

Energy Efficient IAQ Mini-Bid Preliminary Report No. 1

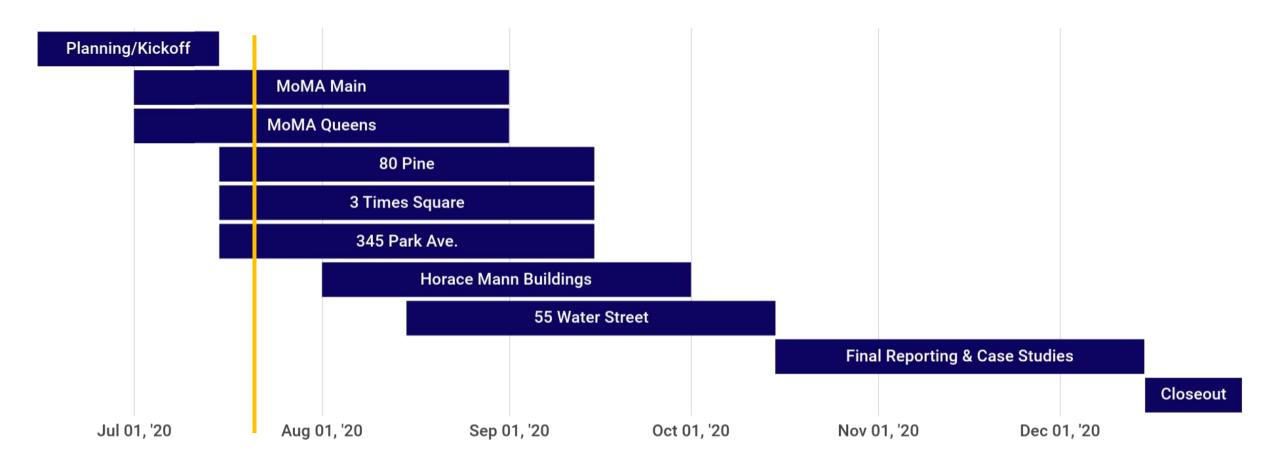
Presented to:

NYSERDA

JULY 23, 2020

# **AGENDA**

- Housekeeping Items
- MoMA Main Update
- MoMA QNS Update
- Next Steps

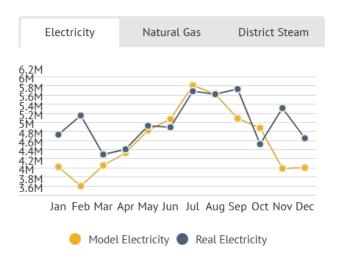



# HOUSEKEEPING ITEMS



# **SCHEDULE UPDATE**

# **Progress to Date**






#### **ENERGY MODELING PACKAGES**

### **Current Understanding**

## **Baseline Energy Model**



- Pre-COVID facility energy use
- Operation assuming 100% occupancy

# **ASHRAE Recommendations** Model

#### 4. Operate and maintain the HVAC system - Air conditioning and ventilation systems



- Outside air for ventilation be increased to as much as the HVAC system can accommodate and still maintain acceptable indoor conditions during occupied
- Flushing sequence or mode may be implemented to operate the HVAC system with maximum outside airflows for two hours before and after occupied times.
- Systems may be operated at minimum outside air settings when the building is unoccupied or not operating in the flushing mode.

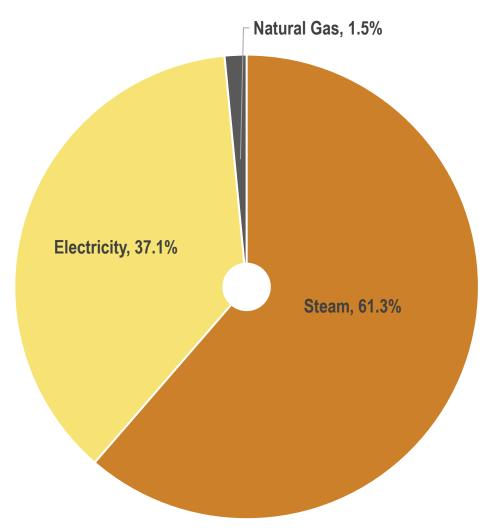
- ASHRAE Commercial Guidance document
- MERV-13/14 filters
- Highest % OA possible during Occupied hours
- Flushing sequence for 2 hrs before/after Occupied hours
- No DCV
- Case-by-case ERV

### **Energy Efficiency Model**



- Base Upgrade Package: UV & suggested ventilation level mods
- Additional Energy Efficiency Package: Filtration level mods, control sequence, additional monitoring, etc.



