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Abstract 
Ubiquitous connected devices and microblogging platforms, such as Twitter, are providing a huge  

amount of user-generated information that has a great potential for applications in transportation  

incident management (TIM) with minimal infrastructure required. In this study publicly posted  

Twitter posts were gathered using relevant keywords. While organizational Twitter accounts (e.g.,  

DOT, news outlets) disseminate traffic information after an incident is reported and confirmed, tweets  

of personal accounts are more likely to contain previously unreported traffic information, and therefore 

are particularly valuable for TIM. A variety of information such as location, time, severity, extent of 

damage, presence of debris, and evolution of congestion can be extracted from the Twitter’s text. Such 

information is especially useful for TIM as the traditional sources for gathering traffic information, such 

as loop detectors and sensors, are expensive to construct and maintain for local and rural roads. Accident 

delay as well as emissions and fuel consumption were calculated using comprehensive incident data from 

California Highway Patrol to demonstrate the benefits of using Twitter for TIM. As a result of the early 

detection, 4,046 vehicle-hours of delay savings, reduction in 5.9 kg of ROG, 133 kg of CO, 16.3 kg  

of NOx and 0.3 kg of PM 2.5 and 1,939 gal of gasoline and 622 gal of diesel were estimated to be  

saved – total monetary value of $75,600 i.e., $0.5 per mile per week in California. For incidents in  

NYS, for each accident recorded, accident delay as well as emissions and fuel consumption were 

estimated in order to benchmark the potential delay and savings due to early incident detection.  

The study concludes with recommendations for the application of social media for TIM. 

Keywords 
Incident Management; Social Media; Text mining; Emission, Delay, Fuel consumption reduction 
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Summary 
This study investigates the potential use of Twitter feeds as a Transportation Incident Management  

(TIM) support tool for transportation management and operations. The premise of the study relies on  

the following two facts: 1) social media users disseminate various types of information, including traffic 

incidents and 2) minimal infrastructure investments are required to gather the feeds and use them for  

TIM purposes. Extracted traffic information from tweets can be used to inform TIM practices such  

as early incident detection. Utilizing incident related information (e.g., fatality, injury) can inform 

emergency vehicle dispatch operations and personnel who activate hazard warnings on roadways (e.g., 

presence of debris). One straightforward benefit is early incident clearance (as a result of early detection), 

which has the potential to reduce, fuel consumption, traffic delays, and emissions. In the case of life 

threatening accidents, early detection, as well as post-incident information regarding severity, can save 

lives. Furthermore, road hazard information has the capacity to prevent possible traffic incidents.  

Twitter feeds gathered through a Twitter API (Application Programing Interface) were analyzed using  

a predefined set of keywords related to incidents on roadways. While organizational Twitter accounts 

(e.g., DOT, news outlets) disseminate traffic information after an incident is reported and confirmed, 

tweets of personal accounts are more likely to contain previously unreported traffic information, and  

are therefore more useful to TIM. Researchers discovered that in order to obtain useful information  

from personal tweets, they had to adapt to the idiosyncrasies of casually written personal tweets (e.g., 

non-perfect grammar, abbreviations, use of transitive verbs). Overall, the study demonstrated that  

incident information can be gathered from Twitter, confirming the similar findings in the literature. The 

conclusions for this project were presented at the Transportation Research Board’s 96th Annual Meeting 

and published in the Transportation Research Record Journal.1 

To investigate the possibility of early incident detection and calculate potential delay as well as fuel 

consumption and emission benefits, accident and traffic count data sets from two sections of the  

Gowanus Expressway (GE) and the Long Island Expressway (LIE) were obtained from the New York 

State Department of Transportation (DOT). The accident records were matched with corresponding  

                                                

1  Yazici, M. A., Mudigonda, S., & Kamga, C. (2017). Incident Detection through Twitter: Organization vs. Personal 
Accounts, Transportation Research Record (in Press) 
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Traffic flow data (unless the data was missing). Accident delay, emissions, and fuel consumption were 

calculated for each accident record in order to benchmark the potential delay, fuel savings, and emission 

reduction due to early incident detection.  

Using Twitter required a particular process. A search for tweets with specific keywords through Twitter’s 

public API limits the results to about 1% of the total number of actual tweets that meet the search criteria, 

producing a low yield for the number of personal tweets. To address the issue of low yield, tweets 

matching several search queries were purchased (corresponding to the timeframe of GE and LIE accident 

data sets), and further analysis was performed. Although multiple accidents could be identified in the 

Twitter feeds, none of those accidents could be matched with an accident record in the GE and LIE  

data sets. To demonstrate and illustrate the benefits of using social media for TIM, more spatially- and 

temporally-detailed incident data from the California Highway Patrol (CHP) were used to match tweets 

collected in California. Using tweet and incident data from six weeks in total, 21 traffic incident tweets 

were matched to the recorded incidents. Three tweets were able to precede the incident reported time  

by 19, 23, and 4 minutes respectively. For those early detected accidents, reductions in accident delay, 

emissions, and fuel consumption were calculated using the flow and speed data from the Performance 

Measurement System (PeMS) database. As a result of the early detection, 4,046 vehicle-hours were 

saved. Reduction in emissions amounted to 5.9 kg of ROG, 133 kg of CO, 16.3 kg of NOx and 0.3 kg  

of PM 2.5. Fuel savings amounted to 1,939 gal of gasoline and 622 gal of diesel—a total monetary  

value of $75,600 or $0.5 per mile per week. 

Due to the lack of other detailed incident records in the State of New York, the potential benefits of early 

detection could not be illustrated as previously anticipated. Instead, potential economic and environmental 

savings were analyzed using hypothetical scenarios based on the percentage of accidents detected through 

Twitter and the level of early detection. The purchased tweet records for both New York and California 

were further analyzed in terms of additional traffic information content, i.e., accident severity, debris, and 

geographic location of incidents. Similar to the incident detection, the tweets were shown to include 

relevant traffic related information, which can be used to help TIM.  

Overall, the study succeeds in illustrating the use of Twitter feeds for extracting incident information  

and provides important guidelines for future studies regarding efficient approaches to obtaining traffic 

information from social media. The study shows that TIM for local, rural, and less instrumented roadways 

can benefit from information gatehered from Twitter feeds. Additionally, supplementary information on 

incidents can be gathered to monitor the evolution of incidents, from time created to the time cleared. On 
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the other hand, due to the limited number of available accident records to match accident information 

extracted from Twitter feeds in New York State, the potential benefits of early detection and the 

economic and environmental savings could not be directly quantified in the State. The calculation of  

the potential benefits of early detection require a comprehensive and complete traffic incident records 

database (including non-crash incidents, e.g., disablements), such as the CHP incident data. Potential 

delay and fuel and emission benefits were estimated for a sample of the CHP data to demonstrate the 

utility of social media for TIM. A similar effort for the State of New York will be pursued by the  

project team with much more extensive incident data for future research.  

In the light of the findings, the following recommendations for the efficient use of Twitter feeds for 

gathering incident information were presented:  

1. Tweets from individual accounts: Compared to already known information disseminated by 
organizational Twitter accounts, personal account tweets are more likely to include useful  
TIM information, but require more specialized search keywords to be utilized. In order to  
extract such significant information, queries should incorporate the relatively casual use of 
language and grammar by individual Twitter users. 

2. Use of structured hashtags: With the provision of structured hashtags, highly specific location 
information can be provided to the agencies without users worrying about their privacy in 
providing/revealing the exact geolocation in their tweets. These structured hashtags can also 
provide means of defining incident type. In addition, the collection of tweet data using specific 
hashtags is much easier than scraping Twitter feeds for specific information which requires 
Twitter APIs, text mining, etc. 

3. Safety Concerns: Despite some positive aspects of using Twitter as a traffic information source, 
there are safety concerns from Twitter users. Distracted driving is one of the major causes of 
traffic accidents and the New York State vehicle and traffic law for distracted driving, talking, 
and texting, clearly restricts the way one can use cell phones and similar smart devices in traffic. 
This study does not, in any way, encourage unsafe driving and traffic violations for the sake of 
disseminating traffic information. Such social media information dissemination should be done 
by nondrivers, or transmitted in a safe manner by the drivers, possibly by stopping on the side of 
the road and making a phone call or text transmission, or by using a hands-free mobile telephone 
as indicated in New York State traffic law article 33, sections 1225-c and -d. (VTL 1225-c, VTL 
1225-d). 

4. Partnership with data providers: It became apparent during the performance of this study that 
access to real-time social media data will facilitate the implementation of such a tool for TIM.  
A partnership for real-time, crowd-sourced data sharing between transportation agencies, such  
as DOT with data providers (Twitter Inc, Waze, etc.) is recommended. 
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1 Introduction 
The increase in digital technologies, particularly internet and smart phones, creates easier ways to  

collect, access, and analyze large amounts of data for various purposes. Specifically, the concept of  

Web 2.0 and social media emphasizes user generated content, which makes every user a potential  

source of information, ranging from factual information to personal opinions. Businesses have been  

one of the first entities to embrace the potential of social media feeds, mainly for marketing and customer 

relations.1,2,3 Political organizations have also used social media to assess public support or dissent4,5 and 

social media has been cited as a gathering platform for social change.6  

The public sector has employed user-created information for policy and planning purposes, such as  

social media to monitor disease outbreaks7,8 and to gather information during disasters.9,10 The potential  

of social media has also been recognized by transportation agencies and researchers, particularly for 

public transportation. A 2012 Transit Cooperative Research Program (TCRP) report titled Uses of Social 

Media in Public Transportation11 is a good example of the field’s response to this growing phenomenon  

in its early stages.  

In the transportation field, information provided by social media users allow researchers/practitioners  

to monitor certain trends/events in real time, as well as to use the historical feed data for planning/policy 

purposes. Public transportation agencies use social media to collect opinions on long-term plans and 

policies, e.g., user satisfaction and level of service.11 As another planning and policy application, social 

media has been utilized as a supplementary source for transportation demand surveys, which helps reduce 

the survey cost while increasing the reliability and accuracy of the estimates.3,12,13 In terms of real-time 

applications, large-scale events (such as disasters) receive more attention than smaller-scale events (such 

as traffic incidents and congestion).14,15 Public transportation agencies use real-time interaction with  

their customers during service disruptions;10 however, such interactions are in large part cultivated to 

disseminate information and maintain customer satisfaction. Extracting real-time information from  

social media and implementing tools for road transportation are still under development due to several 

challenges that will be discussed in following sections. Nevertheless, there are efforts to provide 

frameworks for such implementations66,16 and some applications have been tested to supplement real- 

time traffic information with social media-based information.17 
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The attractiveness of social media emerges from the ability to harvested information that is widely 

available and up-to-date. There is no need for expensive instrumentation or costly infrastructure 

investments, and software applications can handle the information collecting and reporting with 

negligible costs. The feature has the potential to help transportation agencies gather information  

from parts of the road network that lack sufficient instrumentation.  

The main topics of interest in the field of transportation are traffic congestion information and traffic 

incidents, as one of the major contributors to nonrecurrent delay. The duration of the incident is the 

primary factor that determines the magnitude of the delay and thus the level of fuel waste and excess 

emissions. An I-95 Corridor Coalition report18 estimates that reducing an incident duration by only  

5 minutes can save up to 44.5 gallons of fuel and 3.5 kg, 44.36 kg, 6.49 kg of HC, CO and NO emissions 

respectively, per incident. Furthermore, the probability of surviving an accident with early detection is 

also quantified in The Impact of Rapid Incident Detection on Freeway Accident Fatalities. 19 Much of  

the literature on social media and transportation shows that tweets can be used to detect traffic incidents 

(and at times earlier than officially reported).14, 15, 20, 21, 23  

This study also analyzed accident records and traffic count data sets from the Gowanus Expressway  

(GE) and Long Island Expressway (LIE) in New York State and contrasted the information with 

purchased filtered tweets from surrounding areas to identify potential delay and measure fuel 

consumption and emission reductions.  

The following sections of this report describe traffic incident information extraction using Twitter.  

A literature review is presented on the general topic of event detection with social media, along with 

studies on traffic incident detection in the second section. The researchers describe the preliminary data 

collection methods applying Twitter’s public API, the data analysis, as well as a larger data collection 

effort and extraction from various types of specific information from Twitter accounts in the second 

section. The third section presents the analysis of the accident and traffic count data sets at selected 

corridors (Long Island and Gowanus Expressways) in order to discuss the potential economic and 

environmental impacts of using Twitter feeds as a traffic information source. Fourth section presents  

the early incident detection and likely benefits. Fifth section describes potential benefits in the State  

of New York. The concluding remarks are then followed by remark on using mobiles phones and a 

statement on implementation in the sixth, seventh and eighth sections respectively. 
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2 Traffic Incident Information Extraction via Twitter 
Social media users continuously provide a wide range of information that make social media data feeds  

a part of the “big data” phenomenon. Topics of social media are often referred to as “events,” such as a 

concert, sporting event, or building fires. Communication scholars launch digital journalistic websites  

in which identified events can be used as news information sources.25 Naaman et al.26 coins two terms, 

“meformers” and “informers,” based on the nature of the posted information. Based on their Twitter  

feed analysis, researchers cluster 80% of the users as “meformers” who post about their opinions or  

self-promote. Informers who post about others constitute 20% of the analyzed user samples, and 53% of 

these tweets are informational in nature. Another study 27 reports that 40% of the tweets relate to the 

personal sphere. Both types of users are valuable depending on who is interested and the purpose or  

their analysis. For instance, the so-called “sentiment analysis” targets the personal reflection of social 

media users about certain products or services and can be employed by companies to measure customer 

satisfaction, public reaction to a new product, and other similar topics of interest. A transportation related 

use of such analysis is performed by public transportation agencies to gauge their customers’ view of the 

institution, the provided services, and reactions to service disruptions.28, 29 Sentiment analysis requires 

advanced semantics processing (such as questionnaires and surveys) and comes with challenges in 

identifying positive or negative feelings solely based on text. For instance, researchers need to  

distinguish “sarcastic” positive comments from actual positive comments.  

