH4, and N2O emissions. Methane (CH4) is generated during anaerobic decomposition of organic 

materials such as biomass. It is also a product of incomplete combustion and can be emitted in mining 

and extraction of fossil fuel resources (Bird et al., 2011). Nitrous Oxide (N2O) can be generated during 

combustion, as well as through the microbial processes of nitrification and denitrification, which are 

related to synthetic fertilizers, manure, and nitrogen-fixing plants (Anderson, et al. 2010). Other direct 

GHGs such as SF6, HFCs, PFCs, and Halocarbons are rarely considered in bioenergy LCAs, as they do 

not contribute significant emissions in most energy systems.14 

All considered GHGs are typically converted to CO2-equivalent (CO2-eq) emissions using 100-year 

global warming potential (GWP) values from Intergovernmental Panel on Climate Change (IPCC), 

so that the various emissions can be combined and compared. It is important to note that there are 

alternative methods that could be used to evaluate climate impacts, and Plevin et al. (2014) point out 

that there is ongoing debate regarding the use of GWPs to estimate climate impacts rather than one of 

the other metrics, although the IPCC method is still the standard method applied by the LCA community. 

Part of the issue is that GWP values are only applicable for well-mixed greenhouse gases, which have a 

long lifetime. GWP does not include other anthropogenic factors that impact climate such as near-term 

climate forcers (e.g., ozone and aerosols, and their precursors), which have very short lifetimes, but still 

cause a near-term impact on climate warming over a period of several decades (Levasseur et al., 2016). 

Although reduction of such emissions could reduce peak warming temperatures, they are not captured in 

the GWP metric. In order to capture such effects, the most recent IPCC guidance (IPCC AR5) 

14 Note that generally only anthropogenic GHG emissions as delineated by the Intergovernmental Panel on 
Climate Change (IPCC) are included in LCA studies. This is why water vapor is not included, for example. 
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recommends using both GWP and another metric, the Global Temperature change Potential (GTP)15 

(Levasseur et al., 2016). The GTP estimates the change in global mean surface temperature at a 

selected year in the future following an emission of a given substance (relative to CO2 reference), 

and considers the overall potential climate response based on the amount of time the substance remains 

in the atmosphere and the effectiveness in causing radiative forcing (IPCC 2014). In contrast, GWP only 

measures the radiative forcing of an emission over an accumulated time period, relative to CO2 reference. 

In addition to GHG emissions, some LCAs also include environmental factors such as emissions of other 

air pollutants (e.g., NOx besides N2O, SOx, particulates), and water resource impacts such as acidification 

and eutrophication, which can be significant particularly for agricultural biomass feedstocks (Cherubini 

and Strømman 2011). Bioenergy LCAs often also include an evaluation of the energy balance of the 

system, although that tends to be primarily included in LCAs for agricultural resources and energy 

crops, and for biofuel conversion processes. In some cases, an evaluation of social impacts is also 

considered in LCA studies. 

It should be noted that bioenergy impacts climate change through other climate forcers beyond the direct 

GHGs described above. However, as indicated by Plevin et al., “because there are no widely accepted 

GWPs for several pollutants that are known to significantly affect climate, the climate forcing resulting 

from these pollutants is generally not included in LCAs” (Plevin, Delucchi, and Creutzig 2014b). One 

of these pollutants is black carbon, an aerosol produced from combusting biomass and coal, which 

“causes a positive radiative forcing through direct absorption of solar radiation, … indirectly induces 

changes in cloud properties, and also changes snow albedo once it deposits on the surface” (Agostini, 

Giuntoli, and Boulamanti 2014). Other pollutants with climate changing impacts include sulfates, and 

indirect GHGs or GHG precursors such as CO, VOCs, and NOx. Different types of land cover also 

impact climate change due to albedo, which is a measure of reflectivity of the Earth’s surface. Lighter 

colors reflect solar radiation, while darker colors absorb solar radiation. As a result, darker colored 

trees, for example, tend to absorb more energy than areas with snow and thereby cause additional 

warming (climate forcing). The impacts of albedo are typically most important in boreal and snow-

covered regions, and less important in areas with deciduous forests (Matthews et al., 2014). 

15	 More specifically, as defined in Levasseur et al. (2016), the Global Temperature change Potential is “the change in 
global mean surface temperature at a chosen point in time TH [yr] after a pulse-emission, relative to the temperature 
change following a pulse emission of a unit quantity of CO2.” 
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4.8 Functional Unit 

In an LCA, the environmental performance of a system or process is presented in terms of a single 

functional unit in order to facilitate comparison between systems as well as components of the systems. 

However, there is no single functional unit consistently applied for bioenergy LCA studies, and the goal 

and scope of the LCA study typically influences selection of the functional unit. The unit selection can 

impact the results and make comparison between studies difficult. Several typical functional units that 

apply to bioenergy LCAs are described below, with examples specifically based on the GHG emissions 

impact since that is the focus of this report. 

One option for functional unit selection is to express LCA results on the basis of biomass feedstock input, 

either on a mass or energy basis (e.g., kg CO2-eq / kg biomass, or kg CO2-eq / MJ biomass). This option is 

independent of both the conversion process and the type of output, and can therefore be useful to compare 

alternative uses for a given feedstock (Cherubini et al., 2009). 

Another input-based functional unit is based on the land area (e.g., kg CO2-eq / hectare). This is 

particularly useful in the context of agricultural land use, when the availability of land is a constraining 

factor and is therefore recommended predominately for studies evaluating dedicated biomass crop 

feedstocks (Cherubini et al., 2009; Bird et al., 2011). 

Output-based functional units are expressed in terms of useful energy output (e.g., kg CO2-eq / kWh for 

heat and power generation, where the kWh can be expressed in terms of electricity or heat output, or 

both. For heat generation a functional unit of kg CO2-eq / MMBtu may be used instead). Presenting results 

in this way includes the conversion efficiency and is useful to compare the impacts of providing the same 

service from different fuels (Cherubini & Strømman 2011; Bird et al., 2011). This is particularly useful 

for energy produced from biomass residue feedstocks (Cherubini et al., 2009), since a unit based on land 

area would not apply. 

As part of a literature review of biomass energy LCA studies, Cherubini & Strømman (2011) also 

identified another type of functional unit based on year (e.g., kg CO2-eq/yr). This was noted as useful 

when it is desired to avoid allocation of emissions for conversion processes that result in several 

products as it would provide total annual emissions for the process itself instead of for a particular 

product. However, it is worth noting that this functional unit was the least utilized, making up only 5% 

of the 104 different studies reviewed. The majority of these studies (70%) used output-related functional 

units, while 15% used land area as the basis for results, and 10% were based on input-related units. 
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For bioenergy, the functional unit should be the energy service delivered. However, some studies also 

use a delivered feedstock unit (e.g., per MJ feedstock prior to conversion to energy product) in order to 

facilitate comparisons of intermediate products such as wood pellets. 

It is important to note that overall LCA results may be presented in a different way, especially for 

forest biomass resources. This is a different consideration than the functional unit, and will be 

discussed in Section 4.12. 

4.9 Allocation Methods 

Various methods are applied in order to attribute life-cycle emissions and other environmental impacts 

to the various outputs of a product system (coproducts). Despite much discussion in this area, there is 

no consensus on a single method to use, and often the applied method depends on the goals and type 

of assessment. The selected method is particularly important because it can significantly impact the 

end result (Curran 2007). As noted in Section 4.1, cLCA uses system expansion, while aLCA uses 

other allocation methods. 

For bioenergy systems evaluated via aLCA, the most typical allocation methods are based on the 

following qualities of the products: mass, energy content, or economic value. For these types of 

allocations, the emissions or other environmental impacts are attributed to each product based on 

their contribution to the total outputs. For example, if an energy-based allocation was applied to the 

outputs in a CHP process in which 40% of the total useful energy output was electricity (and the 

other 60% was steam), then 40% of the emissions would be attributed to the generated electricity.  