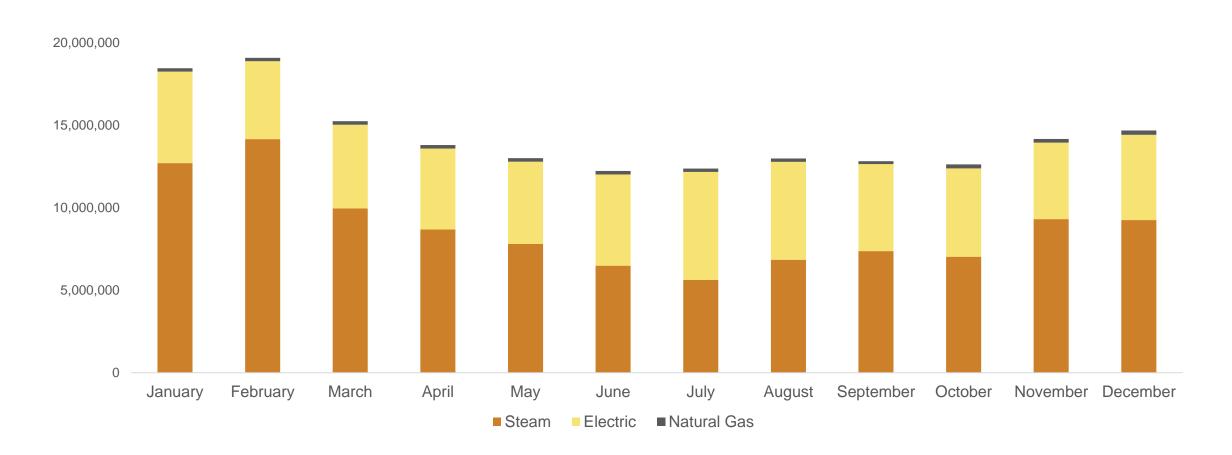

# **MOMA MAIN**



# MOMA MAIN TASK LIST STATUS

| Data Collection & Review                                 | Energy Efficient IAQ Energy Analysis         |
|----------------------------------------------------------|----------------------------------------------|
| Minimum 12-Months Pre-COVID Utility Data                 | ☐ ASHRAE Recommendations Energy Model        |
|                                                          | ☐ Energy Efficiency Model                    |
|                                                          |                                              |
|                                                          | Economic Analysis                            |
| ☐ Conduct Operator Interviews (Ongoing)                  | ☐ Develop Design Document for Cost Estimator |
|                                                          | □ Collect Cost Estimates                     |
| Develop Baseline Energy Model                            | ☐ Conduct Economic Analysis                  |
|                                                          |                                              |
|                                                          | Final Reporting                              |
| ✓ Develop Preliminary ECMs                               | ☐ Final Report                               |
|                                                          | ☐ Case Study Documentation                   |
| Site Survey & Energy Efficient IAQ Recommendations       |                                              |
| ☐ Conduct Detailed Site Visits (Scheduled)               |                                              |
| ☐ Develop Filtration and Airside Equipment Operation Log |                                              |
| □ Develop IAQ Recommendations                            |                                              |
| □ Refine Preliminary ECMs                                |                                              |

# 2019 Energy Consumption by Utility



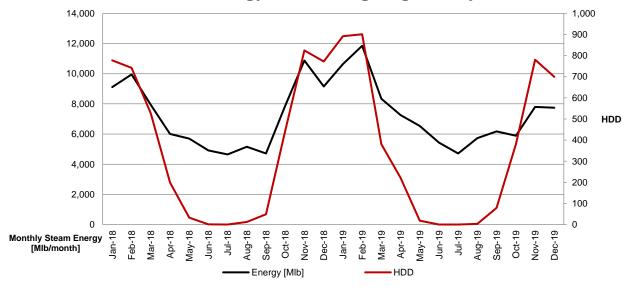

| Energy Source | Energy<br>Consumption<br>[kBTUs] | % Energy<br>Consumption |
|---------------|----------------------------------|-------------------------|
| Electricity   | 63,630,436                       | 37.1%                   |
| ConEd Steam   | 105,128,235                      | 61.4%                   |
| Natural Gas   | 2,601,160                        | 1.5%                    |