The subject matter of the current report is mainly the informer type of user or tweets, as factual 

information is the kind of data needed for issues relating to traffic and accident reporting. In this 

perspective, the social media users ostensibly behave like “social sensors”30, 31 who disseminate traffic 

related information. Despite the factual content, there are multiple challenges to gathering the facts in  

an automated and efficient way. As discussed in Grant-Muller et al.,3 there is a “needle in a haystack” 

problem to identify relevant information from a massive amount of data. Moreover, the social media 

feeds are generally unstructured, written in colloquial language with no predetermined wording structure, 

such as abbreviations and shorthand expressions which makes it difficult to identify and extract relevant 

information. Ayalet Gal-Tzur et al.24 also discuss the potentially ungrammatical nature of the feeds and 

lack of “context” as other challenges. Based on the findings of Liu et al.,32 80% of social media data is 

unstructured. Ayalet Gal-Tzur et al.24 argue that overlooking unstructured feeds would result in 

underutilization of the vast information source. In these respects, the information must be “harvested” 

rather than simply queried.3 However, the identification of traffic incidents exhibits an additional 

computational challenge when real-time “harvesting” is sought. In addition to the computational 
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challenge, traffic incident information requires geospatial details for the greatest potential benefit.  

Most social media platforms, including Twitter, require user permission to include geocoding within  

the post. Since there is a significant percentage of users who opt out of providing their location, 

researchers33, 34 have explored methods to associate geospatial information to social media feeds  

with only partial success.24 Despite the challenges, social media (particularly Twitter) has been 

successfully employed by researchers to detect traffic incidents. 

Along similar lines, Pereira et al.20 identify three major challenges for using social media data for ITS 

purposes:  

• Information retrieval: “The task of obtaining the list of documents that best matches a  
given query.” 

• Information extraction: Converting an unstructured/structured, inexplicit text into  
relevant information. 

• Prediction: Use of extracted information to predict future transportation issues. 
 
The third challenge, referring to predicting future traffic congestion, will not be discuss as it does  
not fall within the scope of this report. 

2.1 Classification Methodologies Traffic Incident Detection 

Event detection in Twitter has been a popular topic as the acceptance of Twitter increases. For the 

interested reader, Atefeh and Khreich 35 provide a good survey of the techniques for event detection  

in Twitter. Overall, event detection through text mining first requires “tokenization.” For this purpose,  

a set of words are deduced from the raw text data by removing punctuation, stop words (i.e., “I,” “at”),  

and suffixes (i.e., “s” and “-ing.” Eventually, a set of words are compiled to form a working “dictionary” 

for further processing and keyword selection. Words which do not appear frequently are removed from 

the dictionary. Keyword selection can be also done systematically with various methods, for example, 

entropy (representing how well a word is suited to separate documents by keyword search), 40 term 

frequency–inverse document frequency (tf-idf ).41 The final list of keywords is used to classify the  

events as relevant or not depending on the desired information.. The literature includes a variety of 

methodologies for this purpose.35  

As one of the earliest studies on Twitter and traffic incident detection, Mai and Hranac21 analyzed  

more than 5 million tweets in California, extracted incident information using a Twitter API, and 

compared it with the California Highway Patrol (CHP) database for verification. For extraction,  

their query predetermined incident-related keywords (i.e., “accident,” “crash,” “wreck,” and “car”)  
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and additional words for connotation (i.e., “saw,” “terrible,” and “just”). They determined the relevance 

of tweets by using an intensity score in which the number of keywords and observational connotations 

were used to assign a score for relevance-ranking. These scores increased if connotations (i.e., “saw”  

or “just”) were also present. However, the authors did not provide the methodology of how the intensity 

scores were calculated. Mai and Hranac21 utilized geotagged tweets (1.3% of all collected tweets) with  

a tweet time stamp while matching harvested incidents to CHP's database. They reported that incident 

related tweets were posted within five hours and within 10 to 25 miles of the incident location. Although 

they did not provide a percentage, successful early detection of incidents was reported. Hai and Hranac21 

argued that Twitter feeds can be more efficiently utilized if a standardized messaging format or #hashtag 

was used. The hastags help the ease of search and classification of information, hence the relevant 

information can be identified through hastags rather than complex text mining algorithms. They also 

pointed out that many relevant tweets include specific freeway names, which can be exploited to 

determine and refine the location information.  

Along these lines, another study by Wanichayapong et al.36 restricted the analysis to tweets with location 

information in Bangkok. The researchers. focused on the classification of traffic information rather than 

focusing solely on incidents. Their aim was to extract information that could be re-tweeted to public. 

Hence, the identification of “what” a tweet was about and where it was located were crucial targets.  

They used four different query “dictionaries” to “tokenize” tweets: place, verb, ban, and  

preposition. The place dictionary included an extensive list (total of 46,241 names) of roads,  

places, crossroads, and alleys in Bangkok. The verb dictionary included traffic related terms, similar  

to Hai and Kranac,21 but with a count of 1093 words and phrases. Since the aim was to disseminate 

relevant information to the public, the ban dictionary included vulgar and profane words as well as 

interrogatives—as questions were assumed not to be factual information. The preposition dictionary 

included the road direction (start and end points of roads) with a total of 192 words. They reported a  

high-level of accuracy for their classification methodology. The researchers discussed that after a certain 

number of words were in the dictionaries, further additions yielded marginal improvement. Verb words 

had a higher impact on tokenization than place words, and a good selection of connotations improved  

the prediction.  

D’Andrea et al.16 provided a general framework of real-time traffic information detection via  

Twitter feeds. They defined an “event” to be “a real-world occurrence that happens in a specific  

time and space”35, 37 and tested different classification methods using Status Update Messages  

(SUMs)—basically the tweets—to identify traffic events in Italy. Their classifications were not  
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confined to incidents, covering nontraffic, traffic due to congestion, traffic due to crashes, and  

traffic due to external events (such as a sports game). The researchers employed a bag-of-words 

representation that broke down the text with respect to words and their frequency, and employed the 

following methods for classification: support vector machine (SVM), Naïve Bayes (NB) classifier, C4.5 

decision tree algorithm, k-nearest neighbors (kNN) algorithm, and PART algorithm. They concluded that 

SVM had the best performance for classification, although other methods also yielded high accuracy.  

Kurkcu et al.15 studied the feasibility of using tweets to detect incidents and incident duration. They used 

a set of incident related keywords to collect tweets through a Twitter API. The feed was pre-processed  

to eliminate mentions, replies, and retweets (to avoid duplicate information), and words such as “the” 

“be” and “along” were deleted to improve classification performance. The researchers employed Naïve 

Bayes (NB) classification to identify incident related tweets and compared it with a 511NY incident 

database. Their results showed that Twitter feeds can detect incidents earlier, although no percentage  

of success was reported. 

In a paper related to the District of Columbia Department of Transportation’s implementation of  

social media for incident detection, Fu et al.22 developed a set of key incident related words and their 

association rules. The Twitter feeds were aimed at detecting incidents earlier than traditional methods  

and filling in missing details for incidents. The authors cited the presence of young people (who are 

mostly social media users), high-pedestrian traffic, and largely urbanized areas as the conditions for  

the implementation.38 For this purpose, four influential Twitter accounts that actively post incident 

information were selected, and their tweets were used to determine the influential keyword set. They 

chose 50 keywords using “term frequency—inverse document frequency” (tf-idf). Inverse document 

frequency measures the importance of a word based on its frequency among words in selected tweets  

as well as the specificity, or the level of information each word provides. Using the tf-idf scores, the 

authors calculated “weights” for each keyword and ranked the tweets in terms of relevance using the  

sum of tf-idf score. In addition, as queries with single keywords can create “noisy” data, the authors 

identified association patterns so that combination of keywords (“word sets”) can be used so that more 

relevant tweets are identified. This study confirmed the potential benefits provided by an early detection 

of incidents via Twitter feeds. Data quality, inconsistency between the location of tweets and incidents, 

reluctance to embrace Twitter as a data source, and staff training were identified as the main challenges.38  
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2.2 Analysis of Data Collected Through Twitter’s Public API  

Extracting incident related information from raw tweets has two main components. The first is to collect 

tweets with the highest “potential” to be “relevant”. The second is to rank or classify the “potentially 

relevant” tweets and narrow them down for practical use in incident management. Gathering social  

media posts utilizes a public API provided by the host. Twitter provides an API that allows searching  

the public posts based on various criteria.65 This allowed researchers in the study to form the raw text  

data by mining Twitter and scraping for public posts. 

One important issue with regards to incident management is identifying whether a detected incident 

through social media has already been brought to the attention of agencies such as emergency response 

personnel. Due to information dissemination power, organizations and agencies use social media to 

inform the public about traffic conditions, for instance, 511 service or state and city New York State 

Department of Transportation (DOT) Twitter accounts. These accounts disseminate information in a 

structured manner (with proper grammar and spelling), which makes it relatively easy to extract  

necessary information. Organizational tweets are also rich in content, providing details of the incident 

(type of incident, location via road and/or exit number, etc.). Unlike agency accounts, individuals do  

not share information in a structured manner, which is one of the main challenges for event detection  

in social media.24 Personal account holders mostly report an accident after they witness it and use active 

or transitive verbs and adverbs, whereas organizations use nouns and intransitive verbs. For instance,  

an organization tweet reads “Closed due to accident in #Summit on Rt-24 EB between X9a and I-78, 

stopped traffic back to X8, delay of 20 mins #traffic. As a contrast, an individual account tweets reads 

“Motor vehicle accident just happened in front of us!! @ Belt Pkwy.” However, organizational accounts 

are not as current as social media—many times conveying information already dispatched to incident 

management units. In this respect, individual user accounts are the main targets for traffic incident 

detection. In this report, based on an analysis of a sample of tweets, strategies to better identify  

events from the contents of targeted personal tweet accounts are discussed. 

In light of the issues identified above, the investigation focused on the impact of keyword lists by 

analyzing the contents of messages in organization and personal accounts. First geo-tagged tweets  

were collected using Twitter’s API with generic keywords (listed below) related to traffic accidents  

in the New York metropolitan area: 

accident, crash, traffic, road, freeway, highway, lane, wreck, car, cars, delay, NB, northbound, 
SB, southbound, EB, eastbound, WB, westbound, blocking, blocked, block, road, rd, street, st, 
parkway, pkwy, highway, ave, incident, collision 
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After the querying phase, rather than combining all tweets into a single sample, the tweets from  

public and private organizations providing traffic information (i.e., 511NY, NYCDOT, DOT, 

TotalTrafficNYC, traffic4NY, news outlet accounts) and tweets from personal accounts were manually 

identified and separated into two different samples. For both samples, the tweet contents were also 

manually coded as “relevant” or “irrelevant” with respect to incident management. Each tweet was  

coded with at least two annotators and the relevancy of the tweet was assigned only when two  

annotators agreed. A total of approximately 6,900 randomly selected tweets were used for the analysis.  

2.2.1 Preliminary Analysis 

As a part of the text mining process, a series of tasks were performed using the R statistical software 

package. First, the raw text was converted into a corpus for text mining analysis in R., and then  

cleaning operations on the text were performed involving the following: 

• Punctuation removal 
• Conversion of text into lower case 
• Removal of commonly occurring words (stop words such as "I,” "the,” "and,” etc.) 
• Stemming of words to reduce them to base words (“saw” and “seen” are converted to  

the word “see”) 

As a preliminary step, word content was analyzed in the tweets to identify the overall frequency of words 

used by organization and personal accounts. For this purpose, commonly occurring words in the cleaned-

up version of the text for both agency-type accounts and personal accounts are illustrated as word clouds 

(Figure 1). A word cloud is a powerful visual representation technique which shows the most common 

words along with their frequency (reflected by font size).  
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Figure 1. Commonly occurring words in agency accounts and personal accounts 

Figure 1 provides some insights about the wording differences in organizational and personal accounts 

and gestures to the study’s premise. All the text mining and event detection algorithms make use of  

these words in one way or another. A straightforward and simple (and not effective) method would be  

to select a list of words (preferably the ones with high frequency) and rank all tweets based on the  

number of matched words. More advanced methods assign “weights” or probability values in order to 

score a tweet or rate it for relevancy probabilities. For instance, one can select a set of words (so-called 

“bag-of-words”) and calculate the number of matched instances in a tweet. This would assign uniform 

weights for each word. The weights can also be assigned based on the modeler’s judgement as Mai,  

E. and Hranac, R. (2013) suggest21 or calculated with an algorithm to extract more meaningful 

relationships (i.e., “term frequency–inverse document frequency”22), for instance, to weigh the  

word “accident” more than the word “road.” 

A schematic representation of the data collection and cleaning is shown in Figure 2. 
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Figure 2. Flowchart of the collection and cleaning of tweets from twitter 

As shown in Figure 1, the occurrence of the words “traffic” and “accident” in a tweet implies a higher 

possibility of being a relevant traffic incident tweet. The word “disabled” is a more formal word which  

is used by organizational accounts but personal tweets do not use this word frequently. In other words, 

looking for the word “disabled” is unlikely to help identify a personal tweet with relevant information.  

As an opposite example, the expression “just,” “got” or “omg” are found in personal tweets as individuals 

mostly report after they witnessed an accident, at times using exclamation words. Thus, it is more 

common to observe active or transitive verbs and adverbs in the tweets from personal accounts, as 

individuals try to report events as they experience them, e.g., “just saw an accident.” The words  

from organizations are more commonly nouns and intransitive verbs, e.g., “one lane blocked.” Since  

the organizational accounts use a more formal language, active or transitive verbs and adverbs do not 

appear in their tweets. The word “crash,” on the other hand, serves as a perfect example of context 

ambiguity in social media event detection mentioned previously. Since “crash” is one of the key words 

used for the Twitter API query, the sample includes multiple tweets (both organizational and personal) 

with the same word. When the word “crash” appears in an organizational account tweet, more often  

than not, it is a relevant tweet. However, individuals use the word “crash” frequently in other contexts, 

such as “crashing a party” or “crashing to bed.” In other words, the existence of the word “crash” does  

not necessarily imply as strong a relevance probability in personal accounts as it does for organizational 

accounts. Another example of the different nature of organizational and individual accounts is the word  
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“httptcocljikjqwv.” It is actually the standard truncated version of a URL (http://t.co/cljikjqwv) that  

has been subjected to some basic cleaning. The URL points to the traffic information page that shows  

the incident location and appears only in agency tweets with a substantial frequency. Individual accounts 

almost never share any supporting multimedia. These idiosyncrasies relate to the issue of differences  

in text structure, word selection (“tokenization”), and the difficulty of weighing those words.  

One of the aims of the current project is to study the importance of the social media account type 

(individual and organizational) and corresponding information content. The literature on reducing traffic 

instances with social media reports an overall-high accuracy for various prediction methods; therefore,  

the motivation of the study is not to provide additional analysis in this vein. Taking these factors into 

consideration, two methodologies were utilized as representative approaches to serve the purpose of  

the study. First, a tf-idf approach was used as it is employed widely in previous literature and is also 

utilized by the District of Columbia Department of Transportation as one of the few real-world  

agency implementations. Second, a Naïve Bayesian approach was utilized in this study as the  

other classification methodology. 