Another option is to essentially avoid allocation by using system expansion, which is the method used 

for cLCA studies. With this method, the system boundary is extended in order to compare two systems 

that are equal in scope including all products generated. For example, if the process of interest generates 

two distinct products that would otherwise be produced via two separate processes, both of these separate 

process would be included in the reference system for comparison. Another way this can be applied 

is by subtraction, or the “avoided burden approach” (Curran 2007). This process has also been 

called substitution (Wardenaar et al., 2012). In this case, the environmental impacts associated with 

production of the secondary product via an alternate method is subtracted from the environmental 

impacts associated with the production of the primary product being considered. It is considered 

“conceptually equivalent” to system expansion, but that does not mean it will have the same results 

when applied (Wardenaar et al., 2012). 
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Allocation may be needed at several stages within the system being considered, whenever multiple 

products are generated from the processes within the product system. For example, woody biomass 

feedstocks are often generated as a by-product or coproduct, particularly for forest biomass. If a 

harvesting operation generates sawtimber, pulpwood, and bioenergy residues from the same operation, 

it will be necessary to decide how to allocate GHG emissions and energy inputs among these three 

products in an LCA study. Allocation could also be needed if multiple end products are generated, 

although this is more common for biofuel production than other energy carriers.16 For bioenergy 

conversion processes that only result in a single main product such as heat or power, no allocation is 

necessary for the end product (although allocation may still be needed for the feedstock coproducts). 

However, some procedure would be needed for combined heat and power projects. In this case, system 

expansion would be a reasonable option to avoid allocation, although allocation by energy content or 

economic value could also be applied for an aLCA. 

Similar allocation methods can be applied for feedstocks and end products; mass and market value are 

likely to be most applicable. For example, these methods were both applied for a life cycle inventory 

assessment for wood fuel pellets produced from hardwood flooring residues (Reed et al., 2012). The 

allocation method had a significant impact on the GHG assessment for the pellets, since the residue 

made up approximately 50% of the mass of the input material, but contributed only around 1% of the 

total value of the end products (pellets and hardwood flooring). 

Each allocation method has advantages and disadvantages, and selection of which method to use often 

depends on the goals of the study. Mass and energy allocation are relatively straightforward, but may not 

accurately describe resultant emissions or environmental impacts. Economic or market value allocation is 

complicated by the fact that values change over time, and can also vary by location.17 

Both ISO and the International Energy Agency Bioenergy Task 38 consider “best practice to expand 

the system boundary of both the study and reference systems to include all significant sources of GHG 

emissions and energy uses, and assure equivalent services and coproducts” (Bird et al., 2011). System 

expansion can avoid the sometimes arbitrary allocation process, but also adds to the modeling complexity 

and requires additional data. Data accessibility and time limitations can impact the practicality of utilizing 

16	 Biofuel production processes typically result in multiple coproducts that are generated concurrently with the main 
biofuel product, such as dried distillers grain solids, which is an animal feed generated as a coproduct of corn ethanol. 

17	 As such, a standardized value is usually applied within a given study. 
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this method, although life cycle inventory databases such as the one developed by National Renewable 

Energy Laboratory or Ecoinvent can help to provide generic information for background processes 

(National Renewable Energy Laboratory 2013). It is important to consider the accuracy of additional data 

and assumptions made when utilizing this method. In some cases, it may be impossible to apply system 

expansion, such as when there is no substitute for another product, or it involves processes that have other 

coproducts, extending the expansion in an unending cycle (Curran 2007). 

Note that allocation is typically only applied to the main products generated from the process, not 

to waste products. Ultimately each analysis will require decisions on what approach to take with 

allocation, and which products are included. Allocation decisions are needed at many points in the 

analysis, including feedstock, conversion, and end products with value. Because of the inevitable 

variation from one assessment to the next, it is important to be clear in the presentation of results 

where allocation was applied and how it was done. 

4.10 Data Inputs and Selection 

A lot of data are required in an LCA study and will vary based on system boundary, location, time frame, 

and other choices. Examples of some of the basic information needed for a bioenergy system and a fossil 

fuel reference system are shown in Table 10 and Table 11, respectively. These tables are only examples 

intended to provide a high-level indication of the complexity and depth of data that may be needed for an 

LCA study, considering that each listed data point will vary based on specific choices in the analysis, and 

will be impacted by site specific factors, and spatial and temporal boundaries. In practice, each study will 

have specific data requirements to meet the goal and scope of the analysis. 
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Table 10. Example Data Requirements for GHG and Energy Balance for Bioenergy System 

Adapted from (Bird et al., 2011) 

Process step Parameters to be collected or estimated Variable calculated 

Land management 
change 

Change in carbon stocks in soil and vegetation 
as a result of the bioenergy system 
Biomass yield/growth rates 
Residue amount and use 

Carbon stock change due 
to change in land use or 
land management 
activities 

Cultivation and 
harvest of biomass 

Co-products amount and type 
Fertilizer amount and type, and herbicides and pesticides use 
Fuel use by machines e.g. tractor, feller, skidder 
GHG emissions for fertilizer, herbicide and pesticide 
production 

GHG emissions and 
energy input from 
cultivation, management, 
and collection and 
upstream emissions 
associated with 
agrochemical inputs. 

Transportation of 
feedstock 

Transport distance and mode 
Fuel use per unit distance transported 

GHG emissions and 
energy input from 
transportation 

Conversion to 
energy carrier 

Auxiliary materials input 
Co-products amount and type 
Energy and material efficiency of conversion process 
Energy demand of conversion facility 
GHG emissions and energy balance for auxiliary materials 
production 

GHG emissions and 
energy input from 
conversion 

Distribution of 
energy carrier 

Distribution distance and mode 
Distribution losses (e.g. electricity grid) 
Energy demand of distribution system (e.g. district 
heating system) 
Fugitive GHG emissions for the distribution system 
(e.g. natural gas grid) 

GHG emissions and 
energy input from 
distribution 

Energy Use Energy efficiency 
Auxiliary energy demand 
Auxiliary materials input 

GHG emissions and 
energy input from use 

Disposal of Wastes Quantity and type of waste generated throughout various 
processes 

GHG emissions from 
waste products and end
of-life phase 
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Table 11. Example Data Requirements for GHG and Energy Balance for Fossil Reference System 

Adapted from (Bird et al., 2011) 

Process step Parameters to be collected or estimated Variable calculated 

Biomass usage 
change 

Carbon stocks in wood products, forest residues, and landfill 
(for waste wood materials), as applicable 

Carbon stock change 
due to change in 
biomass use 

Land management 
change 

Carbon stocks in soil and vegetation affected by the reference 
system 

Carbon stock change 
due to change in land 
use or land 
management activities 

Extraction of fossil 
fuel 

Energy requirement in fossil fuel extraction (e.g. equipment, 
pumps) 
Co-products amount and type 
Auxiliary materials input 
GHG emissions for auxiliary materials production 

GHG emissions and 
energy input from 
extraction 

Transportation of 
fossil fuel 

Transportation distance and mode 
Energy requirements by transportation 

GHG emissions and 
energy input from 
transportation 

Conversion to 
energy carrier 

Energy and material efficiency of conversion process 
Energy demand of conversion facility 
GHG emissions and energy balance for auxiliary materials 
production 

GHG emissions and 
energy input from 
conversion 

Distribution Distribution distance and mode 
Distribution losses (e.g. electricity grid) 
Energy demand of distribution system (e.g. district heating 
system) 
Fugitive GHG emissions from the distribution system 
(e.g. natural gas grid) 

GHG emissions and 
energy input from 
distribution 

Energy Use Energy efficiency 
Auxiliary energy demand 
Auxiliary materials input 

GHG emissions and 
energy input from use 

Disposal of Wastes Quantity and type of waste generated throughout various 
processes 

GHG emissions from 
waste products and 
end-of-life phase 

4.11 Land Use Change 

As described previously, land use is an important component in bioenergy LCA studies, and can result 

in negative or positive impacts on the GHG balance for bioenergy systems. As with other factors, there 

should be an intentional choice to include or exclude this in an LCA study, and a clear explanation of 

this decision in results. Furthermore, if considered in the bioenergy system analysis, equivalent land 

use change components should be considered for the baseline scenario. 
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At a high level, Land Use Change (LUC) can include “either the conversion of natural ecosystems into 

managed lands, or changes in the management of already appropriated land” (Berndes et al., 2013). 

Forest clearing so land can be used for something other than forest growth, or afforestation where 

open land is converted to forest land are clear examples of land conversion. For forest lands, LUC 

can also include management activities such as changes in tree species or stand density, harvest 

cycles, harvest residue management, and other forest management practices. 

It is important to realize that not all researchers mean the same thing by Land Use Change. For example, 

some researchers do not include land management change as part of LUC, although such activities may 

still be considered elsewhere in the study. This is one reason why it is important to clearly state what is 

included in an analysis. For the purposes of this report, we are using the broader definition including land 

use changes and land management changes, to facilitate discussion of these related components together. 