# Total 2019 Monthly Consumption by Utility [kBtu]

25,000,000



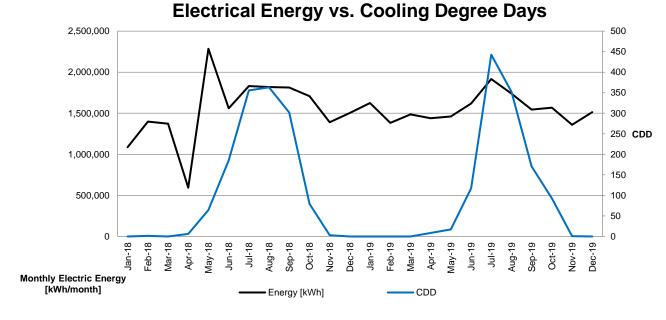



**Total 2019 Consumption: 171,397,290 kBtu** 

#### **Energy** Month Cost [\$] HDD Year Days [ConEd MIb] 2018 January 9,113 304,446 28 777 9.954 742 2018 294,190 February 32 2018 March 7,939 232,944 27 526 2018 April 6,005 90,059 29 200 2018 33 5,694 71.400 May 31 2018 4,914 63,639 29 June 2018 July 4,651 63,854 28 0 2018 August 5,159 72,203 31 13 2018 September 4,708 65,858 28 49 2018 7,873 237,458 29 444 October 2018 November 10,878 296,350 32 825 2018 9,150 269,167 772 December 29 2019 January 10,635 368,815 28 892 2019 11,849 372.858 32 February 901 2019 8,335 264,571 27 381 March 2019 7,262 98,595 29 222 April 2019 May 6,534 82,226 31 19 2019 5,433 62,525 29 June 0 2019 July 4.710 53,969 28 0 2019 5,731 62,297 3 August 31 2019 6,171 70,650 29 79 September 2019 5.884 381 October 172,399 28 2019 7,793 204,592 32 781 November 2019 7,742 218,093 699 December

#### Steam



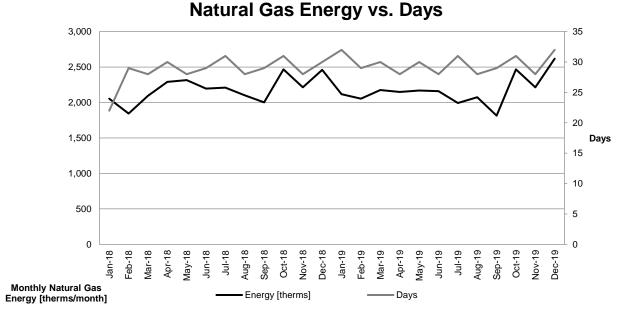



- A regression analysis was utilized to develop a baseline energy model for heating end uses in the building. This analysis often allows the energy auditing team to better understand the facilities' heating energy profile and will form the analytical foundation for energy reduction analysis associated with ECMs impacting building heating loads.
- 2. Insight: The regression analysis shows that MoMA Main's steam profile follows an expected trajectory, with steam usage driven by outside air temperature in the winter and humidity control requirements year-round.