To create a word list and calculate weighs, Fu et al.22 identified a few organizational accounts and  

used a tf-idf approach. The set of all tweets were assigned as set  and then term frequency tf(t,d) 

and itf(t,d) were calculated using 

Equation 1 
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where f(t, d) is the number of times that term t occurs in document d. 

D is a corpus of all documents 
N is the number of documents in the corpus 
|{dϵD:tϵd}| is the number of documents where word t appears 

The tf-idf scores were later used to score the tweets and tweets above a certain score cut-off were  

set aside as raw data. In brief, the contents of organizational account tweets were used to extract the 

incident related information from all tweets that were queried through the Twitter API.  

http://t.co/cl


 

12 

In this study, to improve upon the methodology of Fu et al.22 and to understand the aforementioned 

differences between organizational and personal accounts, the tweets from organization and individual 

accounts were assigned as separate sets𝑇𝑇𝑙𝑙𝑜𝑜 and 𝑇𝑇𝑙𝑙𝑖𝑖 respectively. Accordingly, the 20 and 15 words, 

respectively for 𝑇𝑇𝑙𝑙𝑜𝑜 and 𝑇𝑇𝑙𝑙𝑖𝑖, with the highest tf-idf are identified and listed as follows:  

⎩
⎪
⎨

⎪
⎧

ORGANIZATION ACCOUNTS 
exit, ave, accident, lane, block 

delay, min, pkwy, traffic,
right, back, stop, crash, clear,

close,left, vehicle,road, disable 

�
�

   PERSONAL ACCOUNTS
accident, just, car, traffic
got, bridge, block, crash

highway, thank, get
road, today ⎭

⎪
⎬

⎪
⎫

 

A quick observation reveals that there are words that were not used for querying in the Twitter API. 

Because of this, the results can be fed back to the querying phase to expand the list of relevant words  

and obtain a potentially more relevant set of raw tweets. 

Since tf-idf scores are calculated based on the processed raw tweets, the selection of the tweet sample  

can affect the frequency of certain words and thus the weights and the tweet scores. Some frequent words 

for personal accounts do not even appear in the list for organization accounts. Due to such discrepancies, 

some actually relevant personal tweets can score low and be discarded. To investigate the impacts of the 

tf-idf weights on tweet scoring and ranking, calculated tf-idf scores were based on 

• both the organization and personal account tweets 
• only the organizational account tweets 
• only the personal account tweets  

Then tweets were ranked and compared accordingly. Since the tf-idf scores are dependent on the number 

of words, the absolute values do not provide clear interpretations. The tf-idf scores shown in Table 1 are 

normalized by dividing the tf-idf score by the total number of keywords in set 𝑆𝑆 ∈ {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝} as shown. 

Equation 2  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑺𝑺) =
∑ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒕𝒕,𝒅𝒅)𝒇𝒇𝒇𝒇𝒇𝒇 𝒂𝒂𝒂𝒂𝒂𝒂 𝒕𝒕 𝒊𝒊𝒊𝒊 𝒅𝒅

∑ 𝒕𝒕𝒕𝒕∈𝑺𝑺
 

This normalization helps scale the values and compare the relative importance given to each tweet  

scored from different keyword lists in S. For instance, tweet #1 is given much more importance than  

tweet #2 and even more than tweet #3 using tf-idf with only organizational keywords. However, this 

happens to a much lesser extent for scores estimated using the other two keyword lists.  
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Table 1. Normalized tf-idf scores for relevant tweets using different sets of keywords 

Relevant tweet Account 
type 

Using 
organizational 

+ personal 
keywords 

Using only 
organizational 

keywords 

Using 
only 

personal 
keywords 

#1 State troopers just blocked the ramps 
leading from route 138 in Canton onto 

93 due to serious crash #WCVB 

Agency 0.27 0.27 0.8 

#2 Omg a car crashed into the paramus 
Wendy's @amandabootsy 
http://t.co/C4DwTEIyHN 

Personal 0.2 0.16 0.4 

#3 @crosattto it was a bad wreck that a 
car went straight into the wall and went 
up in flames. http://t.co/XCvA7QkAF8 

Personal 0.04 0 0.1 

#4 car on fire on Lower level of Verrazano 
Bridge. 🚙🚙🚙🚙🚙🚙🚙🚙🚙🚙 @ Verrazano 

Bridge Tolls https://t.co/lpEPEGGXWn 

Personal 0.34 0 1.5 

Table 1 reveals that when the set of keywords changes, the score ranking of the same tweet can also 

change. For example, tweet #4 is ranked the highest both under “organizational + personal” and 

“personal-only” categories, but ranked the lowest when scored with organizational-only keywords.  

These rankings are particularly important since tweets under certain cut-off values are discarded as 

irrelevant. It means that relevant personal account tweets #3 and #4 can be discarded when the word  

list is derived only from organizational accounts. 
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As previously noted, if one aims to detect an unknown incident, the above elimination of a personal tweet 

is not advised. To demonstrate the potential impacts of different tf-idf scoring, the score threshold was  

set as the twentieth percentile of the maximum tf-idf score estimated using each set of keywords in S.  

All the tweets with scores below the threshold were discarded. When only agency accounts were used  

for scoring, a total of 439 tweets were retained. Among those tweets, 435 (99%) were from organizational 

accounts and 4 (1%) were from personal accounts. The same analysis for only personal accounts yielded  

a total of 458 tweets, of which 409 (89%) and 49 (11%) were from organizational and personal accounts 

respectively. When both organizational and personal accounts were used for scoring, 469 (96%) 

organizational and 18 (4%) personal account tweets were retained. Overall, not incorporating personal 

account tweets in the scoring causes a loss of relevant personal tweets, which are potentially more 

important for early incident detection. However, the use of only personal accounts does not result in  

a dramatic decrease in the percentage of organizational tweets that are retained for relevancy. 

2.3 Classification of Preliminary Tweet Data 

To substantiate the above discussions, a popular method like the Naïve Bayesian (NB) classification  

was also utilized in the study. NB classification is performed by calculating the probability of a class 

value c given a test document d as  

Equation 3.    𝑷𝑷𝑵𝑵𝑵𝑵(𝒄𝒄|𝒅𝒅) =
�𝒑𝒑(𝒄𝒄)∑ 𝒑𝒑(𝒇𝒇|𝒄𝒄)𝒌𝒌

𝒊𝒊=𝟏𝟏 �
𝒏𝒏𝒊𝒊(𝒅𝒅)

𝑷𝑷(𝒅𝒅)
 

In the tweet analysis context, c refers to the relevance of a tweet (e.g.. incident-related or irrelevant)  

and d refers to word content of a particular tweet, and ni(d) represents the count of feature or keyword  

f found in tweet d. Intuitively, NB assigns a relevance probability based on the presence of keywords  

f in the tweet. While doing this, the algorithm is trained on a sample called the training data set and  

the conditional contribution of each word to the relevance probability is calculated. Subsequently, the 

predictive capability of the classifier is tested on a test data set for validation. A schematic representation 

of the classification process is shown in Figure 3. 
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Figure 3. Schematic for tweet classification and geocoding 

For the purposes of this study, NB classifiers are estimated based on organization-only (NBorg), personal-

only NBper and agency+personal (NBall) accounts. The training data set is chosen from a random sample 

of about 5,300 tweets. The test data set is a random sample of about 1,300 tweets. Overall, all NB 

classifiers achieve more than 75% accuracy while classifying relevant tweets. When the NB classifiers  

are used to classify only personal account tweets, NBorg performs with 50.5% accuracy. When NBall is 

used, the accuracy only improves to 54%. When NBper is employed, 74.4% accuracy is achieved. In  

short, similar to the tf-idf analysis, the NBper which is based on personal accounts performs the best in 

predicting the relevance of personal tweets, while its overall accuracy is still on par with NBorg and NBall.  

2.3.1 Discussion 

For event detection in social media, such as Twitter, first the publicly available feeds are queried with  

a predetermined list of key words. The resulting data set can be used as raw data. However, this data  

set could contain many tweets that may offer low value. Alternatively, raw data are refined for further 

analysis of event detection using various scoring/ranking methods. The scoring methods are used to 

discard many tweets that have a low potential of being relevant. The scoring methods utilize a 

“dictionary” of frequently occurring words to weigh/score the tweets based on relevancy. The available 

feeds can be generated by social media accounts owned/operated by transportation agencies, news  

outlets, individual citizens, etc. Depending on the account type, the wording and structure of the  

tweets vary. The “dictionaries” derived from feeds also vary based on the type of accounts.  



 

16 

Some of the approaches used in the literature such as Fu et al.22 involve extracting a dictionary from  

a few prominent Twitter accounts and using it for classification. In this study, an alternative path is 

pursued. The raw data is manually processed to identify the account types and relevancy of the  

tweets, the dictionaries are derived, and classifications are performed accordingly. It was shown  

that a classification based on the dictionary derived from a few prominent accounts may not be the  

best method. For instance, when it comes to identifying relevant personal tweets, the classification  

based on a few prominent accounts performs poorer than the classification based on personal account  

data or a combination of the two.  

In particular, Fu et al.22 used a dictionary derived from selected organizational accounts. While, this 

yielded a more solid dictionary with well-structured, consistent, and frequent words, a personal account 

dictionary included a more diverse list of words with limited consistency among the data. However,  

their dictionary was more likely to discard relevant personal tweets. 

Mathematically speaking, this result is of no surprise as the classification algorithms perform best for  

the data type for which they are “trained.” However, the implications of the findings are important in 

terms of gathering additional information. For example, if one seeks early incident detection, the 

information detected from organizational feeds are more likely not to be useful as most organizations 

depend on the Transportation Incident and Management Center for their information. The findings imply 

that a “customized” dictionary will result in a more efficient classification than an analysis ignoring 

account types, if the target is early incident detection. Therefore, as a different type of trade-off, it 

requires extra pre-processing work to manually identify each tweet source as organizational or personal. 

Nevertheless, tweets from organizational accounts can be seen repeatedly in the data set and the workload 

decreases as more of these tweets are identified and labeled. 

2.4 Analysis of Purchased Comprehensive Twitter Data for Auxiliary 
Incident Management Related Information 

The literature on the use of Twitter for traffic incident information is mainly focused on the time of  

the incident (e.g., early detection) with less importance given to the identification of the incident's  

spatial location. Identifying spatial location is a challenging task on its own because revealing  

geolocation in a tweet is based on user preference. Moreover, there is no guarantee that tweet location  

is in close proximity to the actual incident location (users may send tweets about an incident after they 

reach their destinations). On the other hand, by using spatially related keywords, e.g., street and freeway 

names, it may be possible to infer incident location. As a matter of fact, this consideration is one of the 
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reasons for pursuing a more detailed investigation of keyword selection in the current study. The other 

reason is related to a second consideration: extracting information related to the potential causes for  

future incidents. Debris, dead animals, and similar roadway hazards can cause traffic accidents. If such 

information can be harvested from tweets, the incidents and related impacts can be prevented. In other 

words, aside from reducing the existing delay due to incidents, tweets can be used to eliminate delays  

due to future potential incidents. 

The search for tweets with specific keywords through Twitter’s public API limits the results to about  

1% of the total number of actual tweets that meet the search criteria. Thus, the number of personal tweets 

from Twitter’s public API has a low yield. However, Twitter offers the option of purchasing the whole set 

of tweets that match determined search criteria. Hence, to address the issue of low yield, tweets matching 

several search queries were purchased. The set of keywords chosen for framing the search queries were 

accident, crash, lane, street, st, road, rt, dr, ave, us, expy, expwy, block, closed, bridge, tunnel,  
eb, wb, nb, sb, highway, parkway, truck, bus,  

police, tow, wreck, ambl (short for ambulance), cop, cops, debris, shoulder (short) 

deer, road, lane, tire, flat, 

near, at, before, after, exit,  

I495, FDR , RFK , Lincolntunnel , Hollandtunnel , #nyctraffic , #traffic , GSP , BQE , GWB , 
tunl , tpke, LIE, tpk  

 

Though each of these keywords seem to be relevant, there could be many tweets that are irrelevant,  

but still contain any of these keywords. For example, a tweet such as “Genius is talent set on fire by 

courage. – Henry van Dyke” will be processed if the keyword ‘fire’ is included exclusively. For this 

purpose, various combinations of keywords called bigrams were used. Bigrams are combinations of two 

words among the keyword list, for example, “accident road,” “lane closed,” “street blocked.” In addition 

to the keyword bigrams, location can also be mentioned. A location filter was expressed in two ways.  

The first is by setting the geolocation boundaries for the tweets. Geolocation was specified for only  

about 5% of tweets in general, hence, a second way of filtering location was by the inclusion of “NY,  

NJ, CT” in the ‘place’ field. The keyword bigrams and location filters were arranged according to a set 

format for Twitter to process the search queries. Examples of such queries are listed below: 
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(lane closed) OR (lane blocked) OR (road closed) OR (road blocked) OR (rd closed) OR (rd 
blocked) OR (street closed) OR (street blocked) OR (st closed) OR (st blocked) OR (ave closed) 
OR (ave blocked)) bounding_box:[-74.707528 40.396628 -74.236528 40.746628] -is:retweet 

((accident bridge) OR (accident tunnel) OR (accident nb) OR (accident sb) OR (accident wb) OR 
(accident eb) OR (accident rd) OR (accident road) OR (accident st) OR (accident street) OR 
(accident highway) OR (accident parkway) OR (accident pkwy) OR (accident ave)) 
bounding_box:[-74.62188 40.17 -74.31152 40.40094] -is:retweet 

((accident dr) OR (accident car) OR (accident lane) OR (accident lanes) OR (accident bus) OR 
(accident truck) OR (accident br)) bounding_box:[-74.62188 40.17 -74.31152 40.40094] -
is:retweet 

((accident us) OR (accident at) OR (accident near) OR (accident rt) OR (accident us) OR 
(accident police) OR (accident cop) OR (accident cops) OR (accident ambulance) OR (accident 
amb) OR (accident tow) OR (accident exit)) bounding_box:[-74.62188 40.17 -74.31152 
40.40094] -is:retweet 

((disabled lane) OR (disabled car) OR (disabled truck) OR (dead animal) OR (dead deer) OR 
I495 OR turnpike OR FDR OR RFK OR Lincolntunnel OR Hollandtunnel OR #nyctraffic OR 
#traffic OR GSP OR BQE OR GWB OR tunl OR tpke OR tpk OR LIE) bounding_box:[-
73.29452 41.09662 -72.98526 41.450] -is:retweet 

2.4.1 Statistics on Tweets from Different Types of Accounts 

The tweets based on the previously mentioned keyword bigrams and location filters were queried from 

June 2015 to May 2016. Following the data collection, the tweets were subjected to data cleaning and tf-

idf scoring as described in the Preliminary Analysis Section. Then, the tweets were filtered for a tf-idf 

score of five or more. The preliminary filtering of data was similar to the depiction shown in Figure 2. 