As stated by Berndes et al., (2013), “LUC can affect GHG balances in a number of ways, including: 

(1) when biomass is burned in the field during land clearing; (2) when the land management practice 

changes so that the C stocks in soils and vegetation change, and/or non-CO2 emissions (N2O, CH4) 

change; and (3) when LUC results in changes in rates of C sequestration, i.e., the CO2 assimilation 

of the land may increase or decrease relative to the case in which LUC is absent.” 

Forest management changes can result in an increase or decrease in carbon stocks, depending on specific 

activities implemented. An example of an activity that would have a carbon sequestration benefit is 

reforestation of degraded land, which can result in higher carbon stocks and improvement of soil quality 

over time. Meanwhile, “shortening forest rotation length in order to obtain increased output of timber and 

biomass fuels leads to decreased C stock in living biomass (other things being equal)” (Berndes, Bird, and 

Cowie 2011). An example of this is shown in Figure 14, in which the quantity of carbon stored in the 

forest (black line) decreases as the length of rotation period decreases. 

This is not to say that a bioenergy market will lead to a decrease in rotation length. In practice, 

rotation periods are generally determined based on economic value, such that growth and associated 

harvest volumes are optimized for the desired end product mix, based on various factors including 

markets for different products and forest response to thinning or other management activities. Cintas 

et al. (2016) provides an example in which the bioenergy market led to increased rotation length. 
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Further, while decreasing rotation periods can diminish the living biomass in the forest, a significant 

portion of this material may be used in long-lived harvested wood products, thereby limiting the GHG 

emissions impact. It is also important to point out that other management changes can increase carbon 

stocks on forest land when rotation length is decreased, such as by increasing stocking density, using 

improved trees that grow faster (and therefore sequester carbon at a faster rate), adding fertilizer to 

increase growth, or managing weeds in a plantation to increase growth rates. 

Figure 14. Example Relationship Between Forest Carbon Stocks and Rotation Period 

Image reproduced from (R. Matthews et al., 2014). 

Increasing harvest removals from forests can also lead to a decrease in carbon stocks, unless accompanied 

by forest management activities to increase growth. As stated by Berndes, Bird, and Cowie (2011), “to the 

extent that increased demand for forest bioenergy makes such measures feasible (i.e., they would not have 

taken place in a scenario without bioenergy demand) the effects of changed forest management should be 

considered when evaluating the climate change mitigation benefit of forest bioenergy.” 
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Direct land use change refers to changes occurring in the area where biomass feedstocks are cultivated 

or harvested within the boundary of the LCA study. When such activities lead to changes in other areas 

outside of the product system, this is called indirect land use change (iLUC). In addition to displacement 

of activities previously realized on the land where biomass is generated (e.g., crop production), iLUC can 

also include changes in land management such as intensification of activities elsewhere (Berndes, Bird, 

and Cowie 2011). Note that these connections are very difficult to measure in the real world, because 

there are lots of factors influencing decisions on land use outside the LCA system boundary. 

Additional use of biomass for energy can also potentially lead to other indirect effects (leakage), which 

can impact life cycle GHG emissions. One example is the rebound effect: a large increase in bioenergy 

production would result in lower fossil fuel demand, which could then lead to decreased prices for fossil 

fuels and thereby cause demand to grow again. Another example is if the increase in bioenergy leads to a 

perceived greener energy source, such that end users reduce conservation efforts and use more energy 

overall. Ideally, cLCA studies should consider such indirect effects. So far, such effects are mostly all 

hypothetical, and the amount of bioenergy that would be needed to make such an impact, and the 

significance of such effects, are not well understood. 

LUC impacts are typically very difficult to quantify, as there are a lot of uncertainties. Although generally 

easier to evaluate than iLUC, estimating emissions from direct land use change can still be challenged by 

data limitations and understanding of how land management practices impact carbon dynamics (Berndes 

et al., 2013). Meanwhile, iLUC and leakage require large scale or global modeling of complex markets 

dynamics. However, there is growing acknowledgement in the bioenergy LCA community that it is 

important to consider these effects.18 

Concerns and issues for iLUC are generally focused on the agricultural sector, particularly with regards to 

converting crop land used for food to biomass crops for energy. Although indirect effects can be a factor 

in the forestry sector, it is typically most critical for deforestation/afforestation or development of energy 

crops. Matthews et al. (2014) stated that a typical approach for cLCA studies is to “constrain the relevant 

activities so as to avoid significant risks of iLUC.” 

18 Of course if LUC impacts are included in a bioenergy LCA, they should also be considered for the comparison or 
reference case scenarios as well, regardless of the energy source used. 
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Avoiding or reducing negative LUC effects can be accomplished by setting up land use restrictions, 

and targeting unused marginal or degraded lands for conversions (e.g., energy crop cultivation); in 

some cases, this can even increase carbon stocks in the soil (Berndes, Bird, and Cowie 2011). It is 

also worth noting that productivity improvements reduce land requirements and LUC pressure. 

Some examples of biomass that could be used for bioenergy with limited LUC impacts include: 

•	 Biomass obtained from forest clearing as a result of activities unrelated to biomass production, 
such as to clear land for development – no LUC impact (assuming all of the burden of the 
activity is allocated to the primary land clearing purpose) (Berndes et al., 2013). 

•	 Biomass that would otherwise be landfilled or would decompose in wet conditions – no iLUC 
impact, and possibly some additional benefits from avoided methane emissions (Berndes et al., 
2013; Haberl et al., 2012). 

•	 Removal of harvest residues that would otherwise remain on-site and decompose – no LUC 
impact, but can affect forest carbon stocks (Berndes et al., 2013; Haberl et al., 2012). 

•	 Planting high-yielding energy crops on unused grasslands (particularly those with non-native, 
invasive species) – unlikely to have adverse carbon sequestration effects from LUC 
(Haberl et al., 2012). 

The use of wood waste materials and by-products for bioenergy can have LUC effects if they were 

previously used for other purposes, as it would require the users to find alternate resources or different 

materials (e.g., Cowie and Gardner 2007). 

It is important to consider the fate of biomass feedstocks that are not used for bioenergy. For example, 

natural disturbances in forests such as wildfires, diseases, and pests can result in a release of carbon 

stocks, and such considerations are often underrepresented in LCA models and studies (Matthews et al., 

2014). Furthermore, “in forested lands susceptible to periodic fires, good silvicultural practices can lead 

to less frequent, lower intensity fires and can improve site conditions for replanting leading to higher 

growth and productivity (i.e., accelerated forest growth rates and soil carbon storage). Using biomass 

removed in such practices for bioenergy can provide GHG and particulate emission reductions by 

[utilizing] biomass that might otherwise burn in open-air forest fires,” or decompose over time 

(Berndes, Bird, and Cowie 2011, p. 21). 
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As described in Section 4.3, there are also LUC emissions associated with fossil fuel use, which should 

be considered in the reference scenario analysis. This can include coal mining, extraction of oil and gas, 

and deforestation or land conversion for access roads, structures, and pipelines (Berndes, Bird, and 

Cowie 2011). Although the GHG emissions associated with such activities can be similar in magnitude to 

emissions from biomass production on a per-unit area basis of land affected, the impact is lower for fossil 

fuels when considered on an energy output basis, due to the higher yield and energy content relative to 

biomass. However, it has also been suggested that at least a portion of the GHG emissions from military 

activities undertaken to secure fuel supplies should be applied to fossil fuels (Berndes, Bird, and Cowie 

2011). This has been shown to have a relatively small impact on the overall GHG emissions impact in 

some cases (Wang et al., 2012), although the impact on other environmental factors may be larger. 

4.12 Metrics for Assessing the Climate Change Effects of Bioenergy 
Systems 

LCA results are expressed per functional unit. However, there are a variety of ways that results from 

such studies are presented in the literature in terms of assessing climate change impacts. Some of the 

metrics that have been used with some regularity are listed below, based on the summary provided by 

Matthews et al. (2014) and other sources. These metrics can vary widely in terms of what is included 

(e.g., comparison with land or energy production reference case), time considerations (annual, 

cumulative), and clarity of presentation. 

•	 The emissions intensity of a product (aLCA), or the emissions saved per unit biomass resource 
or per unit land area (cLCA) are relevant metrics for assessing climate impacts of bioenergy. 