## **Electricity**

| Year | Month     | Energy<br>[kWh] | Power<br>[kW] | Cost [\$] | Days | CDD |
|------|-----------|-----------------|---------------|-----------|------|-----|
| 2018 | January   | 1,086,787       | 2,536         | 132,977   | 22   | 0   |
| 2018 | February  | 1,397,600       | 2,556         | 158,946   | 29   | 2   |
| 2018 | March     | 1,372,000       | 2,340         | 163,818   | 28   | 0   |
| 2018 | April     | 593,600         | 2,649         | 98,417    | 30   | 6   |
| 2018 | May       | 2,284,800       | 2,866         | 232,010   | 28   | 64  |
| 2018 | June      | 1,559,200       | 3,000         | 237,675   | 29   | 186 |
| 2018 | July      | 1,831,200       | 3,185         | 293,835   | 30   | 356 |
| 2018 | August    | 1,818,400       | 3,218         | 283,606   | 28   | 363 |
| 2018 | September | 1,812,800       | 3,244         | 290,751   | 29   | 302 |
| 2018 | October   | 1,707,200       | 3,070         | 216,614   | 31   | 80  |
| 2018 | November  | 1,389,600       | 2,621         | 164,010   | 28   | 3   |
| 2018 | December  | 1,503,200       | 2,827         | 173,016   | 30   | 0   |
| 2019 | January   | 1,623,414       | 2,532         | 202,843   | 33   | 0   |
| 2019 | February  | 1,383,200       | 2,575         | 161,646   | 29   | 0   |
| 2019 | March     | 1,486,400       | 2,701         | 181,397   | 30   | 0   |
| 2019 | April     | 1,438,400       | 2,651         | 168,932   | 28   | 9   |
| 2019 | May       | 1,460,800       | 2,845         | 172,158   | 28   | 17  |
| 2019 | June      | 1,618,400       | 3,015         | 243,364   | 29   | 117 |
| 2019 | July      | 1,916,800       | 3,138         | 302,819   | 31   | 443 |
| 2019 | August    | 1,738,400       | 3,079         | 274,834   | 28   | 353 |
| 2019 | September | 1,544,000       | 2,951         | 260,444   | 29   | 171 |
| 2019 | October   | 1,567,200       | 2,856         | 220,536   | 31   | 93  |
| 2019 | November  | 1,358,400       | 2,865         | 175,505   | 28   | 1   |
| 2019 | December  | 1,513,600       | 2,502         | 194,895   | 32   | 0   |

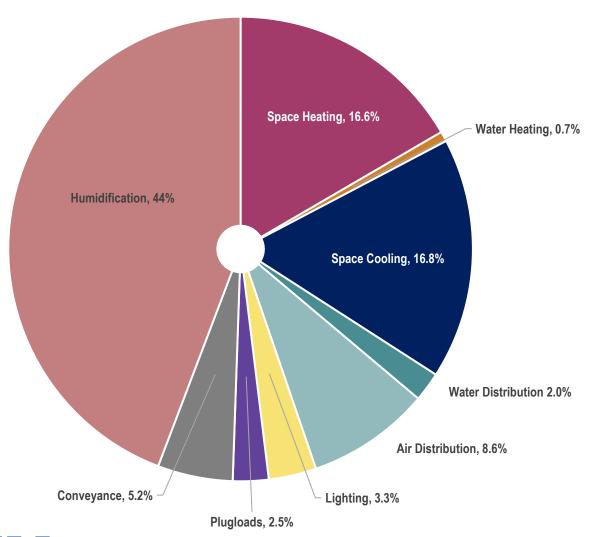



- A regression analysis was utilized to develop a baseline energy model for cooling end uses in the building. This analysis often allows the energy auditing team to better understand the facilities' cooling energy profile and will form the analytical foundation for energy reduction analysis associated with ECMs impacting building cooling loads.
- Insight: The regression analysis shows that MoMA's cooling energy profile is consistent
  year-round due to the stringent temperature and humidity requirements for Museum gallery
  spaces. Peaks in the summer months are due to additional cooling load as outside
  temperatures rise.



#### **Natural Gas**

| Year | Month     | Energy<br>[therm] | Cost [\$] | Days |
|------|-----------|-------------------|-----------|------|
| 2018 | January   | 2,054             | 1,455     | 22   |
| 2018 | February  | 1,844             | 1,837     | 29   |
| 2018 | March     | 2,094             | 2,145     | 28   |
| 2018 | April     | 2,291             | 2,340     | 30   |
| 2018 | May       | 2,315             | 2,341     | 28   |
| 2018 | June      | 2,197             | 2,208     | 29   |
| 2018 | July      | 2,211             | 2,233     | 31   |
| 2018 | August    | 2,101             | 2,116     | 28   |
| 2018 | September | 2,003             | 2,004     | 29   |
| 2018 | October   | 2,467             | 2,484     | 31   |
| 2018 | November  | 2,215             | 2,232     | 28   |
| 2018 | December  | 2,461             | 2,478     | 30   |
| 2019 | January   | 2,118             | 2,334     | 32   |
| 2019 | February  | 2,054             | 1,891     | 29   |
| 2019 | March     | 2,177             | 1,899     | 30   |
| 2019 | April     | 2,150             | 1,851     | 28   |
| 2019 | May       | 2,169             | 1,869     | 30   |
| 2019 | June      | 2,160             | 1,861     | 28   |
| 2019 | July      | 1,994             | 2,815     | 31   |
| 2019 | August    | 2,074             | 2,520     | 28   |
| 2019 | September | 1,815             | 2,283     | 29   |
| 2019 | October   | 2,467             | 2,122     | 31   |
| 2019 | November  | 2,215             | 1,914     | 28   |
| 2019 | December  | 2,619             | 2,261     | 32   |




- 1. A regression analysis was utilized to develop a baseline energy model for natural gas uses in the building. Natural gas is utilized for cooking in the museum's café.
- 2. Insight: The analysis shows that MoMA Main's cooking energy profile follows a typical trajectory and is driven by the number of days that the building's restaurant is open and operational.