The resultant tweet database consisted of 150,468 tweets. These tweets plotted by month of the year and 

day of the week can be seen in Figure 4 and Figure 5. 
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Figure 4. Tweets in New York metropolitan area each month 

Figure 5. Tweets by day of week 
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Although, in this study, the tweets were collected using keyword combination bigrams, there is still a 

possibility that some tweets may be irrelevant. Thus, in order to study the nature of the tweets, several 

tweets were manually classified into the categories shown in Table 2. 

Table 2. Tweet classification categories 

Account type classification 1 – agency; 2 – personal 
Tweet type classification 0 – irrelevant, 1 – incident , 2 – traffic delay-related, 3 – 

physical pavement condition- or debris-related, 4 – 
other (roadwork, planned events, lane restrictions, etc.) 

Two sets of randomly selected samples were generated for the purpose of classification. The first set 

 is a general sample of 3,000 tweets. The second set is a sample of tweets that were not posted by 

commonly observed agencies. The most commonly observed agencies include 511-related accounts 

@511NY, @511NYC, @511NYNJ, @511NYLongIsland, @511NYAlbany, etc.), Total Traffic-related 

(@TotalTrafficNYC, @TotalTrafficPHL, @TotalTrafficALB, @TotalTrafficSYR, etc.; @NYSDOT, 

@NYC_DOT, news agencies such as NBC, WGRZ, WBFO, etc. The purpose of the second sample is  

to analyze the nature of tweets posted by personal accounts, since tweets posted by personal accounts  

are much more sparse compared to those of agencies.  

In this study, there were about 3,112 tweets from personal accounts that provide information about 

incidents—approximately 2% of tweets obtained after querying. In addition, the breakdown of the tweet 

categories of the samples is shown in Figure 6 which indicates that about 95% of the tweets in the queried 

data set are from agency-type accounts.  
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Figure 6. Proportion of agency and personal tweets 

The tweet type classification shown in Table 2 was performed on both of the samples. The classification 

for personal tweets is based on the second sample in which tweets from most common agencies were 

removed. Since only a small proportion (5%) of the total data set were personal tweets, it should be  

noted that the second sample represented a small portion of the data set. While more than 75% of  

agency tweets were incident-related, less than 50% of personal tweets were incident-related as can  

be seen from Figure 7.  

Figure 7. Class of tweet from each type of account 
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To make use of social media for incident detection, incident-related tweets from personal account have  

to be harvested. Therefore, it is important to know the number of incident-related tweets from personal 

accounts versus agency accounts. In addition, it is important to know the number of tweets from personal 

accounts that match any given incidents. For this purpose, the project team (within guidance and advice  

of the Advisory Committee) identified two corridors, the Gowanus Expressway (GE) and the eastern 

section of the Long Island Expressway (LIE), to analyze and match the incident data for these corridors 

with any personal tweets. These two corridors can be seen in Figure 8. The incident data from LIE and 

GE were obtained for the 12 months for which the tweet data was available – June 2015 to May 2016. 

However, during this period of 12 months, there were only 970 incidents in the database. The study  

team could not find any tweets from personal accounts that matched the incidents in the database for  

the Long Island and Gowanus Expressways. However, to demonstrate and illustrate the benefits of  

using social media for TIM, a sample of more spatially and temporally detailed incident data from  

the CHP was used to match tweets collected in California, which can be seen in section 4. 

Despite not finding enough personal tweets to match the limited incident records available in New  

York State, various types of information that can be extracted from personal account tweets are  

discussed in subsection 2.4.3. 

Figure 8. Corridors identified for matching incident data with personal tweets 
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2.4.2 Extracting Geographic Information 

Twitter provides the option of geocoding each tweet. However, including geocoded information in each 

tweet is at the discretion of the user. Most accounts do not include geolocation information for privacy 

reasons. It is generally observed that less than 5% of all tweets include geolocation information. However, 

geolocation information can be extracted from the text content of the tweet. The extraction of geolocation 

information is performed in this study by identifying commonly occurring words that provide geolocation 

such as street, avenue, parkway, highway, exit, etc. These words are termed as regular expressions. Once 

these regular expressions are identified, names of streets, highways and exits are obtained by extracting 

the words adjecent to the regular expressions. 

The regular expressions used in this study are shown in Table 3. 

Table 3. Regular expressions for geolocation information extraction 

Location Regular Expressions 

Highways 495, 278, i-495, i-278, i495, i278, #i495, #i278, 
I-95, I95, 95, I-80, i80, i76, i-76, i78, i-78,  
pkwy, between, highway, hwy, fdr, WB, EB, NB, SB, 
west, east, north, south, exit, bridge, rt, route, parkway, 
turnpike, NJTurnpike, tpk 
 

Local roads street, st, road, rd, ave 

Two examples of extracting geolocation information are shown in Figure 9. The first tweet is “Accident 

cleared in #Queens on The L.I.E. WB at Douglaston Pkwy, stop and go traffic back to x34, delay of  

six mins #traffic.” Using regular expressions such as “WB,” “Pkwy,” “at,” and the location information 

such as “L.I.E. WB at Douglaston Pkwy” are extracted. By adding the entry in ‘location’ field, the 

location information “L.I.E. WB at Douglaston Pkwy Queens, NY” is extracted. The expression of  

this location information is entered into the Google Location API to obtain the longitude/latitude i.e.,  

the geolocation information of the incident.  
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Figure 9. Example of geolocation information extraction 

The second example is the tweet “@KTVU there was a high speed crash on Thornton ave in Newark  

car flipped several times before bursting into flames.” Using regular expressions, the location information 

results in “Thornton ave, Newark, CA.” This information is not sufficient to obtain an exact geolocation 

of the tweet. Thus, the geolocation algorithm proposed in this study, may not always result in the  

exact geolocation. 

2.4.3 Extracting Debris and Other Incident Management Related Information  

One of the main findings in the earlier sections is that gathering additional information from tweets  

is important. One of the aims of Fu et al.22 was to identify missing information in existing incident 

databases. Organizational accounts offer more details of an accident. For example, a news outlet’s  

after-the-fact tweet may provide details of incidents, which are not in the police report. Hence the  

trade-off due to discarded relevant personal tweets can be desirable.  

2.4.3.1 Extracting Information from Personal Accounts  

From an agency’s persective, scraping tweets from personal accounts can yield useful information. Take 

for instance the several such examples from personal accounts taken from this study. Figure 7 shows that 

more than 80% of personal tweets provide useful information regarding, incidents, traffic delays, debris 
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or pavement, condition or planned events or road work. There were about 3,112 tweets from personal 

accounts that provided information about incidents—about 2% of the tweets that were obtained after 

querying. 

2.4.3.2 Information Regarding Incidents on Local Roads 

Many incident-related tweets posted by organizational accounts were based on information available  

to the traffic management center from sources such as traffic video cameras and 911 calls verified by 

patrols. However, for such information to be available, it is imperative that the roadways on which 

incidents occur be well instrumented. This may not be possible on all roadways—particularly local  

streets and rural roads. Examples of such tweets are shown in Figure 10 and Figure 11. These tweets  

are from local roads in suburban New York State, where the information and location of incidents  

may not be readily available to agencies via standard instrumentation. Location information for  

these tweets was extracted using the geolocation information extraction routine described earlier. 

Figure 10. Tweet about a crash on a local road in Rotterdam, NY 
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Figure 11. Tweet about a crash on a local road in Rochester, NY 

2.4.3.3 Information Regarding Debris on Roadways 

Some of the tweets from personal accounts provided information on debris and fallen trees on roadways. 

This is useful in providing additional information on the direction, location, and number of lanes that 

were affected. Examples of these tweets are shown in Figure 12, Figure 13, and Figure 14. 
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Figure 12. Tweet regarding a downed tree on Hutchinson River Parkway 
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Figure 13. Tweet regarding a downed tree on a local road in Westfield, NJ 
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Figure 14. Tweet regarding debris from a building in midtown Manhattan 

2.4.3.4 Supplementary Information on Incidents  

Another important contribution of tweets from personal accounts is additional information from incidents 

that could be used in supplementing already available information to agencies. Furthermore, incidents 

evolve dynamically and information regarding their evolution can help disseminate information to users, 

in addition to improving the response to them. Examples of such tweets can be seen in the events of an 

urban road blockage (Figure 15), a road closure on a freeway (Figure 16) and a road closure and response 

on a local road (Figure 17). 
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Figure 15. Tweets regarding the evolution of a road blockage in Brooklyn, NY 
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Figure 16. Tweet providing information on specifics of a road closure on New York Thruway  
in Lackawanna, NY 
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Figure 17. Tweet providing information on road closure in Depew, NY 

2.4.3.5 Information Regarding Incidents from Other Nonagency Sources 

In addition to tweets from personal accounts, other sources could also provide useful and reliable 

information. For instance, tweets by businesses located along the route on which incidents occur  

can provide information regarding the severity of accidents, and can also be used to alert drivers of 

dynamically changing road conditions. An example is the tweet posted by a user who follows  

the social media feeds of a local gas station, “Everyone please be careful driving. Two cars just smashed 

into guard rail then another car accident 2… https://t.co/e8mb5WtFVm.” The gas station posted a  

picture of the accident and the dangerous road conditions as shown in Figure 18. 

https://t.co/e8mb5WtFVm
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Figure 18. Tweet with information from a local business regarding incidents and road conditions 
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3 Accident and Traffic Data Analysis 
One of the goals of this project is to reduce incident-induced delay and related emissions and fuel  

waste through using Twitter for early detection and gathering incident specific information for  

emergency response. To calculate the benefits of auxiliary information obtained through a Twitter  

feed, there is a need to understand the existing delay conditions. For this purpose, the incident data  

were again used from the two previously identified corridors, namely the Gowanus Expressway (GE)  

and Long Island Expressway (LIE), and analyzed for the incident delay characteristics and potential 

improvements through Twitter information.  

Figure 19. Schematic representation of traffic flow and delay during an accident 50  

DOT provided crash/accident data (not covering disablements and other non-crash incidents) for the 

selected corridors along with traffic flow and speed data. The accident and volume data sets were used  

to calculate the accident duration and the flow reduction during accidents (e.g., bottleneck capacity), 

which are two crucial components of delay as shown in Figure 19. The speed data was used to calculate 

the emissions. The following two sections provide a descriptive analysis of accident duration and traffic 

flow, which will then be used in the delay calculation. 
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3.1 Accident Duration Analysis 

3.1.1 Data 

The incident data provided by DOT includes only highway accidents (crashes) and covers portions of  

the GE (I-278) and the LIE (I-495) for years 2015 and 2016. The full data set contains 1446 accident 

observations with 566 records for the GE and 880 for the LIE. The data contains information, which  

falls into three main categories. 

Temporal Data: The temporal data include the following data fields: 

• Created date/time  
• Year  
• Month  
• Cleared date/time 

The temporal information is used to evaluate the accident, e.g., the difference between the cleared  

time and the created time gives the accident duration.  

Spatial Data: The data also contains information about the location in which accidents happened.  

The relevant data fields are as follows:  

• Direction 
• Main street 
• Cross street 
• Lanes affected 
• Latitude and longitude coordinates 

Based on the accident data set, these geographic coordinates do not show the exact location for each 

accident. The records show the same coordinates for each group of accidents that occurred close to each 

other. This could be because the coordinates are related to count stations or other specific locations on the 

GE and LIE. This fact must be considered for interpreting flow and speed profiles for each accident.  

Vehicle Data: The data set specifies the types of vehicles that are involved in the accident. The existing 

categories are as follows: 

• Automobile  
• Motorcycle  
• Pickup van  
• Bus  
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• Light truck 
• Tractor trailer 

3.1.2 Descriptive Analysis 

The percentage of accidents for each 30-minute period over the 24-hour day for both the Gowanus  

and Long Island Expressways are shown in Figure 20. As expected, the records show that the accident 

frequency is higher during peak hours due to higher levels of traffic flow. 

Figure 20. Percentage of accidents occurring in each 30 minutes during a 24-hour periodin GE  
and LIE 

For evaluating accident induced delay, one of the most important parameters is accident duration.  

The accident duration is calculated by subtracting “created time” from “cleared time” for each accident 

record. Basic summary statistics for accident durations on the Gowanus and the Long Island Expressways 

is shown in Table 4. The 95% accident duration for both facilities is about 120 minutes, which implies 
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there are only a small number of accidents with a duration of more than two hours. In addition, the 

majority of accidents (75%) are cleared within one hour. 

Table 4. Basic summary statistics for accident durations data 

Gowanus Expressway Long Island Expressway 

Statistic Value Statistic Value 

Sample Size 566 Sample Size 878 

Average 41.05 Average 50.53 

Std. Deviation 51.3479 Std. Deviation 65.9235 

50% Percentile (Median) 28 50% Percentile (Median) 37 

75% Percentile (Q3) 50 75% Percentile (Q3) 64 

95% Percentile  114 95% Percentile  135.4 

 

Figure 21. Duration of accidents based on time of day on GE and LIE 

In Figure 21, accident duration for all observations is plotted with respect to the time of day. There  

were seven observations with a duration of more than 300 minutes, which are out of range and are not  

shown in Figure 21. Information about these outlier records is given in Table 5. 
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Table 5. Information about accidents with more than 300 minutes duration 

Fac. Dir. Cross 
street Date Created Cleared Lane(s) Veh. 

Inv. Dur. 

LIE East Woodhaven 
Blvd. 

20-Feb-
15 11:03 p.m. 11:19 p.m. Center 

Lane - 1456 

GE East Prospect 
Expressway 1-Feb-15 10:14 a.m.  10:22 p.m. Right 

Lane 1A 728 

GE West 33rd Street 1-Jan-16 11:04 p.m. 7:21 a.m.  Left Lane 1A 497 
LIE West I-678 5-Feb-16 1:52 p.m. 8:59 p.m. Left Lane 2A 427 

LIE East I-278 22-Dec-
15 1:33 a.m.  7:27 a.m.  Left Lane - 354 

GE East Hamilton 
Avenue 

27-Oct-
15 6:37 a.m.  12:28 p.m. Left Lane 1LT 351 

LIE East I-678 24-Feb-
16 12:42 p.m. 6:31 p.m. 