•	 Annual CO2 or GHG emissions for the system – net impact considering emissions and 
sequestration at a given point in time. GHG emissions presented on CO2-eq basis. 

o	 Results presented on an absolute basis indicate only emissions directly related 
to the system were considered (aLCA type analysis). 

o	 Results presented on a relative basis indicate change in emissions were relative t 
o a reference scenario (cLCA type analysis). This metric may include emissions 
associated with land use change. 

•	 Cumulative or average CO2 or GHG emissions for a system – similar to above, but
 
considers emissions impact over entire study period instead of just one year. Average 

emissions are annualized values calculated from the cumulative total.
 

•	 Carbon Neutrality factor, payback time, and parity point (defined below) are applied 
to a scenario in which bioenergy is produced each year, and displaces a specific reference 
energy product. These are useful for analyzing the effect of a policy or project. 
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o	 Carbon Neutrality factor – The Carbon Neutrality factor is defined as “the ratio between the 
net reduction/increase of carbon emissions in the bioenergy system and the carbon emissions 
from the substituted reference energy system, over a certain period of time” (Zanchi, Pena, 
and Bird 2010). The comparison with the reference system considers energy generation from 
other sources as well as land use impacts. 

o	 Carbon payback period, or GHG emissions payback time – This metric indicates the amount 
of time until the initial increase in GHG emissions due to harvest or removals is offset by 
GHG reductions from displaced fossil fuel use or other factors. Particularly relevant for 
forest bioenergy studies. The payback time represents the number of years until the 
cumulative emissions associated with the bioenergy system are equivalent to the emissions 
associated with the reference scenario. According to (Buchholz et al., 2016), use of this 
metric is becoming fairly typical in LCA studies. 

o	 Carbon parity point – applicable for forest bioenergy. Somewhat based on the carbon 
payback time, but also includes the time needed to make up for missed growth in forest that 
would have occurred in an unmanaged forest scenario (Agostini, Giuntoli, and Boulamanti 
2014). It is typically longer than the carbon payback period. 

•	 Other metrics can be used to quantify the climate impacts based on the life cycle inventory 
of emissions over time, such as cumulative radiative forcing and GWPbio. 

•	 GWPbio factor – a global warming potential for bioenergy that is analogous to GWPs 
for non-CO2 GHGs, which was introduced in (Cherubini et al., 2011). These factors are 
“derived by approximating the atmospheric decay of carbon from long-rotation biomass 
with a simplified forest growth equation. [They] are calculated for situations in which 
carbon in stemwood (with a rotation period of 1–100 year) is released into the atmosphere 
within a year after harvest” (Helin et al., 2013) (pp. 480-481). This can be useful for 
comparison to fossil fuel emissions, but is focused on energy use and may not consider 
the full host of system components of interest for all studies. Other variations of this idea 
have also been used for relative comparisons including consideration of temporary carbon 
sequestration in wood products, as well as consideration of cumulative displaced GHG 
emissions from fossil fuel sources. 

•	 Cumulative radiative forcing – used to present results in terms of climate impact.
 
Accounts for the timing and dynamics of emissions and removals.
 

On another note, there is wide agreement that LCA results need to be presented clearly, in order to 

avoid misunderstandings, or a false impression that a specific technology causes (or does not cause) 

climate mitigation. All LCAs have innate uncertainty due to assumptions, data limitations, and level 

of complexity. Some researchers have expressed concern that LCA results often do not acknowledge 

the limitations and can therefore be misleading (Plevin, Delucchi, and Creutzig 2014b). This goes 

beyond the complications of presenting the results in a useful way. It is especially important to 

understand the limitations of a study and the conditions for which the results apply when it used 

to make policy decisions. 
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5 Analysis and Comparison 
This section of the report provides a summary of the key areas where there is general agreement 

on analytical methods for woody biomass LCA studies, as well as areas where there are divergent 

methods or inputs. The areas that continue to spark significant ongoing debate are also discussed. 

5.1 Areas with Fundamental Agreement 

There is significant agreement that bioenergy derived from forest-based feedstocks should not 

automatically be designated as carbon neutral in policy considerations without further evaluation, 

even when the material is produced and harvested sustainably. As stated by Agostini et al. (2014), 

“in order to assess the climate change mitigation potential of forest bioenergy pathways, the assumption 

of biogenic carbon neutrality is not valid under policy relevant time horizons (in particular for dedicated 

harvest of stemwood for bioenergy only) if carbon stock changes in the forest are not accounted for.” 

To be clear, biomass used for bioenergy can have beneficial carbon impacts, but additional evaluation 

is needed to determine if this is the case for a given scenario. “The potential carbon neutrality of forest 

biomass is a source of considerable scientific debate because of the complexity of dynamic forest 

ecosystems, varied feedstock types, and multiple energy production pathways” (Buchholz et al., 2015). 

There is general agreement that LCA is an appropriate method to evaluate GHG impacts of bioenergy and 

other systems (Matthews et al., 2014). More specifically, although there is not complete consensus on the 

matter, it is generally agreed that cLCA is appropriate for policy and decision making, particularly for 

evaluating climate change mitigation potential, as such analyses are based on change relative to a baseline 

scenario and include consideration of indirect effects. There is also some agreement that aLCA methods 

may be reasonable for implementation of policy, and to meet regulatory requirements, as it is used for 

project-specific accounting.  

The LCA community also understands that the complexity of the analyses can lead to significantly 

different results based on methods, assumptions, approach, and data used. As such, many have noted 

that it is crucial to clearly define the purpose and scope of the LCA, and to make analysis choices 

consistent with these considerations. While unfortunate from the perspective of gaining widespread 

understanding, and potentially contributing to the large amount of confusion that already exists regarding 

LCAs, there is no one right way to do an assessment—the methods and inputs depend greatly on the 

purpose of the study. Furthermore, while there is general agreement that system boundary and reference 

case are important in LCA studies and depend on study goals, there is no consensus on the specific 
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geographic or physical boundaries and parameters that should be applied. Additionally, because LCA 

results vary based on site-specific factors and project specific inputs, as well choices for analysis methods 

and approach, it is difficult to generalize results or apply results from one study broadly. This is especially 

true for forest bioenergy where there are important differences in forest types, growth rates, management 

practices, and rotation lengths among the studies in the literature. As a result of these factors, it is 

important for any study to clearly present the results, including context and limitations of the analysis. 

Likewise, caution needs to be applied when transferring results from a study in one region to a different 

region or management system. 

5.2 Potential Areas of Analytical Divergence 

There are many areas in which methodologies for LCA studies can diverge, and selection of approach has 

a tremendous impact on end results. As stated by Miner and Gaudreault (2013), “there is no single correct 

way to calculate biogenic CO2 emissions. Different methods are appropriate for different objectives. Even 

for a given objective, however, there can still be controversy regarding these calculations.” Arguments 

tend to arise about the most appropriate choices for analysis inputs, especially selection of baseline and 

system boundary, including temporal and spatial scales. These and other methodological selections with 

divergent methods for LCA studies are summarized below. 

5.2.1 Analysis Scope 

LCA studies vary widely in terms of what carbon pools and activities are included in the analysis. A 

recent meta-analysis of forest bioenergy GHG accounting studies performed by Buchholz et al. (2015) 

provides a useful example. This evaluation included a literature review of 66 studies, covering 

149 different cases, which were published between 1991 and 2014. The analysis showed that there 

was a large variation in what forest and non-forest carbon pools and activities were included in the 

studies. Buchholz et al., identified 16 different potential carbon pools and fluxes that could impact 

characterization of a resource:19 

•	 Forest ecosystem – aboveground live biomass, aboveground standing dead biomass, 
belowground live biomass, belowground dead biomass, soil, forest floor, merchantable 
timber, harvest residue. 

•	 Material processing – forest treatment operations, recovery of biomass in the forest, 

transport, mill residue.
 

19	 It is important to note that in this evaluation, the analysis of included carbon pools and activities
 
was only one of the twenty attributes considered by Buchholz et al. (2015).
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• Product fate – wood products in use, wood products in landfill. 
• Indirect effects – leakage, product substitution. 

The study found that on average, the cases considered only included nine of these 16 carbon pools 

and fluxes, with various choices of components included. Indirect effects in particular were only 

considered in a small number of cases. 