### **UTILITY ANALYSIS**

# Total 2019 Consumption by End Use

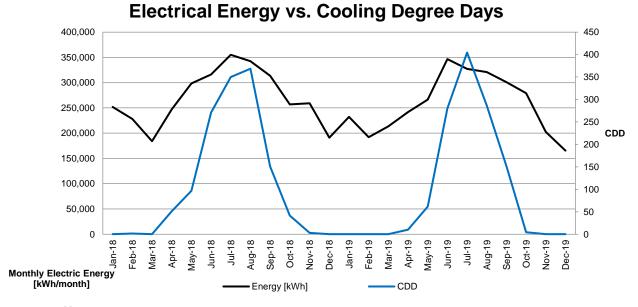


| End Use            | Energy Consumption<br>(kBtu) | % Energy<br>Consumption |
|--------------------|------------------------------|-------------------------|
| Space Heating      | 28,373,022                   | 16.6%                   |
| Water Heating      | 1,188,774                    | 0.7%                    |
| Space Cooling      | 28,709,029                   | 16.8%                   |
| Water Distribution | 3,484,022                    | 2.0%                    |
| Air Distribution   | 14,693,900                   | 8.6%                    |
| Lighting           | 5,667,729                    | 3.3%                    |
| Plug Loads         | 4,250,797                    | 2.5%                    |
| Conveyance         | 8,942,825                    | 5.2%                    |
| Humidification     | 75,566,439                   | 44.1%                   |

- 1. The end use categories are based on ASHRAE Standard 211-2018 Guidelines.
- 2. Equipment runtimes are based on discussions with building staff and standard assumptions, along with a 2020 LL87 report, where applicable.
- 3. Humidification and space heating end uses require further refinement.



# MOMA QNS

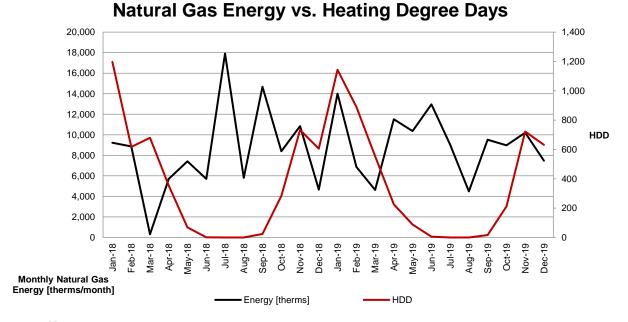



# MOMA QNS TASK LIST STATUS

| Data Collection & Review                                 | <b>Energy Efficient IAQ Energy Analysis</b>  |
|----------------------------------------------------------|----------------------------------------------|
| Minimum 12-Months Pre-COVID Utility Data                 | ☐ ASHRAE Recommendations Energy Model        |
|                                                          | ☐ Energy Efficiency Model                    |
|                                                          |                                              |
|                                                          | Economic Analysis                            |
| ☐ Conduct Operator Interviews (Ongoing)                  | □ Develop Design Document for Cost Estimator |
|                                                          | □ Collect Cost Estimates                     |
| Develop Baseline Energy Model                            | ☐ Conduct Economic Analysis                  |
|                                                          |                                              |
|                                                          | Final Reporting                              |
| ✓ Develop Preliminary ECMs                               | ☐ Final Report                               |
|                                                          | ☐ Case Study Documentation                   |
| Site Survey & Energy Efficient IAQ Recommendations       |                                              |
| ☐ Conduct Detailed Site Visits (Scheduled)               |                                              |
| ☐ Develop Filtration and Airside Equipment Operation Log |                                              |
| ☐ Develop IAQ Recommendations                            |                                              |
| □ Refine Preliminary ECMs                                |                                              |