Right & 
Center 
lanes 

- 349 

For the accident duration analysis, the data set is divided into several categories, and the distributions  

of duration for each category are compared. For this purpose, distribution fitting is used to predict  

the probability for the frequency of occurrence of accident durations. There are many probability 

distributions, which can be fitted to the duration data. The Kolmogorov–Smirnov, Cramer-von Mises,  

and Anderson-Darling tests are used to evaluate the goodness of fit for the distributions. These tests  

are nonparametric tests of the equality of continuous, one-dimensional probability distributions that  

can be used to compare a sample with a reference probability distribution.  

Different distributions, which are based on different data sources of traffic incidents, have been  

used to estimate and predict traffic incident duration in previous studies, including log-logistic 

distribution,51,52,53,54 Weibull distribution,55,56 log-normal distribution,57 and gamma distribution.58  

In this study, the four most common distributions, namely Gamma, Weibull, log-normal and  

log-logistic distributions were utilized. The parameters for each distribution are calculated by  

the maximum likelihood estimation method, using the “fitdistrplus” package in R. R is an open 

source programming language for statistical computing that is widely used among statisticians and  

data miners for data analysis. The capabilities of R are extended through user-created packages,  

which allow specialized statistical techniques, graphical devices, import/export capabilities, reporting 

tools, etc. Figure 22 and Figure 23 show a comparison of these four different distributions that were used 

for analyzing accident durations on the Gowanus and the Long Island Expressways. 

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Statistical_computing
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_analysis
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Figure 22. Comparison of log-normal, Gamma, Weibull and log-logistic distributions for accident 
durations in GE 

Figure 23. Comparison of Log-normal, Gamma, Weibull and Log-logistic distributions for accident 
durations in LIE 
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Table 6. Comparison of log-normal, Gamma, Weibull and log-logistic distributions for accident 
durations in GE and LIE 

Kolmogorov- Cramer- Anderson- Standard Facility Distribution Parameters Smirnov von Mises Darling Error statistic statistic statistic 

Mean log 3.2953437 0.03856471 
Log Normal 0.03480405 0.08002155  0.54497733  

Sd log 0.9174835 

Gowanus 
Expressway 

0.02726922 

Gamma 
Shape 1.33480725 0.071487429  

0.07213901 0.69721546 4.10684222  
Rate 0.03253171 0.002103363 

Weibull 
Shape 1.080201 0.03133465 

0.07315143 0.80464283 5.99514350  
Scale 42.494863 1.75248063 

Log Logistic 
Shape 1.914413 0.06670491 

0.03758173 0.10014951 0.80262284 
Scale 27.367129 1.04976002 

Long Island 
Expressway 

Log Normal 
Mean log 3.5212920 0.03097548 

0.0485220 0.2535932 1.5498408 
Sd log 0.9178364 0.02190285 

Gamma 
Shape 1.38949965 0.059899987 

0.04918059 0.60265877 Inf 
Rate 0.02749776 0.001420256 

Weibull 
Shape 1.104605 0.02531076 

0.06296214 0.86083850 Inf 
Scale 52.756752 1.70547004 

Log Logistic 
Shape 1.922966 0.0537179 

0.04269366 0.25438875 1.82765674 
Scale 34.795589 1.0676516 

As shown in Table 6, the log-normal and log-logistic distributions had a better fit in comparison with the 

other two distributions for the accident duration data based on goodness of fit measures. Furthermore, as 

illustrated in Figure 22 and Figure 23, theoretical quantiles were closer to empirical quantiles for the log-

normal distribution than the log-logistic distribution. Thus, in the following sections in which accident 

durations are divided into different categories based on different aspects, log-normal distributions were 

used to compare the different categories.  

3.1.2.1 Weekdays versus Weekends 

In Figure 24, accident durations on weekends and weekdays are shown for each facility. The fitted log-

normal distribution for each category on both facilities is also shown. 
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Figure 24. Distribution of accident durations during weekdays and weekends in GE and LIE 

Four separate graphs show the distribution of accident durations during weekdays and weekends 

in GE and LIE. The fitted log-normal distributions are also represented for each category.

 

Table 7 and Figure 25 show that, on the LIE, accident durations on weekdays are longer than accident 

durations on weekends. On the contrary, accident durations on the GE are longer on weekends. In 

addition, it can be concluded that the accident durations on weekends are more dispersed, e.g., have 

higher standard deviations. 

Table 7. Comparison of accident durations in weekdays and weekends 

 

Facility Category Num. of 
Rec. 

Actual 
Mean 

Fitted 
Mean Mean Log SD Log K-S Statistic 

GE 
Weekdays 447 38.33 26.213 3.2662833 0.8784567 0.03489509 
Weekends 118 51.45 30.100 3.404531 1.048429 0.06043293 

LIE 
Weekdays 734 51.97 34.936 3.5535177 0.9071777 0.04568283 

Weekends 144 43.19 28.704 3.3570306 0.9535728 0.05969318 
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Figure 25. Comparison of accident durations in weekdays and weekends 

3.1.2.2 Automobiles versus Heavy Vehicles 

Figure 26 illustrates the durations for accidents involving heavy vehicles and automobiles. A comparison 

of the fitted distributions for these categories is given in Table 8 and Figure 27. 
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Figure 26. Comparison of accident durations for automobile and heavy vehicle crashes in GE and 
LIE 

Table 8. Comparison of accident durations for automobile and heavy vehicle accidents 

Facility Category Num. 
of Rec. 

Actual 
Mean 

Fitted 
Mean Mean Log SD Log K-S Statistic 

GE 
Automobile 295 42.02 26.08 3.2611054 0.9413162 0.03607816 

Heavy Vehicle 134 43.92 27.71 3.3218794 0.9941494 0.06227671 

LIE 
Automobile 473 46.16 32.84 3.4916818 0.8773969 0.06671558 

Heavy Vehicle 144 43.19 28.70 3.3570306 0.9535728 0.05969318 
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Figure 27. Comparison of durations distributions for automobile and heavy vehicle accidents 

Although it was expected that accidents involving heavy vehicles would generally take longer to clear  

in comparison with accidents involving automobiles, the analysis showed that the durations for these  

two categories were not so different. 

3.1.2.3 East Direction versus West Direction 

Figure 28, Table 9, and Figure 29 give a comparison of the accident durations for accidents occurring  

in the east and west bound directions. 
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Figure 28. Accident durations with respect to direction for GE and LIE 

Table 9. Comparison of accident durations for west and east directions in GE and LIE 

Facility Category Num. 
of Rec. 

Actual 
Mean 

Fitted 
Mean Mean Log SD Log K-S Statistic 

GE 
East Direction 248 41.96 26.71 3.2850870 0.9390004 0.03983725 
West Direction 314 40.15 27.13 3.3006023 0.8955085 0.03609362 

LIE 
East Direction 444 54.32 34.48 3.5403938 0.9672869 0.06550542 

West Direction 429 46.52 33.18 3.5018411 0.8597135 0.03421397 
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Figure 29. Comparison of duration distributions for west and east directions 

From this data, the researchers in the study concluded that the accident durations for both directions  

had similar characteristics. 

3.1.2.4 Lanes Affected by Accidents 

Differences between accident durations for different blocked lanes are shown in Figure 30 and Figure 31. 

As shown in Table 10 and Figure 32, the accident duration was higher for accidents that blocked all lanes. 

Furthermore, accidents in the right lane had shorter durations than accidents in the left lane, but longer 

durations in comparison to accidents that blocked the center lane. 
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Figure 30. Accident durations with respect to blocked lane(s) in GE 
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Figure 31. Accident durations with respect to blocked lane(s) in LIE 

Table 10. Fitted distributions for durations based on affected lane(s) 

Facility Category 
(Lane) 

Num. 
of Rec. 

Actual 
Mean 

Fitted 
Mean Mean Log SD Log K-S Statistic 

GE 

Right 233 40.8 25.50 3.2388015 0.9360421 0.03274934 
Right & Center 39 38.38 26.68 3.2840527 0.9079344 0.12569773 

Center 60 30.47 22.83 3.1281624 0.7760619 0.07755687 
Left & Center 32 39.16 27.85 3.3269272 0.8852936 0.12581412 

Left 158 43.42 27.84 3.3266092 0.9249157 0.06278057 
All Lanes 30 66.43 52.21 3.9552126 0.7103493 0.10401901 

LIE 

Right 324 51.8 35.18 3.560557 0.925662 0.0508827 
Right & Center 70 58.4 40.39 3.6985668 0.8901647 0.08906900 

Center 60 30.47 22.83 3.1281624 0.7760619 0.07755687 
Left & Center 32 39.16 27.85 3.3269272 0.8852936 0.12581412 

Left 259 44.82 29.73 3.3922385 0.9486483 0.04825204 
All Lanes 31 52.52 41.01 3.713747 0.770743 0.11674042 



 

49 

Figure 32. Comparison of duration distributions for different blocked lane(s) 

3.1.2.5 Temporal Comparison of Accident Durations 

Figure 33 and Figure 34 show the comparison between accident durations based on time of day on 

weekdays and weekends on the GE and LIE respectively. For temporal comparison, the five following 

time intervals during weekdays as well as weekends were considered: a.m. peak (6:00 a.m.–9:00 a.m), 

Midday (9:00 a.m.–4:00 p.m.), p.m. peak (4:00 p.m.–7:00 p.m.), Evening (7:00 p.m.–12:00 a.m.), 

Midnight (12:00 a.m.–6:00 p.m.).  
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Figure 33. Temporal comparison of accident durations on GE 
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Figure 34. Temporal comparison of accident durations on LIE 
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Table 11. Temporal comparison of accident durations 

Facility Category Num. of 
Rec. 

Actual 
Mean 

Fitted 
Mean Mean Log SD Log K-S Statistic 

GE 

Week 
Days 

AM Peak (6 a.m.-9 a.m.) 73 43.79 27.33 3.3080676 0.9856962 0.07591581 
Midday (9 a.m.-4 p.m.) 147 34.82 24.08 3.1815932 0.9021301 0.06298722 

PM Peak (4 p.m.-7 p.m.) 105 35.06 25.11 3.2232353 0.7964227 0.06231656 
Evening (7 p.m.-12 a.m.) 89 42.38 28.57 3.3524156 0.8711519 0.08084968 
Midnight (12 a.m.-6 a.m.) 34 40.41 30.62 3.4218644 0.7338247 0.07955123 

Weekends 

AM Peak (6 a.m. -9 a.m.) 10 33.8 23.18 3.1431646 0.9652739 0.16531469 
Midday (9 a.m. -4 p.m.) 46 67 32.26 3.473958 1.228119 0.08448975 

PM Peak (4 p.m.-7 p.m.) 20 38.4 23.59 3.160677 1.078236 0.11267842 
Evening (7 p.m.-12 a.m.) 36 47.23 35.98 3.5830071 0.7485167 0.11174995 
Midnight (12 a.m.-6 a.m.) 16 40.94 29.46 3.3830814 0.8007418 0.12548245 

LIE 

Week 
Days 

 a.m.  Peak (6 a.m. -9 a.m.) 127 50.93 39.22 3.6692604 0.7768092 0.07850914 
Midday (9 a.m. -4 p.m.) 257 43.93 30.16 3.4066301 0.8477276 0.04081644 

PM Peak (4 p.m.-7 p.m.) 150 50.59 35.28 3.5633305 0.9388593 0.07730185 
Evening (7 p.m.-12 a.m.) 144 69.66 40.34 3.697467 1.073312 0.1208975 
Midnight (12 a.m.-6 a.m.) 60 49.28 35.42 3.5673740 0.7829738 0.06737256 

Weekends 

 a.m.  Peak (6 a.m. -9 a.m.) 18 41.11 28.53 3.3509336 0.9465783 0.13151592 
Midday (9 a.m. -4 p.m.) 40 31.93 21.71 3.077584 1.021346 0.1430627 

PM Peak (4 p.m.-7 p.m.) 27 36.59 25.17 3.2255493 0.7990659 0.13745858 
Evening (7 p.m.-12 a.m.) 42 53.14 34.03 3.527361 0.951505 0.09060566 
Midnight (12 a.m.-6 a.m.) 18 57.88 43.34 3.7691282 0.7462775 0.13207753 
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Figure 35. Comparison of duration distributions for different times of day 

Table 11 and Figure 35 indicate that, on both the GE and LIE the durations for accidents occurring  

during peak hours were longer than those occurring in midday. However, there was an exception: on  

the GE on weekends, accident durations were relatively longer during midday than during peak hours. 

3.1.3 Synthesis of Accident Duration Analysis 

In analyzing accident durations several commonly used distributions were evaluated to find the 

distribution that best fits the duration data. Then, in sections 3.1.2.1 to 3.1.2.5 accidents were categorized 

with respect to different aspects (such as time, type of vehicle, and direction of traffic) to find which  

types of accidents result in longer accident durations and whether the differences between categories  

were significant. Based on these analyses, categories with similar results were recognized and combined. 

Table 12 illustrates new categories defined based on the significance of differences.  
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Table 12. New categories based on significance of difference between old categories 

Facility Feature Old Categories New Categories 

Gowanus 
Expressway 

Time 
of Day 

Week 
Days 

AM Peak (6 a.m. -9 a.m. 
) 

Week 
Days 

AM Peak 

Midday (9 a.m. -4 p.m.) Midday 
PM Peak PM Peak  

(4 p.m.-7 p.m.) 
Evening  

(7 p.m.-12 a.m.) 
Evening 
Midnight 

Midnight (12 a.m.-6 a.m.) 

Weekends 

AM Peak (6 a.m.-9 a.m.) 

Weekends 

AM Peak 
PM Peak Midday (9 a.m.-4 p.m.) 

PM Peak  
(4 p.m.-7 p.m.) 

Midday 
Evening 
Midnight Evening  

(7 p.m.-12 a.m.) 
Midnight  

(12 a.m.-6 a.m.) 

Affected 
Lane(s) 

Right Right 
Right and Center 

Left 
Left and Center 

Right and Center 
Center 

Left and Center 
Left Center 

All Lanes All Lanes 

Direction 
East Direction 

No Difference 
West Direction 

Vehicle 
Automobiles 

No Difference 
Heavy Vehicles 
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Table 12. continued 

Facility Feature Old Categories New Categories 

Long Island 
Expressway 

Time 
of Day 

Week 
Days 

AM Peak (6 a.m. -9 a.m.) 