LCA studies are also inconsistent in terms of what indirect effects are included, and how they are 

evaluated. This includes changes in land use or forest management activities outside of the system 

boundary, how fossil fuel use and prices are impacted by increased bioenergy use, as well as leakage 

effects such as how the flow of wood products and biomass are changed when forest biomass use 

increases. Although there is a growing acknowledgement in the bioenergy LCA community that it is 

important to consider such effects, they are typically very difficult to quantify and require large-scale or 

global modeling of complex market dynamics. Furthermore, the selection of what is included in any LCA 

depends on the goal of the study, as well as the study boundaries. For example, indirect effects would not 

be included in an aLCA study used to evaluate direct GHG impacts of a specific project or process. 

5.2.2 Temporal Boundary Selection 

LCA studies differ in terms of the timeframe for the analysis and the temporal boundaries. This is 

particularly important for forest biomass, due to the differences in the time scale between emissions from 

harvested bioenergy and forest growth rates across the landscape. In a meta-analysis of forest bioenergy 

carbon accounting studies, Buchholz et al. (2015) noted that the temporal scale of the analysis ranged 

from 20 to 10,000 years, which has a median of 240 years. Some LCA studies associated with policy 

decisions use relatively short timeframes associated with the policy horizon (20 years, for example), 

although the climate impacts can extend much further. It is also important to recognize that the use 

of short timeframes is inconsistent with use of 100-year GWPs (Miner et al., 2014; Ter-Mikaelian, 

Colombo, and Chen 2015). 

The temporal boundaries also impact the processes included in an LCA study, and the selection of the 

starting point of forest bioenergy LCAs is important. This is a significant source of ongoing debate. For 

example, some studies extend the boundary back in time to include the growth of the trees prior to harvest 

(creating a carbon dividend at harvest), while other studies only consider activities starting at or just 
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before harvest (creating a carbon debt at harvest). Results are also connected to the spatial boundary, 

where some studies start at the time of harvest of each forest stand (“stand level”), while other studies 

begin at a single point across the landscape or region so that both harvested and unharvested plots 

are included at the start of the study (“landscape level”). Currently there is no consensus on where 

to place these temporal and spatial boundaries, so it is important they are clearly defined in studies 

of these systems. 

There is general consensus that carbon sequestration and emission cycles have an impact on the timing of 

the net GHG benefit of bioenergy systems. However, there is no agreement on the appropriate timeframe 

to use for GHG emissions analyses, even among studies focused on evaluating climate change mitigation 

opportunities. Some of this disagreement is connected to the complexity of climate dynamics and carbon 

cycles. Miner et al. (2014) point out that some of the interest in the timing of emissions is related to 

concerns about short-term spikes in emissions leading to a “tipping point” in which a critical threshold 

is crossed that results in a large-scale change in the climate system. However, Miner et al. (2014) also 

provides the following useful summary regarding the alternative view on the importance of cumulative 

emissions: “whereas the science on tipping points and abrupt changes continues to advance, a consensus 

has developed on the importance of cumulative CO2 emissions as a predictor of peak global 

temperatures.” This is of significant importance for forest bioenergy LCA studies in particular, 

since net emissions from some bioenergy systems may initially be greater than a fossil fuel reference 

case. However, the cumulative emissions are usually lower over an extended period (depending on the 

specifics of the system being studied). 

5.2.3 Spatial Boundary Selection 

For forest biomass, the spatial scale or geographical extent of the analysis impacts the LCA in terms 

of forest dynamics and carbon stock exchanges. It is related to the temporal impacts as the carbon 

cycles associated with forest management can vary significantly for a single tree or individual stand 

of trees, but may average out over an entire forest supply shed, depending on the level, frequency and 

type of harvest activities. 

The spatial scale used in an LCA study can have a significant impact on analysis results, particularly for 

forest bioenergy. The carbon stock in a single stand will vary tremendously during growth and harvest 

cycles over time. Such fluctuations are tempered when considered on a larger forest area. Harvesting 

activities are typically only performed on a small portion of the forest each year, so the removals make up 

a relatively small portion of the total forest carbon stock. A larger-scale perspective accounts for various 
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stand ages and real-world commercial management activities throughout the forests. The spacing of 

harvests of biomass for bioenergy across the landscape also raises issues for the temporal analysis of 

the system because decisions will need to be made on how to account for forest growth that occurs 

on stands prior to being harvested. The importance of the interaction between these spatial and 

temporal boundaries in forest bioenergy assessments requires the decisions about these issues 

are clearly defined for each study. 

5.2.4 Baseline/Reference Scenario Selection 

There are several different methods for baseline or reference scenario type; some of the typical methods 

used for bioenergy systems are summarized below. 

•	 No baseline: GHG impacts for system of interest are not compared with a reference case. 
The assumption that all biomass is carbon neutral would fall into this category (Johnson 
and Tschudi 2012). 

•	 Reference point baseline: considers the carbon stocks and emissions at a specific point in 
time as a benchmark for comparison. 

o	 This type of baseline is used to calculate actual emissions over a period of time, by 
comparing emissions at the reference point with the emissions at another point in time 
(Miner and Gaudreault 2013). It is typically associated with aLCA studies. 

o	 Some of the benefits of a reference point baseline are that it is used to calculate actual 
GHG transfers during a select timeframe, and that it has fewer assumptions than an 
anticipated future baseline. However, since a reference point baseline is defined by 
characteristics at a specific point in time (generally in the past or present), it cannot be 
used to consider a baseline in which an alternate course of action was pursued (Miner and 
Gaudreault 2013). For example, a reference point baseline would not typically be used to 
compare the impacts of a specific policy under consideration with another alternate policy 
that is being evaluated. 

•	 Anticipated future baseline (also called a dynamic baseline): projected emissions are estimated 
based on the expected activities that would occur in a BAU scenario without use of additional 
biomass feedstocks for energy. 

o	 This type of baseline is typically used for cLCA studies, as it can be used to evaluate the 
impacts of implementing a new policy or replacing a product relative to BAU  (Miner and 
Gaudreault 2013). 

o	 The main benefit of this type of baseline is that it can be used to inform decision-making 
efforts to achieve reduced GHG emissions within set constraints. The disadvantages of the 
anticipated future baseline are that it does not calculate actual GHG emissions associated 
with a system or policy, but rather projected GHG emissions based on set conditions. As 
a result, it is more complex, requires more assumptions, and has more uncertainty than a 
reference point baseline. 
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GHG emissions analyses are very sensitive to a number of factors in the reference scenario, including the 

counterfactuals for energy production systems and land use, as well as the alternative fate of the biomass 

feedstock. Especially when using an anticipated future baseline, various assumptions must be made to 

select applicable counterfactual scenarios. 

•	 Energy counterfactual: the alternative source of the end-product (e.g., electricity, heat, or 
transportation fuel) and coproducts must be considered in the reference case. This could be a 
specific fuel type or system or mix of resources. Unless a bioenergy system is directly replacing 
a specific fuel type, the choice of alternative fuel or system will be based on assumptions that 
are a mix of technical and market factors. The most conservative option would be to compare 
bioenergy with the best performing (fossil fuel) alternative, although this has the potential to 
underestimate potential benefits. Other potential options include evaluating the emissions 
impact based on the average current energy source mix or, for new capacity, using either the 
emissions attributes for the most likely technology to be implemented if bioenergy is not used, 
or the emissions attributes for aging infrastructure that would be replaced by bioenergy. 

•	 Biomass resource use counterfactual: the alternate fate of the biomass material if it was not used 
for bioenergy. For harvest residues, sawmill residues, or recovered waste materials, the biomass 
could otherwise decompose in a landfill or the forest floor, be used for an alternate product 
(e.g., engineered wood products, or mulch), or it could be burned (either during a wildfire event 
or intentionally by human activities). Other forest materials used for bioenergy, such as small 
roundwood, may otherwise be used for another product such as paper or oriented strand board 
(OSB) if there are markets available in the area of study. In some cases, limited demand or low 
value for such alternative uses may lead to reduced harvest activities; in this case the alternate 
fate of a less harvested forest should be considered, as the trees may continue to grow for longer 
periods, or the forest could be impacted by natural disturbances (e.g., wildfire, pests, diseases) 
or human activities (e.g., deforestation for development). 