# **Electricity**

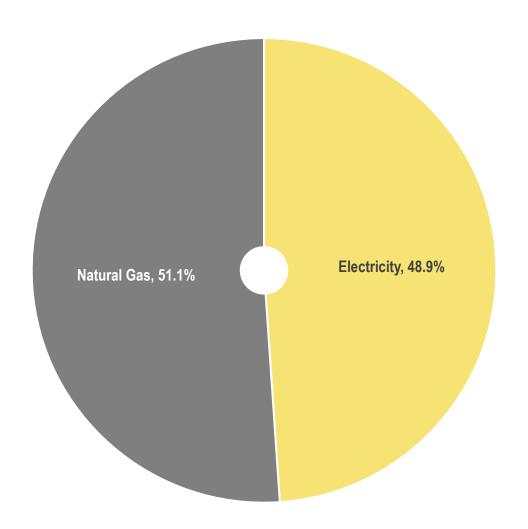
| Year | Month     | Energy<br>[kWh] | Cost [\$] | Days | CDD |
|------|-----------|-----------------|-----------|------|-----|
| 2018 | January   | 251,819         | 39,400    | 35   | 0   |
| 2018 | February  | 228,000         | 33,857    | 29   | 2   |
| 2018 | March     | 184,000         | 28,334    | 28   | 0   |
| 2018 | April     | 247,200         | 38,151    | 30   | 51  |
| 2018 | May       | 298,400         | 41,531    | 29   | 97  |
| 2018 | June      | 316,000         | 49,349    | 29   | 271 |
| 2018 | July      | 355,200         | 53,013    | 30   | 350 |
| 2018 | August    | 342,400         | 54,506    | 29   | 369 |
| 2018 | September | 313,600         | 49,646    | 28   | 151 |
| 2018 | October   | 256,800         | 36,930    | 28   | 42  |
| 2018 | November  | 259,200         | 38,307    | 33   | 3   |
| 2018 | December  | 190,968         | 13,626    | 25   | 0   |
| 2019 | January   | 232,232         | 30,320    | 35   | 0   |
| 2019 | February  | 192,000         | 27,186    | 29   | 0   |
| 2019 | March     | 213,600         | 33,480    | 31   | 0   |
| 2019 | April     | 241,600         | 33,398    | 28   | 10  |
| 2019 | May       | 266,400         | 36,885    | 29   | 62  |
| 2019 | June      | 346,400         | 52,940    | 31   | 280 |
| 2019 | July      | 327,200         | 73,329    | 28   | 405 |
| 2019 | August    | 320,800         | 50,948    | 29   | 287 |
| 2019 | September | 300,800         | 46,510    | 28   | 152 |
| 2019 | October   | 279,200         | 41,701    | 30   | 5   |
| 2019 | November  | 202,400         | 31,757    | 31   | 0   |
| 2019 | December  | 165,368         | 30,571    | 24   | 0   |




- 1. A regression analysis was utilized to develop a baseline energy model for cooling end uses in the building.
- 2. Insight: The regression analysis shows that MoMA QNS cooling energy profile is consistent year-round due to the stringent temperature and humidity requirements for Museum gallery and art storage spaces.