Week 
Days 

AM Peak 
PM Peak 
Midday 

Midday (9 a.m. -4 p.m.) 
PM Peak (4 p.m.-7 p.m.) 
Evening (7 p.m.-12 a.m.) Evening 

Midnight Midnight (12 a.m.-6 a.m.) 

Weekends 

AM Peak (6 a.m. -9 a.m.) 

Weekends 

AM Peak 
Midday (9 a.m. -4 p.m.) Midday 

PM Peak (4 p.m.-7 p.m.) PM Peak 
Evening (7 p.m.-12 a.m.) Evening 
Midnight (12 a.m.-6 a.m.) Midnight 

Affected 
Lane(s) 

Right Right 
Right and Center Right and Center 

Center Left 
Left and Center Left and Center 

Left Center 
All Lanes All Lanes 

Direction 
East Direction 

No Difference 
West Direction 

Vehicle 
Automobiles 

No Difference 
Heavy Vehicles 

3.2 Traffic Volume/Flow and Speed Analysis 

3.2.1 Data 

DOT volume and speed data consists of volume counts and speed data for every 15 minutes for two 

sections of I-495 (LIE) and I-278 (GE), during an 18-month period from January 2015 to May 2016.  

The count station also recorded speed profiles which are crucial for calculating emissions. The  

volume data was collected at nine stations on the Gowanus Expressway and 21 stations on the Long  

Island Expressway, which are depicted in Figure 36. The data set included missing months, which 

corresponded to 150 days or 35% of the data. The available volume and speed data is shown in Table 13. 
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Table 13. Number of days in each month for which volume and speed data is available 

Fac. Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GE 
2015 28 16 0 1 4 30 7 0 0 1 0 27 

2016 21 23 19 27 21 0 0 0 0 0 0 0 

LIE 
2015 31 28 29 29 6 30 22 1 5 10 19 29 

2016 30 29 29 30 31 0 0 0 0 0 0 0 

Table 14. Number of accidents occurring close to each station on GE and LIE 

St.I
D GE

1 
GE
2 

GE
3 GE4 GE5 GE6 GE7 GE8 GE9 LIE1 LIE2 LIE3 LIE4 LIE5 LIE6 

#Ac
c. 3 0 1 2 1 0 0 3 3 0 0 0 0 4 0 

St.I
D LIE

7 
LIE
8 

LIE
9 

LIE1
0 

LIE1
1 

LIE1
2 

LIE1
3 

LIE1
4 

LIE1
5 

LIE1
6 

LIE1
7 

LIE1
8 

LIE1
9 

LIE2
0 

LIE2
1 

#Ac
c. 0 0 0 0 0 0 0 7 0 24 0 0 0 0 0 

For the analysis, the data was divided into day of the week and time of day periods. For the preliminary 

analysis, the flow data for one sample station (GE1 at 65th Street East) was analyzed. This analysis will 

be extended to all other stations. Since the aim of the flow analysis was to calculate the flow conditions 

during an accident, the flow data set was also matched with accident records based on proximity. Table 

14 shows the total number of records in the accident database, which correspond to each count station. 
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Figure 36. Locations of stations at the Gowanus and Long Island Expressways 

3.2.2 Descriptive Analysis 

3.2.2.1 Volume/Flow and Speed Profiles During the Day  

The 24-hour speed and volume profiles are shown in Figure 37 and Figure 38. As shown in Figure 37,  

the patterns of travel speed during weekdays and weekends were different. There was a drop-in speed  

on weekdays during peak hours, while there was no significant drop in speed for weekends. According  

to Figure 38, on weekdays, the maximum volume occurred during morning peak hours while, on 

weekends, the maximum volume was in the afternoons. There were also more variations in traffic  

volume on weekdays than on weekends. 
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Figure 37. Average speed profile during 24 hours of a day at station GE1 
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Figure 38. Average volume profile during 24 hours of a day at station GE1 
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3.2.2.2 Decrease in Capacity During Accidents 

According to the Highway Capacity Manual, the capacity of a facility is defined as the maximum  

hourly rate at which vehicles can reasonably be expected to traverse a point or uniform section of a  

lane or roadway during a given time period under prevailing roadway, traffic, and control conditions.59 

Capacity under prevailing conditions can be estimated by calibrating a speed-volume curve for a given 

segment of highway. The peak of this curve defines capacity. This method is based on the fundamental 

models describing the speed-volume relationship. 

Figure 39. Theoretical speed-flow diagram 

Figure 40. Speed-flow diagram for station GE1 
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A theoretical speed-flow diagram is shown in Figure 39. Figure 40 shows the speed-flow diagram  

based on the data sets in this study. When an accident occurs, a bottleneck is formed, which in turn 

creates additional delay. For the two facilities analyzed in this study, the traffic flow is at high levels  

most of the time so when an accident occurs, it can be assumed that demand exceeds capacity during  

the accident. Thus, road capacity during an accident can be measured directly as bottleneck traffic  

flow. Due to the significant divergence of the actual speed-flow data from the theoretical depiction,  

an empirical approach given in Table 15 is used to estimate the accident capacity and the traffic flow 

during non-accident conditions. 

Table 15. The empirical approach used for calculating capacity drop and delay 

Maximum Capacity Regular Flow Accident Capacity Regular Speed Accident 
Speed 

Maximum traffic flow 
during the whole 
analysis period  

Average traffic flow from 
1 hour before accident 

creation to 2 hours after 
clearance during the day 

in which accident 
occurred 

Minimum flow of 15-
minutes intervals from 30 
minutes before accident to 

30 minutes after 

Average speed of 
two 15-minutes 
intervals before 

accident creation 
in the accident 

day 

Average 
Speed 
During 

Accident 

For this analysis, delay is calculated as follows: 

Equation 4  𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝑨𝑨𝑨𝑨𝑨𝑨.𝑫𝑫𝑫𝑫𝑫𝑫. )𝟐𝟐 × (𝑴𝑴𝑴𝑴𝑴𝑴.𝑪𝑪𝑪𝑪𝑪𝑪.−𝑨𝑨𝑨𝑨𝑨𝑨.𝑪𝑪𝑪𝑪𝑪𝑪.)×(𝑹𝑹𝑹𝑹𝑹𝑹.𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭−𝑨𝑨𝑨𝑨𝑨𝑨.𝑪𝑪𝑪𝑪𝑪𝑪.)
𝟐𝟐(𝑴𝑴𝑴𝑴𝑴𝑴.𝑪𝑪𝑪𝑪𝑪𝑪.−𝑹𝑹𝑹𝑹𝑹𝑹.𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)

 

It should be noted that the available flow data is given in 15-minute intervals, so the accident duration 

used for the delay calculation is the aggregated 15-minute intervals which cover the actual accident 

duration. This approach is used for calculating the capacity drop and delay for accidents occurring at 

stations for which the volume and speed data are available.  
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4 Early Incident Detection and other Information 
Extraction using Social Media with California as a 
Model 

In Section 2.3, the analyses showed that the limited incident data of 970 records for the LIE and GE  

from June 2015 to May 2016 did not match any personal tweets for the two corridors. Nevertheless, a  

few studies have shown the utility of Twitter for incident detection and management.22,67 Particularly,  

Gu et al. (2016) showed that among tweets collected in Pittsburgh and Philadelphia using several 

keywords, about 4-5% were from incident-related personal accounts.67 However, as compared to the 

current study, Gu et al. (2016) had access to data sets that included RCRS (Road Condition Report 

System) incident data maintained by Pennsylvania DOT for all state-owned roads and 911 Call for 

Service (CFS) data provided by the City of Pittsburgh.67 Hence, the methodology identified in the  

current study can optimistically be applied for productive purposes and verified with the availability  

of incident-related data that is richer and applicable to a greater number of roadways.  

For the purpose of illustrating the benefits of earlier-incident detection using social media, incident data 

with larger geographical and temporal range available from CHP were used to match the incident-related 

tweets in California. The California Department of Transportation (CalTrans) provides all historical 

incident data (incident start time, location, milepost, description, TIM response log, etc.) for the state 

highways, interstate, and freeways, along with traffic flow and speed data on the Performance 

Measurement System (PeMS) website.68 In addition, to match accidents from local streets in California, 

accident data available through the Statewide Integrated Traffic Records System (SWITRS) were used.69 

The flow and speed data were used to estimate the reduction in delay as well as emissions and fuel 

consumption for early detection of highway incidents through Twitter. 

4.1 Identification of Early Incident Detection Success 

In order to identify potential early detection, the tweets for the month of May 2016 and October 1-15, 

2015 from California were processed, mined, and geo-identified using the framework described in the 

earlier section. The resultant tweet database was further filtered by removing organizational tweets  

from accounts such as CalTrans, SF311, Total Traffic, and other news agencies. Subsequently, the 

databased is scored based on tf-idf weighting of keywords consisted of 19,040 tweets. The tweets with  

tf-idf score over 5.0 were chosen for further analysis. Despite filtering out tweets with low tf-idf scores, 

there still existed irrelevant tweets (e.g. “I got a Mac Safari crash with an exception at address 
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0xfbadbeef, which I thought was the coolest coincidence ever until I Googled it”). The relevant  

tweets were identified manually and compared with the CalTrans’ PeMS database and CHP’s SWITRS 

database for highway and local streets, respectively. The matching accidents were recorded, and early 

detections noted. For the early detections in highways, the corresponding flow and speed data were 

extracted from PeMS for delay and emissions and fuel consumption benefits analysis. The results of 

corresponding benefits are shown in section 5. Since SWITRS database does not include flow and speed 

data, the local accidents were not included in the benefits analysis but were still considered for early 

detection success rate. 

4.2 Success Rate for Incident Detection through Twitter Feeds 

For the analysis, a total of 19,040 personal tweets were processed for May 2016 and October 1-15, 2015. 

From this total, 1465 tweets made the tf-idf cut-off score of five. Among these 1465 potentially relevant 

tweets, 549 were identified as accident-related tweets. When compared with PeMS and SWITRS 

databases—containing about 64,000 incidents—21 of these tweets were uniquely matched with an  

actual accident record (9 highway and 12 local road accidents) within two hours of official accident  

time. Meanwhile, three accidents that were detected through Twitter could not be matched with official 

accident records. The three tweets with early detection through Twitter preceded the recorded accident 

time by 19, 23, and 4 minutes. A description of these tweets and the corresponding incidents is shown  

in Table 16. 
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Table 16. Comparison of accident-related tweets and official accident records – PeMS and SWITRS for highway and local accidents, 
respectively, in the state of California 

Accident Early  
Detection 

Twitter Feed PeMS/ SWITRS Record 
Tweet 
Time 

Tweet Start Time Duration  
(mins) 

Location Description 

#1 Highway Yes 5/21/2016  
14:48 

@CHP_HQ 118Fwy East Bound between 
Yosemite & Sterns Ave is a Large Desk that's 
Broken Up going across Several Lanes!! My car 
is now Damage! 

5/21/2016  
15:09 

8 Sr118 W 
Yosemite 
Ave 

1125-Traffic 
Hazard 

#2 Highway No 5/16/2016  
11:04 

Not the best way to start a morning. #fire 
#accident #firemen #road #danger #freeway 
#monday #la; Geocode: (33.8456, -118.2058) 

5/16/2016  
10:52 

89 I710 S 
Willow St 

FIRE-Report of Fire 

#3 Highway No 5/1/2016  
20:00 

405 north left two lanes are closed for big car 
accident. 

5/1/2016  
19:34 

175 I405 N 
Magnolia St 
Ofr 

1179-Trfc Collision-
1141 Enrt 

#4 Highway No 5/9/2016  
8:30 

If you need to take i80 west avoid it if you can a 
tweaker is tying to jump off the bridge. So there 
is gonna be hella traffic real soon 

5/9/2016  
8:27 

12 I80 W 
Madison Ave 

1125-Traffic 
Hazard 

#5 Highway Yes 10/2/2015 
6:49 

North of Sac- SB 99 at Elverta crash involving a 
semi and debris, impact is slow lane closure right 
now 

10/2/2015 
7:12 

187 Sr99 S / G 
St 

1183-Trfc Collision-
Unkn In 

#6 Highway Yes 10/2/2015 
14:03 

Avoid the 215 guys, HUGE accident! It's at a 
dead stop 

10/2/2015 
14:07 

60 I215 S / I215 
S Mount 
Vernon Ave 
Onr 

1182-Trfc Collision-
No Inj 

#7 Highway No 10/12/2015 
19:39 

San Mateo Bridge CA 92 Westbound major 
accident at about 6:20 pm earlier 
#sanmateobridgeaccident 

10/12/2015 
18:20 

12 Sr92 W / 
High Rise 

1183-Trfc Collision-
Unkn Inj 

#8 Highway No 10/14/2015 
22:40 

Evening car crash cops ram car to shoulder side 
traffic slows way down @ Highway 101 
https://t.co/hMRvexvldG 

10/14/2015 
20:15 

239 Us101 N / 
Us101 N 
Millbrae Ave 
Ofr 

1183-Trfc Collision-
Unkn Inj 
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Table 16 continued 

#9 Highway No 10/14/2015 
21:40 

Car fire shuts down traffic on Golden Gate 
Bridge, http://t.co/PM5fTudRed 

10/14/2015 
17:25 

25 Us101 N / 
Golden Gate 
Bridge 

Fire 

#10 Highway No records?? 10/15/2015 
11:46 

Accident on Highway 41/49, two cars, no major 
injuries http://t.co/5Rg1MjXBsG 

No 
records?? 

   

#11 Highway No records?? 10/16/2015 
6:47 

4 car crash 17 NB close to Glenwood cutoff. One 
lane blocked 

No 
records?? 

   

#1 
Local 

No 5/9/2016  
8:52 

Traffic accident at MLK and Delaware. Expect 
delays, congestion, gawkers, etc. 
@BerkeleyPatch #bpd 

5/9/2016  
8:30 

 Berkeley,  
Delaware St 
& MLK Dr 

3 vehicle collision;  
3 injured 

#2 
Local 

No 5/4/2016  
15:45 

Damn bad ass accident highway 4 by the streets 
of brentwood 

5/4/2016  
15:13 

 SR 4 & Sand 
Creek Rd  

4 vehicle crash;  
1 killed; 3 injured 

#3 
Local 

No 5/26/2016  
10:32 

Major injury accident reported at Highway 132 at 
North Blossom Road near Waterford. 