•	 Land use counterfactual: this considers use of the land or forest management practices that 
would have occurred if the biomass feedstock considered in the study was not used for 
bioenergy. An area of ongoing debate is when it is appropriate to apply a “no use” baseline, 
in which all forest management activities are suspended and the land is allowed to return to its 
natural state. Although this approach could (in theory) maximize the carbon sequestration in the 
forest land, it is not realistic to assume that is a likely outcome for forests currently managed 
and harvested due to their commercial value. Using a “no use” baseline also assumes either that 
the area being studied will no longer use any wood products or that the supply of wood products 
will come from outside the region, which creates challenges to calculation of leakage effects. 
In addition, unmanaged forests can be more vulnerable to natural disturbances (Lippke et al., 
2011); forest management activities help to protect forests. It is also important to note that forest 
management activities can increase carbon sequestration in the forests in some cases, due in part 
to the variation in growth cycles over time, since growth (and associated carbon sequestration 
rates) slows as forests mature. 
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5.2.5 Allocation 

Allocation is used to attribute life cycle emissions and other environmental impacts to the various 

products generated from a multi-output product system (coproducts). Allocation may be needed at several 

stages within the system being considered, whenever multiple products are generated from the processes 

within the product system. 

The choice of allocation approach has been shown to have a significant impact on LCA results for 

multifunctional processes (e.g., Wardenaar et al., 2012). Despite much discussion in this area, there is 

no consensus on a single method to use, and often the applied method depends on the goals and type 

of assessment. For forest bioenergy systems, allocation is important for feedstocks that are generated 

as a by-product or coproduct of harvesting or other activities. 

For bioenergy systems evaluated via aLCA, the most typical allocation methods are based on the qualities 

of the end products, such as attributing environmental impacts to each product generated based on mass, 

energy content, or economic value. System expansion is typically used for cLCA studies, in which the 

system boundary is extended in order to compare two systems that are equal in scope including all 

products generated. 

Different existing bioenergy policies have different requirements for allocation. For example, the 

California Low Carbon Fuel Standard and EPA Renewable Fuel Standard use substitution for allocation, 

while the European Renewable Energy Directive uses energy content as the basis for allocation (except 

for electricity coproduced with biofuel or biogas, which is allocated using substitution) (Wardenaar et al., 

2012). It is worth noting that since the EU methodology requires industries to prepare their own GHG 

emission analyses, allocation needs to be relatively simple. However, in some U.S. policies, LCA is 

performed upfront and used to generate default values that are then used for reporting. In this case the 

calculations can be more complex, since they are only done once for the policy application and do not 

need to be completed by each entity submitting a report. 

When needed, there are benefits to using allocation based on physical properties (energy content, mass), 

particularly because the method is relatively straightforward and simple to apply, and it does not vary 

based on time or location like economic properties or market value. In contrast, system expansion is 

not as straightforward and can result in differing results depending on choices made. However, system 

expansion is appropriate for cLCA studies, as it provides an assessment of how the bioenergy system 

will impact other systems outside the immediate bioenergy product system. 
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5.3 Likely Points of Debate/Analytical Divergence 

As summarized above, there are several areas within bioenergy LCA studies where decisions need to 

be made to complete the study. The decisions impact the outcome of the study, and currently there 

are disagreements about which of these approaches is the most appropriate. The major areas of ongoing 

debate for forest-based bioenergy are related to system boundary and reference selection, including: 

when the analysis timeframe should begin, selection of spatial boundary, and land management/use 

baseline. These are described further below. Other areas of ongoing debate include selection of reference 

energy system (including comparison with other renewables), use of average versus marginal data, and 

substitution effects and inputs for LCA studies, which use system expansion allocation methods. These 

have been touched upon elsewhere in the report and are not discussed here in detail. 

As summarized by Miner and Gaudreault (2013), the analysis timeframe consideration is based on 

“the question of whether the analysis should extend temporal boundaries back to include photosynthesis 

in the wood eventually harvested for the product or in the inventory year of interest, or only consider 

photosynthesis in trees that are regrown after the harvest. In other words, this controversy is over whether 

CO2 removals occur before or after harvest.” For LCA studies that start the assessment at the time of 

harvest, there is a significant upfront ‘carbon debt’ due to the removal of standing carbon in the forest. 

Such studies evaluate how long it takes for the carbon debt to be paid back by regrowth of trees, as well 

as other activities considered in the system boundary. Miner and Gaudreault (2013) suggest that the 

alternate approach is appropriate for LCA studies that focus on the “attributes of specific forest products.” 

In this case, the temporal boundary for the analysis would extend back in time to include all processes 

associated with the growth of the tree, including carbon sequestration as a result of photosynthesis. Ter-

Mikaelian et al. (2015) point out that this “dividend-then-debt” approach does not consider the fact that 

new trees typically replace trees that were previously harvested, in an ongoing cycle. As such, “moving 

the starting point of carbon accounting backwards in time to when carbon stocks in a given piece of land 

were low takes credit for the latest cycle of carbon accumulation but ignores the fact that over time, on 

average, forests contain substantial amounts of carbon.” They argue that for this reason, the dividend-

then-debt approach is not appropriate for areas that were naturally forestland. 
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The selection of analysis scale (spatial boundaries) is related to the analysis timeframe. On the one hand, 

LCA studies using stand-level accounting typically start the evaluation of carbon impacts at harvest. As 

described above, this results in an immediate carbon debt that is paid back over time as the forest grows. 

The other approach is to consider larger spatial areas for accounting, referred to as a landscape-scale 

analysis. Some researchers argue that this approach appropriately considers the forest as a system (Strauss 

2011). In addition, the use of larger spatial boundaries for forest bioenergy are more representative of 

supply areas for biomass plants (Miner and Gaudreault 2013), or for areas that will be impacted by 

policy decisions. In a landscape-scale assessment, different plots within a forest or supply area will be 

at different points in the growth cycle at any given time, so although carbon is removed from one plot 

the other areas continue to sequester carbon as the trees grow. This essentially reduces the large 

fluctuations in forest carbon stock that seem apparent in the stand-level approach. Miner and Gaudrealt 

(2013) also argue that landscape-scale assessment better relates to how sustainable management practices 

are applied, as “the growth occurring on plots that will supply forest biomass in the future is a critical part 

of the planning required to ensure a sustainable wood supply.” Miner and Gaudrealt further note that use 

of larger spatial scales makes it easier to account for “forces that are influential at larger scales, such as 

natural disturbances and market forces” in LCA studies. 

In the “Manomet Study”, Walker et al (2010) expressed concern regarding an assumption of carbon 

neutrality during a landscape-scale assessment. It is still important to consider the reference scenario 

in the LCA study, which may consider business as usual activities or even a no-use baseline for the 

forestland (depending on the study choices). When considered fully in an LCA study, “accounting at 

the landscape-scale integrates the effects of all changes in the forest management and harvesting regime 

that take place in response to bioenergy demand. Taken together, these changes may have a positive 

or negative influence on the development of forest carbon stocks as a whole” (Cowie, Berndes, and 

Smith 2013, p. 2). 

The considerations for land use baseline is another big source of debate for forest biomass. One side 

argues that a “no-use” baseline is appropriate, in which forest management and harvest activities are 

completely stopped, and the land is allowed to return to its natural state. Many proponents of this 

approach argue this would maximize carbon sequestration in the forests, and is therefore appropriate 

to determine the best way to reduce overall GHG emissions to the atmosphere. Detractors of this 

approach raise concerns that such “natural relaxation” is not a realistic alternative in many cases. 

Forest harvest activities bring value to landowners, who are unlikely to stop harvesting without 

significant external driving factors (such as incentives or regulatory requirements). If a ‘no-use’ 
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approach was applied across a region then wood products would no longer be available for that region, 

in which case they may be replaced with alternative non-wood products, or would rely on wood products 

generated outside the system boundary and imported in to the region. Such leakage or substitution effects 

should be considered if a no-use approach is used. Further, if landowners are unable to obtain value from 

harvests, some may opt to sell their land, which could ultimately lead a reduction in forest land and 

carbon stocks if the land is used for development or other activities (Miner et al., 2014). The loss and 

fragmentation of forest land to urbanization has impacted millions of acres in the past few decades and 

changed the carbon dynamics of these areas. 

Even beyond the selection of an appropriate baseline choice, different studies have shown different 

and conflicting results regarding which method would result in higher carbon sequestration – sustainable 

forest management, or leaving the forest to be a natural carbon sink (“no use”). Part of this disagreement 

is because forest types, growth rates, and management practices vary between regions. Ultimately, the 

different inputs and choices impact the analyses, and can lead to tremendously different results. 

Nevertheless, the majority of studies that take a long-term view and analyze bioenergy as a coproduct 

of a forest management system that produces timber products plus biomass for energy, show that after 

a couple of rotations the production forest has climate benefits in comparison with the no use scenario 

(e.g., de Ximenes et al., 2012). The following statement from Berndes, Bird, and Cowie (2011) provides 

a good summary of the key inputs that affect these results. 