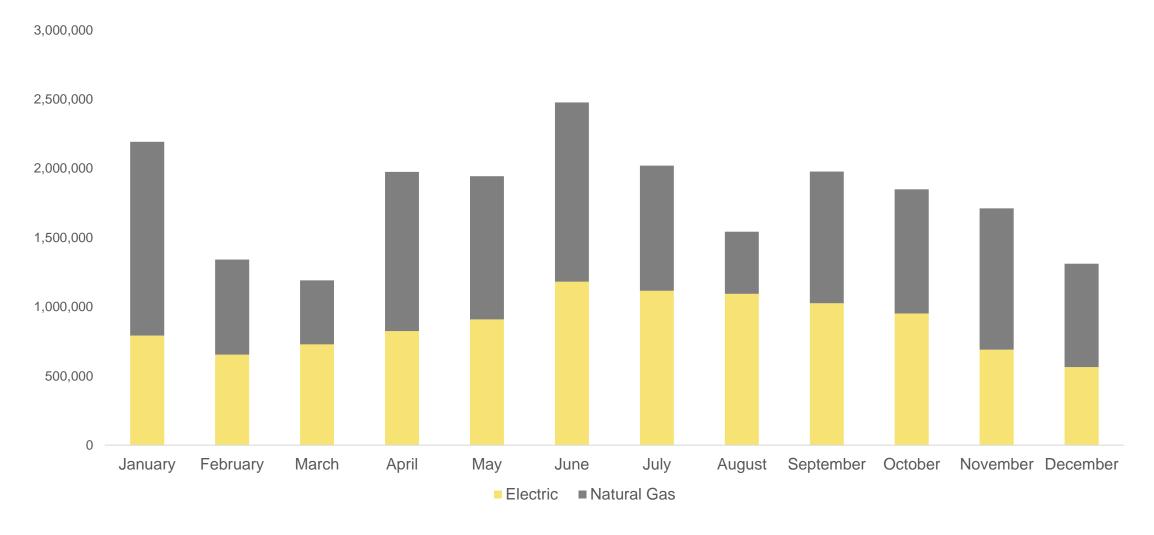
#### **Natural Gas**


| Year | Month     | Energy<br>[therms] | Cost [\$] | Days | HDD   |
|------|-----------|--------------------|-----------|------|-------|
| 2018 | January   | 9,219              | 8,017     | 36   | 1,196 |
| 2018 | February  | 8,862              | 8,281     | 29   | 617   |
| 2018 | March     | 308                | 355       | 28   | 680   |
| 2018 | April     | 5,711              | 5,257     | 30   | 355   |
| 2018 | May       | 7,421              | 6,727     | 29   | 69    |
| 2018 | June      | 5,708              | 5,325     | 30   | 2     |
| 2018 | July      | 17,922             | 13,371    | 30   | 0     |
| 2018 | August    | 5,814              | 5,421     | 29   | 0     |
| 2018 | September | 14,684             | 12,447    | 28   | 24    |
| 2018 | October   | 8,398              | 7,664     | 28   | 284   |
| 2018 | November  | 10,850             | 9,788     | 33   | 734   |
| 2018 | December  | 4,655              | 4,428     | 24   | 605   |
| 2019 | January   | 14,007             | 15,278    | 36   | 1,143 |
| 2019 | February  | 6,870              | 5,415     | 29   | 891   |
| 2019 | March     | 4,630              | 3,949     | 30   | 554   |
| 2019 | April     | 11,515             | 6,695     | 28   | 226   |
| 2019 | May       | 10,355             | 7,749     | 29   | 89    |
| 2019 | June      | 12,956             | 9,547     | 31   | 5     |
| 2019 | July      | 9,039              | 6,499     | 28   | 0     |
| 2019 | August    | 4,486              | 5,117     | 29   | 0     |
| 2019 | September | 9,520              | 7,167     | 28   | 16    |
| 2019 | October   | 8,973              | 5,903     | 30   | 212   |
| 2019 | November  | 10,209             | 7,766     | 31   | 723   |
| 2019 | December  | 7,474              | 6,616     | 24   | 631   |



- 1. A regression analysis was utilized to develop a simplified energy model for heating end uses in the building.
- 2. Insight: The regression analysis shows that MoMA QNS's heating energy profile follows a typical trajectory and is driven by outside air temperature. Additional investigation into peaks will be required. May need to run regression analysis based on OA RH instead of OA temp since NG is used to generate steam for humidification and space heating.



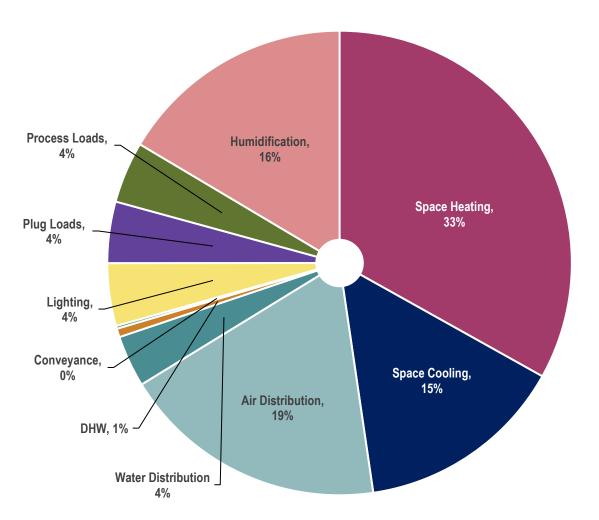

# Total Regression Based 2019 Consumption by Utility



| Energy Source | Energy<br>Consumption<br>[kBTUs] | % Energy<br>Consumption |
|---------------|----------------------------------|-------------------------|
| Electricity   | 10,536,256                       | 48.9%                   |
| Natural Gas   | 11,003,594                       | 51.1%                   |