5/26/2016  
8:15 

 Modesto  
SR 132 @ 
McEwen 

2 vehicle; 2 injured 

#4 
Local 

No 5/4/2016  
2:57 

@ktlagingerchan ave 26 and Humboldt closed in 
Lincoln heights body's on ground 

5/4/2016 
1:30 

 Los Angeles 
Humboldt & 
26 Ave 

1 killed; 1 injured  

#5 
Local  

No records in 
SWITRS crash 

data;  

5/26/2016  
12:56 

Car crash just now on the corner of 7th & Hugo 
which I have told @sfmta_muni is pretty much 
designed for crashes. What a shocker. 

No records     

#6 
Local 

No 10/11/2015 
15:53 

Fatality traffic collision: Veile Road / W 1st St. in 
Beaumont. More: http://t.co/lSOz1vGoIm 

10/11/2015 
15:08 

 Veile 
Avenue / 1st 
Street, 
Riverside 

1 killed; 1 injury 

#7 
Local 

No local records 
for traffic 
hazards 

10/13/2015 
13:48 

@KNX1070 traffic sign pushed into traffic traffic 
lane wilshire/fairfax area Car left it's bumper 
http://t.co/RTGEh4HO5Z 

No records     

#8 
Local 

No local records 
for vehicle 

disablements 

10/02/2015 
10:52 

My car broke down right outside where that car 
crashed into the eye care building off of lake 
chabot road lmao 

No records     
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Table 16 continued 

#9 
Local 

No 10/14/2015 
18:15 

Huge traffic accident on PCH near our hospital 
involving a police vehicle so those picking up 
pets may be delayed. No worries, we are here. 

No records    

#10 
Local 

No 10/15/2015 
7:18 

@kcbstraffic NB skyline closed at john muir, 
heavy traffic, police activity 

10/15/2015 
2:14 

 Skyline Blvd 
& John Muir, 
San 
Francisco 

 

#11 
Local 

No 10/11/2015 
1:32 

Car accident right in my front yard #fawk sux 
living in a corner house sometimes 
http://t.co/0uQcsCn1DG 

No records    
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4.3 Potential of Information Contained in Incident-Related Tweets 

Incident-related tweets can potentially provide other benefits due to the rich user-generated information 

content. Early detection of incidents can potentially help in reducing the severity of accidents such as a 

fatality could be mitigated to an injury, major injury to minor injury, etc. In this way, the information 

content of incident-related tweets can provide benefits in addition to early detection savings discussed in 

previous sections. Among the 21 tweets listed in Table 16 the information regarding debris, progression 

of events, etc. can be useful for incident response or even verification. 

For instance, for highway incident #1, the information regarding the large wooden debris is useful for 

informing drivers of potential hazard even before the police can reach the scene. The deployment of an 

appropriate debris collection crew can also be completed sooner. Similarly, the tweet for local incident  

#8 provides information and location of vehicle disablement. Such information is useful particularly  

on local or rural roadway, which may not be instrumented with cameras as is the case on highways. In 

other words, Twitter can function as an auxiliary information source for road facilities with no sensing 

infrastructure. The tweet information content can also be utilized to prevent potential accidents due to 

undetected road hazards. For instance, Tweet #7 provides information and location regarding a potentially 

dangerous local traffic sign and the exact nature of the hazard can be ascertained by using the picture 

attached to the tweet. 

The information gathered through Twitter can also be used to help accident data archiving. For instance, 

the local incident reported in Tweet #5 does not have any official record entry. It is likely that the drivers 

involved in the collision have not reported the incident. However, the particular nature of information, 

i.e., the perceived potential hazard of the particular intersection located at 7th and Hugo Streets can be 

useful for the agency in making street design evaluations.  

The potential benefits can also go beyond traffic management. Tweet #2 reports fire and congestion.  

The corresponding CHP TIM log reports of a brush fire on the side of the freeway and the spreading  

of this fire from a house to surface streets. Although, the tweet is eight minutes later than the CHP TIM 

log, it contains a geocode. The location of the “Brush fire” is reported almost three miles downstream of 

the geocoded point. Thus, the tweet provides information on the spread of fire that is extremely useful not 

only for TIM but also for saving lives and property. It could also help in providing information regarding 

freeway congestion. 
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5 Savings Due to Early Accident Detection 
5.1 Delay Reduction 

After the calculation of a delay due to an accident, the incident-delay saving (IDS) can then be calculated 

in terms of vehicle-hours (or vehicle-minutes). IDS is determined by the difference in time between the 

incident timeline with and without the aid of early detection.60 

Equation 5  𝑰𝑰𝑰𝑰𝑰𝑰 = 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝒚𝒚𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 − 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 

Monetary cost savings due to this delay reduction can be calculated as: 

Equation 6.   𝑰𝑰𝑰𝑰𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑰𝑰𝑰𝑰𝑰𝑰(𝑪𝑪𝑪𝑪𝑪𝑪% × 𝑪𝑪𝑪𝑪𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 × 𝑪𝑪𝑪𝑪𝑪𝑪𝑽𝑽𝑽𝑽𝑽𝑽 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻% × 𝑻𝑻𝑻𝑻𝑻𝑻𝒄𝒄𝒄𝒄𝑽𝑽𝑽𝑽𝑽𝑽) 

 

In the equation, 𝐶𝐶𝐶𝐶𝐶𝐶% and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇% are the portion of cars and trucks in highways which are assumed to 

be 92% and 8%, respectively.60 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is the average vehicle occupancy, which was assumed to  

be 1.15 persons per vehicle. For estimating the monetary value of time for California, 𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 and 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉 are a value of time per vehicle per hour which were assumed to be $13.65 and $31.4 for  

cars and trucks, respectively.70 

5.2 Reduced Emissions 

Emission factors, available from the U.S. Environmental Protection Agency, are used to calculate the 

reduced amount of emissions released because of early accident detection.61 The emission factors, based 

on vehicle speed, provide the amount of emissions released in terms of grams/mile and are presented in 

Table 17. For this study, the emissions amount in grams is converted to grams/hour by multiplying the 

emission factor and average speed during an accident. Delay savings, in terms of vehicle-hours, can  

then be used to determine the reduction in emissions due to early detection. 

Equation 7.   𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝒈𝒈𝒈𝒈) = 𝑰𝑰𝑰𝑰𝑰𝑰(𝒗𝒗𝒗𝒗𝒗𝒗.𝒉𝒉𝒉𝒉) × 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭(𝒈𝒈𝒈𝒈𝒎𝒎𝒎𝒎)
×

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝒎𝒎𝒎𝒎𝒉𝒉𝒉𝒉) 
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Table 17. Emission factors by speed 61 

The speed data during the accidents were gathered from the PeMS database for incidents relating to 

California data. The necessary emission factors (which provide the amount of emissions released in  

terms of grams/mile based on speed) were obtained from the U.S. Environmental Protection Agency 

database. 61 Based on reduced emissions, the monetary savings were calculated using emission cost 

parameters provided by California Department of Transportation.70 The associated costs for ROG, CO, 

NOx, and PM 2.5 were 1,305; 80; 18,700; and 151,100 dollars per ton, respectively. Accordingly, the cost 

savings due to emission reductions were calculated by multiplying the reduced amount of pollutant  

with the corresponding cost parameter. 
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5.3 Reduced Fuel Consumption 

Delay reduction due to early detection results in a reduction in the time that vehicles are on the highway. 

The reduction in fuel consumption is estimated using IDS. Based on the average speed and vehicle 

makeup of the queue, the reduced fuel consumption can be determined.60 The fuel consumption, in  

terms of gallons per mile, for cars and trucks can then be entered in the following equation to determine 

the total fuel reduction: 

Equation 8 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑔𝑔𝑔𝑔𝑔𝑔)

= 𝐼𝐼𝐼𝐼𝐼𝐼(𝑣𝑣𝑣𝑣ℎ.ℎ𝑟𝑟) × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�𝑚𝑚𝑚𝑚
ℎ𝑟𝑟�

× (𝐶𝐶𝐶𝐶𝐶𝐶% × 𝐺𝐺𝐺𝐺𝐺𝐺
�𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚 �

+ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇% × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
�𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚 �

) 

 

Figure 41 shows the fuel economy by speed for cars. The graph in this figure indicates that there would  

be a decrease in fuel economy when the speed drops below 55 mph. Based on previous studies,60 20 miles 

per hour is typically used as the upper bound of travel speed in severe congestion. Therefore, the value of 

20 mph is chosen to calculate the rate of fuel consumption in congestion due to incidents. Using this 

value, fuel consumption is assumed to be 0.03875 gallons of gasoline per mile for cars and 0.1429 gallons 

of diesel per mile for trucks.62, 63 

Figure 41. Fuel economy by speed 64 
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The monetary savings due to fuel consumption reduction for incidents in California can be calculated 

using fuel prices ($2.65/Gal. for Gasoline and $2.4/Gal. for Diesel) provided by California Department  

of Transportation.70 

5.4 Calculated Delay, Emissions, and Fuel Savings for Early Incident 
Detections using California Data 

The benefits of using incident-related tweets from six weeks’ Twitter data for early detection for TIM  

of incident data in California were estimated using the methodology described above using the flow  

and speed data from PeMS database. To illustrate the result of early detection due to tweets, the flow  

and speed and tweet and incident times for highway incident #6 on I-215S are shown in Figure 42. For 

this particular incident, the tweet preceded the incident time by four minutes. The premise is that had  

the information from tweets been used for early detection, the response time would be shortened by  

four minutes.  

Figure 42. A sample accident early detection using twitter 

Tweet 

Tweet 

Reported 
 

Reported 
 

Possible start 

Possible start 
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The delay reduction, emission reduction, and fuel savings for early detecting tweets are estimated and 

shown in Table 18 for highway incidents #5 and #6. The monetary value of the savings is estimated  

using the latest life-cycle costs for California.70 In total, 4,046 vehicle-hours of delay savings, reduction  

in 5.9 kg of reactive organic gases (ROG), 133 kg of carbon monoxide (CO), 16.3 kg of nitrous oxides 

(NOx), 0.3 kg of particular matter (PM 2.5), 1,939 gal of gasoline, and 622 gal of diesel were estimated  

to be saved due to the early detection by analyzing Twitter feeds. These savings amount to a monetary 

value of $75,600 per six weeks. Given the fact that there are about 32,000 miles of highways in CA,68  

the savings could amount to about $0.5 per highway mile per week.  

Researchers noted that although highway incident #1 is detected earlier using Twitter due to minimal 

flow, the incoming demand at the incident location was able to pass through the available lanes. 

Therefore, although there are no obvious savings, there are secondary benefit from such tweets are 

highlighted in earlier section. 

Table 18. Delay, emissions, and fuel consumption savings due to early incident detection through 
twitter for incidents in the state of California 

Factor 
Accident 

I 215 SR99 
Reduction Monetary saving Reduction Monetary saving 

Gasoline 380 (gal) 1,008 ($) 1,559 (gal) 4,132 ($) 
Diesel 122 (gal) 293 ($) 500 (gal) 1,200 ($) 

Fuel cost saving 1,300 ($) 5,332 ($) 
ROG 1,173 (gr) 2 ($) 4,811 (gr) 6 ($) 
CO 26,135 (gr) 2 ($) 107,168 (gr) 8 ($) 
NOx 3,200 (gr) 60 ($) 13,122 (gr) 245 ($) 

PM2.5 53 (gr) 8 ($) 218 (gr) 33 ($) 
Emission cost saving 72 ($) 293 ($) 

Delay 893 (veh.hr) 15,136 ($) 3,153 (veh.hr) 53,467 ($) 
Total cost saving 16,507 ($) 59,093 ($) 

Grand Total 75,600 ($) 

The monetary savings obtained in Table 18 are only for the traffic externalities. Additional savings  

can be expected due to severity reduction, improved information coverage, hazard detection, etc. 
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5.5 Potential Savings through Use of Twitter Feeds in New York 
State 

To illustrate the benefits of early detection, three accidents on the GE (near count station #1) were 

individually analyzed, assuming five minutes of early detection via Twitter feeds. For the delay savings, 

reduced emissions, and fuel consumption calculations, it is also assumed that 8% of traffic consists of 

trucks and 92% consists of passenger cars. Figure 43 to Figure 45 show the variations of flow and speed, 

before, during, and after these accidents. Also, the accident characteristics along with the calculated delay 

for these sample accidents are given in Table 19 to Table 21. 

Table 19. Potential benefits of five-minute early detection for sample accident #1 at GE 

St.ID Direction Cross 
Street 

Created 
Date 

Created 
Time 

Cleared 
Time 

Lanes 
Affected 

Vehicles 

Involved 

GE1 East 65th 

Street 

Tuesday, 
January 26, 

2016 

6:14 p.m.  
(73) 

6:32 p.m. 
(75) 

Left & Center 
Lanes 1A 

Acc.
# 

Regular 
Flow 

(veh/hr) 

Accident 
Flow 

(veh/hr) 

Flow Drop 
(%) Delay (hrs) 

Regular 
Speed 
(mi/hr) 

Accident 
Speed 
(mi/hr) 

Speed 
Drop (%) 

1 843 588 30 1274 55 54 1.8 
Ear. 
Det. 
(min) 

IDS (hrs) Red. 
ROG (gr) 

Red. CO 
(gr) 

Red. NOx 
(gr) 

Red. PM2.5 
(gr) 

Red. Gas 
(gal) 

Red. Dis 
(gal) 

5  267  588 13100 1604 27 190 61 
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Figure 43. Flow and speed during sample accident #1 at GE 

Table 20. Potential benefits of five-minute early detection for sample accident #2 at GE 

St.ID Direction 
Cross 

Street 

Created 
Date 

Created 

Time 

Cleared 

Time 

Lanes 

Affected 

Vehicles 

Involved 

GE1 East 65th Street 
Wednesday, 

February 
24, 2016 

6:14  a.m.  
(25) 7:04  a.m.  (29) Left Lane 1A 1TT 

Acc.
# 

Regular 

Flow 
(veh/hr) 

Accident 

Flow 
(veh/hr) 

Flow Drop 
(%) Delay (hrs) Regular 

Speed (mi/hr) 

Accident 

Speed 
(mi/hr) 

Speed 
Drop (%) 

2 1605 908 43 17187 42 50 0 

Ear. 
Det. 
(min

) 

IDS (hrs) Red. ROG 
(gr) 

Red. CO 
(gr) Red. NOx (gr) Red. PM2.5 

(gr) 
Red. Gas 

(gal) 
Red. Dis 

(gal) 

5  2215 4873 108546 13291 221 1579 506 
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Figure 44. Flow and speed during sample accident #2 at GE 

Table 21. Potential benefits of five-minute early detection for sample accident #3 at GE 

St.ID Direction Cross 
Street 

Created 
Date 

Created 
Time 

Cleared 
Time 

Lanes 
Affected 

Vehicles 
Involved 

GE1 East 65th Street Thursday, 
May 12, 2016 6:51 a.m.  (28) 7:18 a.m.  