“The relative merits of forest biomass extraction for bioenergy versus C sinks management 

are dependent on: 

•	 The efficiency with which bioenergy can displace fossil-based energy. This efficiency 
is high if (i) the biomass is produced and converted efficiently; (ii) the biomass production 
and conversion causes few GHG emissions; (iii) a carbon intensive fossil fuel is displaced; 
and (iv) the replaced fossil fuel would have been used with low efficiency. 

•	 The time period of consideration: the longer the time frame of the analysis, the more attractive 
bioenergy is in comparison with C sequestration, because the latter is constrained by saturation 
(only a limited amount of C can be stored on a hectare of land), whereas bioenergy can be 
produced repeatedly, from harvest cycle to harvest cycle. 

•	 The growth rate of the site: the higher the growth rate, the sooner the saturation constraints 
of C sequestration will be reached.” 
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6 Recommendations 

6.1 Recommendations to Meet Policy Objectives 

This literature review provided a number of insights that could be helpful to meet NYSERDA’s 

policy objectives. These are summarized below. 

Recommendations for NYSERDA Regarding a Potential LCA for NYS Woody Bioenergy GHG Impacts: 

•	 NYSERDA will first need to develop a clear goal for the LCA (and policy objectives), which 
can then be used to inform decisions on how to frame the biomass LCA, including definition of 
the system boundary and reference case. At a high level, NYSERDA’s objective is to develop 
policies to support GHG emissions reductions. However, additional detail will be needed to 
fully define the scope for an LCA, and develop the inputs for a baseline and system boundary 
that includes analysis timescales, geographical boundaries, and policy mechanisms. While some 
of these decisions may seem obvious (restricting geographical boundaries to NY borders for 
example), as has been pointed out in this report, choices that may seem simple can have a 
profound impact on LCA results and meaning.  

•	 The choice of LCA approach will likely be different for decision-making and policy 
implementation. cLCA is likely to be the appropriate approach for policy decisions, while 
aLCA may be more helpful for policy implementation. A well done aLCA for forest bioenergy 
systems in NY is needed before a cLCA can be conducted. Therefore, it may be very valuable 
to plan the analyses for pre/post implementation holistically to ensure that future metrics are 
consistent with the analysis supporting policy development.  

•	 For cLCA baseline, it is typical to use an “anticipated future baseline,” which projects two 
scenarios into the future—one with the considered policy and one BAU scenario without the 
policy. NYSERDA will need to determine what the BAU scenario looks like in terms of fuel 
and energy technologies used to provide the services, baseline forest management activities, 
and alternate fates for biomass feedstock materials. In addition, “because of the inherent 
uncertainties involved in policy studies, especially those involving alternative future 
baselines, it is important to perform sensitivity analyses around policy scenarios so that 
the robustness of the findings to various assumptions and uncertainties can be understood” 
(Miner and Gaudreault 2013, p. 28). 
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•	 The choice of baseline scenario has a large impact on LCA results. For example, a recent LCA 
study by Mika and Keeton (2015) indicated that higher levels of biomass removals in Northeast 
forests for bioenergy would result in increased net GHG emissions compared to the non
bioenergy harvests, based on a landscape level analysis with staggered harvests over a 
160-year timeframe.20 Overall, the results of the study showed that “[the] choice of baseline 
yields profoundly contrasting conclusions about wood bioenergy emissions. Relative to [the] 
starting landscape condition, all scenarios added carbon to terrestrial sinks and/or offset fossil 
fuel emissions… [However], if foregone C sequestration potential (or ‘opportunity cost’) is 
the benchmark, and if harvest intensities increase, then our results show wood bioenergy to 
result in net increased emissions” (Mika and Keeton 2015, p. 450. emphasis added). As with 
all studies, this paper had a specific set of assumptions that influenced these results. For 
example, biomass heat was used to replace natural gas systems and biomass electricity 
replaced a regional grid average. 

•	 The Scope includes all relevant processes that will be different, or could result in significant 
GHG impacts between the policy scenario and BAU, including impacts from indirect effects 
associated with the changes. Some of the major processes that could be directly impacted and 
affect GHG emissions include: alternate fate of the fuel used (e.g., decomposition of biomass, 
fossil fuel used for an alternate product other than heat or power); transportation of the fuel 
(distance and mode), processing of the fuel, energy production and distribution, land use 
changes, and generation and disposal of wastes. Landowner response to change in market 
conditions is an example of an indirect effect that can be important for forest biomass.21 As 
indicated in Section 2.2, a large portion of the State forest is privately owned, and much of this 
is not actively managed. This indicates a large potential to increase the available supply of 
sustainable biomass through added landowner engagement and forest management efforts. 
Improving forest management also has the potential to change growth rates and forest carbon 
dynamics that need to be accounted for. 

20	 Some additional information about the study: Biomass for bioenergy was only one of the products from harvesting, 
and the increased biomass included removals of poorly formed trees, small stem trees, tops and branches, and dead 
wood. The LCA included the following carbon pools: aboveground forest carbon and wood products, direct and 
indirect emissions from wood products and bioenergy, and avoided direct and indirect emissions from fossil fuels. 
The study considered use of the biomass to generate electricity or heat; the electricity would offset grid electricity 
with the Northeast regional fuel mix, while the heat would offset natural gas generated heat. It is worth noting that 
both of these reference fuels have relatively low GHG intensity. 

21	 An anticipated increase in demand or value can prompt landowners to increase forest productivity or acreage 
(Lippke et al. 2011; Miner and Gaudreault 2013). 
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•	 When LCAs are to be used for policy development, several researchers indicated the importance 
of considering full impacts associated with a system, including indirect effects and market 
dynamics as applicable. For example, Lippke et al. (2011) noted that considering only a 
limited set of carbon pools can lead to “unintended consequences on other impacted carbon 
pools.” This can be especially important for forest feedstocks. Miner et al. (2014) also supports 
taking a broad view of forest-based activities. “Of particular importance to understanding the 
emissions impacts of increased use of biomass from forests are fossil fuel substitution effects, 
markets for wood, causes for ongoing gains and losses in forest area and forest carbon [stocks], 
landowners’ motivations, benefits and timing of investments in forestry, and the warming 
impact of near-term and long-term increases in CO2 emissions.” 

•	 Boundary considerations: 

o	 Spatial – The appropriate spatial scale would typically be based on the scope of the policy; 
in this case the minimum area would likely be New York State. However, larger spatial 
boundaries could be considered to help reduce potential leakage impacts, although the 
trade-off is a more complex model and analysis. Larger boundaries could include adjacent 
counties, or even the entire region. In addition, data used for smaller regional or 
project-level studies may help to inform a larger state or regional analysis. As summarized 
by Miner and Gaudreault (2013) “small-scale analysis is likely to understate the benefits of 
using forest biomass, suggesting that, in general, policy studies should be performed at large 
spatial scales (Galik and Abt 2012).” Even if NYSERDA does use plot- or project-level 
evaluation, a larger landscape-level analysis should also be considered. “There is a risk 
that designing policies and incentive structures that use project level evaluations as a basis 
creates a situation where the most economical way of managing a forest is very different 
from how we can best shape forest management in response to future demand for bioenergy 
and other forest products while also considering longer-term political climate targets… 
which ultimately require far reaching energy system transformation” (Berndes, Bird, 
and Cowie 2011, p. 40). 

o	 Temporal – For NYSERDA’s current objective, the policy horizon may extend for 
20 years. This should be the minimum starting place for the LCA boundary. However,  
to properly account for changes in forest carbon the time frame should cover at least 
two rotations in order to see the effect of gradual introduction of new management 
across sequential stands. Longer timeframes of at least 100 years should also be considered. 
The analysis timeframe is particularly important considering the fact that for forest biomass, 
some resources could have short-term increases in GHG emissions when the temporal 
boundary is set at the point of harvest, although this is typically reversed in intermediate or 
long term. For policy-related LCAs, the period for the analysis should at least include the 
entire period relevant to the policy, although if this is relatively short, a longer time frame 
should also be considered in the evaluation (if consistent with the goal of the study). As 
stated by Berndes et al. (2013), “project level evaluations that use a relatively short time 
horizon and narrow spatial perspective need to be complemented with additional analyses 
that balance near-term targets and the long-term objective” for climate change mitigation. 
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•	 Impact Categories – In order to calculate the climate change impact, the LCA study should at 
a minimum consider all GHGs expected to be impacted at a significant level due to considered 
activities. This would likely at least include fluxes of CO2, CH4, and N2O. Other impacts that 
might influence human health and ecosystem quality could be included in these studies, but 
are beyond the scope of this report. 