# Total Monthly Consumption by Utility [kBtu]






**Total 2019 Consumption: 21,539,850 kBtu** 

### **UTILITY ANALYSIS**

# Total 2019 Consumption by End Use



| End Use            | Energy Consumption<br>(kBtu) | % Energy<br>Consumption |
|--------------------|------------------------------|-------------------------|
| Space Heating      | 7,376,459                    | 33.2%                   |
| Space Cooling      | 3,246,275                    | 14.6%                   |
| Air Distribution   | 4,134,779                    | 8.6%                    |
| Water Distribution | 800,678                      | 3.6%                    |
| Water Heating      | 133,000                      | 0.6%                    |
| Conveyance         | 45,000                       | 0.2%                    |
| Lighting           | 971,000                      | 4.4%                    |
| Plug Loads         | 952,000                      | 4.3%                    |
| Process Loads      | 952,000                      | 4.3%                    |
| Humidification     | 3,667,867                    | 16.5%                   |

- 1. The end use categories are based on ASHRAE Standard 211-2018 Guidelines.
- 2. Equipment runtimes are based on discussions with building staff and standard assumptions, along with a 2020 LL87 report, where applicable.



# NOTES, ASSUMPTIONS & RESOURCES

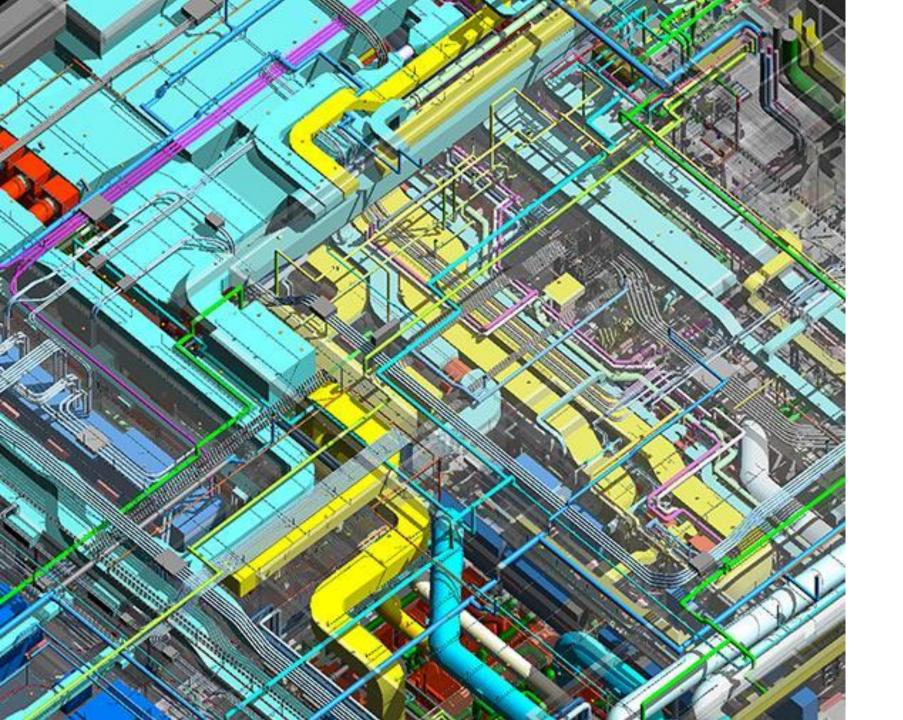
- Resource: ASHRAE Standard 211-2018
- Existing LL87 Reports for both buildings (2018-2019) utilized as a check on JB&B analysis.
- Existing documentation from MoMA Expansion project (JB&B design).
- Energy Star Portfolio for Utility Data (Con Ed benchmarking link enabled).
- Existing schedule sheets utilized for Energy Use Breakdown.



# **NEXT STEPS**



#### **NEXT STEPS**


### **MoMA Projects**

- Site visits to collect IAQ info and develop recommendations
- Develop prelim list of ECMs
- Build ASHRAE Recommendations Model

### **Other Project Sites**

- Kick-off meetings with Rudin and Horace Mann staff
- Baseline Energy Models for Rudin properties
  - 80 Pine/3 TSQ calibrated energy model







80 PINE STREET NEW YORK, NY 10005

T 212.530.9300 F 212.269.5894

WWW.JBB.COM