•	 Allocation – cLCA studies typically use system expansion and substitution rather than 
allocation based on mass, energy or market values. In aLCA, use of mass or market value 
is typical for assigning impacts to biomass feedstocks that are a coproduct of multi-output 
product systems. For CHP conversion processes that generate energy outputs in multiple forms, 
allocation by energy content or value would likely be reasonable. 

•	 Land use change – Policy measures should consider LUC impacts to the extent possible 
(including changes in land management). In practice, this will largely depend on available data 
that relates to the specific areas and changes being studied. Of note, many of the unadulterated 
woody biomass feedstocks eligible in the current New York State policy regime are unlikely to 
have significant LUC impacts. The primary exceptions are harvested wood (from commercial 
harvesting), and energy crops.22 However, development of energy crops could have a beneficial 
LUC impact in terms of carbon sequestration, depending on the existing use of the land. Several 
examples of biomass that could be used for bioenergy with limited or no LUC impacts were 
presented in Section 4.11, including: biomass obtained from forest clearing for land 
development (if all burden of the activity is allocated to the primary land clearing purpose); 
biomass that would otherwise be landfilled (such as source separated wood from municipal 
solid waste or C&D debris); and harvest residues that would otherwise decompose on-site. 

•	 General recommendations for LCA studies: 

o	 A clear statement of the goal and scope of any LCA is needed so that decisions about the 
study can be made to most effectively address the stated goals. 

o	 Policy-related LCAs used for governmental regulation and monitoring should strive 
to achieve consistency and robustness, with comparable results between products 
(e.g., equivalency). 

o	 Transparency is very important for LCA studies. Methodologies, assumptions, and 
limitations should be clearly stated. A description of what processes and activities are 
included should also be provided, as well as what indirect effects are included and how 
they were analyzed. Following protocols such as the ISO 14040 is a good step to address 
this concern, but the details of any study need to be easy to locate and understand. 

Additional Considerations and Recommendations Related to Policy Implementation: 

•	 Although LCA results will vary depending on specific analysis choices and framing, 
nevertheless, there are some general statements that can be made regarding what types of 
bioenergy are most likely to have a positive GHG emissions impact. NYSERDA should 
certainly consider these resources and technologies in their study; and may also consider 
targeted incentives or support for those with the most beneficial impacts. 

22	 There would also be LUC impacts associated with site conversion, but this is not generally attributed to the waste 
wood collected from site conversion unless the value of the recovered wood was a contributing factor for the change. 
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o	 Feedstocks that are likely to have the fastest GHG emissions benefits include biomass 
by-products, recovered waste materials, and harvest residues (unless they are needed for 
soil fertility) (Haberl et al., 2012). Agostini et al. (2014) indicate that harvest residues, 
thinning wood, and salvage logging wood all have potential near- to medium-term GHG 
benefits, depending on the specific pathways used and the alternate use of the biomass 
material. Berndes et al. (2011) point out that “generally, bioenergy will be most effective 
for GHG mitigation when it is adopted in association with other products, i.e., by [utilizing] 
biomass wastes of primary product chains, or biomass that has already served one 
or more functions.” A significant portion of the potential additional woody biomass 
resources in New York State could come from these types of materials. As summarized in 
Section 2.2.3, the Renewable Fuels Roadmap effort identified a total of 4.3–8.1 million ODT 
per year of potentially available forest biomass, of which up to 0.9 million ODT/yr would 
result from harvest residues.23 This value is dependent on future forest management and 
harvest activities in the state. In addition, another 0.7 million ODT per year of clean C&D 
wood could also be used for bioenergy. A further 0.9 million ODT/yr of adulterated C&D 
wood could also potentially be recovered and used in gasification technologies. 

o	 Using biomass energy systems with the highest conversion efficiency to offset the most 
GHG-intensive energy sources will generally provide the largest near-term benefit, and 
higher overall GHG emissions benefits, all else being equal. 
As an example, the Northern Forest Center recently released results of a study indicating 
that compared to heating with heating oil, use of regionally-produced wood pellets for 
heating in the Northeast with state-of-the art wood pellet boilers had immediate GHG 
benefits (Northern Forest Center 2016). There were also benefits relative to propane and 
natural gas systems. It is important to note only a summary of the results and the analysis 
methodology is currently publicly available, although a more detailed report is in progress.24 

The results are also very sensitive to the biomass feedstocks used for the pellets, as 
illustrated in a presentation from November 2016 (Buchholz and Gunn 2016). 

•	 GHG emissions benefits can also be enhanced by connecting policy to support of sustainable 
harvest and forest management activities that increase forest carbon stocks. This could help to 
increase carbon sequestration even with increased removals in some cases. As stated by Miner 
et al. (2014): “Policies that provide incentives for landowners to expand forest area, make 
forests more productive, and store more carbon could have important carbon benefits. On the 
other hand, policies that increase transaction costs to landowners or devalue forest biomass 
could have negative carbon consequences, by reducing incentives for investments in working 
forests, reducing biomass supplies, limiting afforestation activities, and leading to increased 
conversion of forests to other land uses.” There is certainly potential for forest management to 

23	 In the analysis, the potentially available harvest residues dropped to 0.5 million ODT/yr when landowner interest 
in forest management was considered. 

24	 This study included GHG emissions from sourcing, processing, and transporting fuels. Based on the available data, 
this appears to be an aLCA type of analysis, with no consideration of indirect effects. The methodology document 
includes description of forest activities and pellet mill operations, but other processes are not described in detail 
(Buchholz and Gunn 2016). In addition, there is no description of how (or if) allocation was applied to the pellet 
feedstock materials. The fossil fuel boiler technology used for comparison is also not described. 
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improve value and increase the sustainable flow of timber products from forests in the State. 
As an example that was noted in Section 2.2, approximately half of the forest land in the state 
is owned by family forest owners with parcels greater than 10 acres, but only 9% of these have 
forest management plans in place (U.S. Department of Agriculture Forest Service 2015). This 
is an indication that there is a significant potential for improved forest management. Landowner 
preferences are an important barrier to improved forest management, although reduced upfront 
costs for management activities, or increased value for doing so, could make an impact. 

•	 In order to determine which bioenergy scenarios are most likely to have beneficial climate 
impacts for New York State, it will be useful to consider overall trends in the analysis results 
and not to get hung up on relatively minor differences. LCA studies can have significant 
uncertainty due to the complexity of the models and the underlying ecological processes and 
macroeconomic effects, which can make it difficult to make very specific statements with a 
high level of certainty. 

6.2 Priorities and Areas Requiring Additional Support 

Based on the literature review, there are a few areas where additional research would be beneficial. 

•	 Additional research and data foundational to conducting accurate LCAs for naturally 
regenerated hardwood dominated forests is needed for NY and the Northeast region (much  
of the existing data is based on models, or field data from conifer plantation forests). There 
also tends to be a lack of well-tested models that include responses to management activities. 
These models could be improved with additional data and expert knowledge. 

•	 Creation of standardized baseline data and forecasting methods specific to NYS bioenergy 
system evaluation for reference scenarios. A substantial start has already been developed 
through various studies surrounding NYS energy and renewable energy programs, but work 
specific to this requirement is needed. 

•	 Including other climate impacts in LCA methods would be beneficial to provide a more 
complete picture for studies intended to evaluate climate change mitigation potential. As 
stated by Brandão et al. (2014), “LCA methods need to be updated to include the latest 
scientific understanding (e.g., on impacts of short-lived climate forcers, albedo, and effect 
of timing of greenhouse gas emissions and removals). These elements should be addressed 
in standards and product category rules and reflected in all forms of LCA studies.” Further 
research may be needed to obtain necessary data for the short-lived climate forcers or albedo. 
Industry participation would be beneficial for development of the rules and standards. 

•	 Development of a resource assessment, forest products market model, and policy statement 
focused on mobilizing biomass fuels with greatest potential to reduced GHG emissions in 
accordance with NYS policy objectives. For example, NY RPS included allowance for C&D 
(potentially very favorable from GHG perspective), but the program had restrictions that may 
not result in maximum utilization of this resource. 
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