(30) Left Lane 1A 

Acc.
# 

Regular 
Flow 

(veh/hr) 

Accident 
Flow 

(veh/hr) 

Flow Drop 
(%) Delay (hrs) 

Regular 
Speed 
(mi/hr) 

Accident 
Speed 
(mi/hr) 

Speed 
Drop (%) 

3 1833 1800 2 151 15.5 15.6 0 
Ear. 
Det. 
(min) 

IDS (hrs) Red. ROG 
(gr) 

Red. CO 
(gr) 

Red. NOx 
(gr) 

Red. PM2.5 
(gr) 

Red. Gas 
(gal) 

Red. Dis 
(gal) 

5 31 70 1552 190 3 23 7 
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Figure 45. Flow and speed during sample accident #3 at GE 

These individual savings can be generalized using a Monte Carlo simulation for accident duration 

distributions calculated in Section 3.1. Since there is no matched Twitter information for early accident 

detection in the current database, a hypothetical scenario is considered to evaluate the impacts of early 

detection on delay, fuel consumption, and emissions. The Monte Carlo simulation is based on log-normal 

distributions for accident durations on both the GE and LIE. Regarding the accuracy of Twitter feeds  

for early detection, the percentage of accidents which were identified through Twitter was assumed to 

range from 0.1% to 1%. The maximum capacity, inflow rate, and accident capacity are assumed to be 

2,250; 2,000; and 800 vehicles per hour, respectively. All other values related to fuel consumption and 

released emissions are the same as in Section 3.3. The results depicted in Figure 46 to Figure 49,  

show that even a small percentage of accident early detection creates considerable reductions in  

traffic delays, fuel consumption, and emissions. 
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Figure 46. Impact of early incident detection on delay saving with respect to varying levels  
of twitter feed accuracy 

Figure 47. Impact of early incident detection on fuel saving with respect to varying levels of  
twitter feed incident detection accuracy 
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Figure 48. Impact of early incident detection on fuel saving with respect to varying levels of  
twitter feed incident detection accuracy in GE 

Figure 49. Impact of early incident detection on fuel saving with respect to varying levels of  
twitter feed incident detection accuracy in LIE 
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6 Conclusions and Recommendations 
The usefulness of social media for incident management is presented in this report. One of the important 

findings is the need to target information from certain account types in order to extract useful incident-

related information. On the one hand, organizational accounts (e.g., 511) disseminate traffic incident 

information in a structured manner (proper grammar and spelling) and provide important incident details 

(location, type of incident, severity, etc.). This information is already available to the agencies. On the 

other hand, personal account tweets are not structured, have language errors, and do not include many 

incident details. While the features of organizational accounts make it relatively easy to detect events,  

it was noted that the information disseminated by organizational accounts were more likely to have 

already been conveyed to the necessary incident management units. A personal tweet is more likely  

to report an event that “just-happened” than an organizational account tweet. Thus, the extracted 

information from personal accounts are more likely to be timely/useful.  

For this reason, the personal and organizational tweets were treated separately and “dictionaries” to 

perform relevancy classification derived separately. Combinations of dictionaries (i.e., personal-only, 

organizational-only, personal and organizational) were used for “term frequency – inverse document 

frequency” (tf-idf) scoring. The Naïve Bayesian analysis following the tf-idf scoring has shown that  

the classifier is more accurate if trained using dictionaries that distinguish between personal and 

organizational accounts. Subsequently, personal tweets that were collected were more relevant when 

using the personal dictionary as compared to when using the organizational dictionary only. This  

finding implies that obtaining customized dictionaries for targeted account types is crucial for more 

efficient and effective incident detection for incident-management purposes.  

In the report we provide several examples of tweets from personal accounts that can be mined to yield 

useful information. Information such as incidents on local, rural, and less instrumented roadways can  

be useful for incident management. Additionally, supplementary information on incidents can be  

gathered to monitor the evolution of incidents. 

Due to the lack of a comprehensive incident database in New York State, the benefits of using social 

media for TIM could not be estimated for incidents in the State. To demonstrate and illustrate  

the benefits of using social media for TIM, more spatially and temporally detailed incident data from  

the CHP were used to match tweets collected in California. Using tweet and incident data from six weeks 

in total 21 traffic incident tweets were uniquely matched the recorded incidents. Three tweets preceded 
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the incident reported time by 19, 23, and 4 minutes, respectively. For those early detected accidents, 

reductions in accident delay, emissions, and fuel consumption were calculated using the flow and  

speed data from the Performance Measurement System (PeMS) database. As a result of the early 

detection, 4,046 vehicle-hours of delay savings, reduction in 5.9 kg of ROG, 133 kg of CO, 16.3 kg  

of NOx, 0.3 kg of PM 2.5, 1,939 gal of gasoline, and 622 gal of diesel were estimated to be saved – a 

monetary value of $75,600 or $0.5 per mile per week. 

The information gathered from social media for incident management can be enhanced by: 

1. Use of structured hashtags: With the provision of structured hashtags, highly specific location 
information can be provided to the agencies without users worrying about their privacy in 
providing/revealing the exact geolocation in their tweets. These structured hashtags can also 
provide a means of defining incident type. Finally, collection of tweet data using specific 
hashtags is much easier than scraping Twitter feeds for specific information which needs  
Twitter APIs, text mining, etc. 

2. Use of tweets from individual accounts: As mentioned earlier, individual tweets can be  
harvested and mined for useful information such as:  

o local events where instrumentation may be scarce 
o extracting supplementary information for incident verification, response, and monitoring 

evolution of incident dynamics. 
o information extraction about debris on roadways which can be useful in preventing 

incidents, if analyzed in time. 

3. Use of tweets from local businesses: Local businesses located along the route can also  
provide useable information for incident response and driver information dissemination. 

In summary, the study illustrated the potential of real-time crowd-sourced data (Twitter feeds) as  

a valuable incident information source, which agrees with previous literature on the topic. Due to  

the lack of a comprehensive incident database in New York State, the benefits of using social media  

for TIM could not be estimated for incidents in the State. However, in this study, we demonstrated  

and investigated the efficiency of the approach by matching incidents extracted from Twitter with  

actual incidents, calculating the rate of early detection and estimate the benefits for a sample of  

incidents and tweets in California. The potential impacts of using social media for TIM have been 

calculated for New York State incidents based on Twitter feed accident detection accuracy and  

early detection scenarios, and it was shown that the feeds can help achieve substantial economic  

and environmental benefits. The potential of social media for TIM could further be illustrated in the 

future by locating more comprehensive incident databases for the New York State so that more specific 

recommendations can be made regarding the use of Twitter in TIM. 
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7 Important Remark: Review of Hazards Associated 
with Using Mobile Devices in Vehicles 

Given the increased use of devices providing connectivity, especially mobile phones, users have constant 

access to information from sources such as news, video, and social media. In the context of motor vehicle 

drivers, this access to information may prove to be a distraction to the primary activity of driving. 

Generally speaking, distractions for motor vehicle drivers can be classified into three categories:2 

1) manual distractions involving moving hands away from the task of controlling vehicles  

2) visual distractions involving tasks that lead to drivers taking their eyes away from the road  

3) cognitive distractions involving tasks that distract drivers’ minds away from the task of driving 

The risks of distracted driving are well-established in the literature. A study by the Fatality Accident 

Reporting Systems (FARS) showed that the proportion of distraction-related fatalities increased from 

10.9% in 1999 to 15.8% in 2008. One reason behind this increase is the increased frequency of texting 

while driving, which is considered dangerous since it involves all three types of distractions listed above. 

Texting while driving results in injuries and fatalities.42 Driver distraction due to cell phone use increases 

crash risks by 2.8 to 5 times. The increased usage of cell phones has been accompanied by an increase in 

the number of traffic accidents.43 

The New York State vehicle and traffic law for distracted driving, talking, and texting, with regards to 

operating a phone or an electronic device while driving states the following:3 (VTL 1225-c, VTL 1225-d) 

                                                

2  http://www.enddd.org/the-facts-about-distracted-driving/ 
3  New York Vehicle Traffic Law 1225-c & -d Use of Mobile Telephone http://www.safeny.ny.gov/phon-vt.htm 

(accessed April 11, 2016). 

http://www.safeny.ny.gov/phon-vt.htm
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Article 33, section 1225-c. Use of mobile telephones: 

“(e) "Hands-free mobile telephone" shall mean a mobile telephone that has an internal feature or 
function, or that is equipped with an attachment or addition, whether or not permanently part of 
such mobile telephone, by which a user engages in a call without the use of either hand, whether 
or not the use of either hand is necessary to activate, deactivate or initiate a function of such 
telephone. Provided, however, that for purposes of this section, a mobile telephone used by  
a person operating a commercial motor vehicle shall not be deemed a "hands-free mobile 
telephone" when such person dials or answers such mobile telephone by pressing more than  
a single button.” 

“…2. (a) Except as otherwise provided in this section, no person shall operate a motor vehicle 
upon a public highway while using a mobile telephone to engage in a call while such vehicle is in 
motion; provided, however, that no person shall operate a commercial motor vehicle while using 
a mobile telephone to engage in a call on a public highway including while temporarily stationary 
because of traffic, a traffic control device, or other momentary delays. Provided further, however, 
that a person shall not be deemed to be operating a commercial motor vehicle while using a 
mobile telephone to engage in a call on a public highway when such vehicle is stopped at the side 
of, or off, a public highway in a location where such vehicle is not otherwise prohibited from 
stopping by law, rule, regulation or any lawful order or direction of a police officer. 

(b) An operator of any motor vehicle who holds a mobile telephone to, or in the immediate 
proximity of, his or her ear while such vehicle is in motion is presumed to be engaging in a  
call within the meaning of this section; provided, however, that an operator of a commercial 
motor vehicle who holds a mobile telephone to, or in the immediate proximity of, his or her ear 
while such vehicle is temporarily stationary because of traffic, a traffic control device, or other 
momentary delays is also presumed to be engaging in a call within the meaning of this section 
except that a person operating a commercial motor vehicle while using a mobile telephone to 
engage in a call when such vehicle is stopped at the side of, or off, a public highway in a location 
where such vehicle is not otherwise prohibited from stopping by law, rule, regulation or any 
lawful order or direction of a police officer shall not be presumed to be engaging in a call within 
the meaning of this section. The presumption established by this subdivision is rebuttable by 
evidence tending to show that the operator was not engaged in a call. 

(c) The provisions of this section shall not be construed as authorizing the seizure or forfeiture  
of a mobile telephone, unless otherwise provided by law. 

(d) No motor carrier shall allow or require its drivers to use a hand-held mobile telephone  
while operating a commercial motor vehicle as provided in this section. 
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3. Subdivision two of this section shall not apply to (a) the use of a mobile telephone for the  
sole purpose of communicating with any of the following regarding an emergency situation:  
an emergency response operator; a hospital, physician's office or health clinic; an ambulance 
company or corps; a fire department, district or company; or a police department, (b) any of  
the following persons while in the performance of their official duties: a police officer or peace 
officer; a member of a fire department, district or company; or the operator of an authorized 
emergency vehicle as defined in section one hundred one of this chapter, or (c) the use of a 
hands-free mobile telephone…” 

Article 33, section 1225-d. Use of portable electronic devices: 

“…1. Except as otherwise provided in this section, no person shall operate a motor vehicle while 
using any portable electronic device while such vehicle is in motion; provided, however, that no 
person shall operate a commercial motor vehicle while using any portable electronic device on a 
public highway including while temporarily stationary because of traffic, a traffic control device, 
or other momentary delays. Provided further, however, that a person shall not be deemed to be 
operating a commercial motor vehicle while using a portable electronic device on a public 
highway when such vehicle is stopped at the side of, or off, a public highway in a location where 
such vehicle is not otherwise prohibited from stopping by law, rule, regulation or any lawful 
order or direction of a police officer.” 

“…3. Subdivision one of this section shall not apply to (a) the use of a portable electronic  
device for the sole purpose of communicating with any of the following regarding an emergency 
situation: an emergency response operator; a hospital; a physician's office or health clinic; an 
ambulance company or corps; a fire department, district or company; or a police department,  
(b) any of the following persons while in the performance of their official duties: a police  
officer or peace officer; a member of a fire department, district or company; or the operator  
of an authorized emergency vehicle as defined in section one hundred one of this chapter. 

4. A person who holds a portable electronic device in a conspicuous manner while operating  
a motor vehicle or while operating a commercial motor vehicle on a public highway including 
while temporarily stationary because of traffic, a traffic control device, or other momentary 
delays but not including when such commercial motor vehicle is stopped at the side of, or off,  
a public highway in a location where such vehicle is not otherwise prohibited from stopping by 
law, rule, regulation or any lawful order or direction of a police officer is presumed to be using 
such device, except that a person operating a commercial motor vehicle while using a portable 
electronic device when such vehicle is stopped at the side of, or off, a public highway in a 
location where such vehicle is not otherwise prohibited from stopping by law, rule, regulation  
or any lawful order or direction of a police officer shall not be presumed to be using such device. 
The presumption established by this subdivision is rebuttable by evidence tending to show that 
the operator was not using the device within the meaning of this section…” 
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The research team clearly recognizes the risks involved in distracted driving, especially involving the 

usage of mobile phones. The team also understands the New York State traffic law for distracted driving, 

talking, and texting and the provisions therein. This research study involves using user tweets that report 

road conditions, especially those involving road incidents. However, this study does not entail gathering a 

voluntary team of users and requesting that they tweet about incidents encountered. Nor does the study 

encourage or even suggest that users become involved in tweeting activities while driving. The source of 

information for the study is solely a set of tweets that were already posted, i.e., historical tweet databases. 

However, there are many alerts posted on variable message signs by DOTs and authorities managing 

roadway facilities such as amber alerts, silver alerts, etc. (as seen in Figure 50) that request drivers to 

inform the authorities about any information pertaining to the alert. This information is supposed to be 

transmitted in a safe manner by drivers, possibly by stopping on the side of the road and making a phone 

call or text transmission or by using a hands-free mobile telephone as indicated in New York State traffic 

law article 33, sections 1225-c and -d. (VTL 1225-c, VTL 1225-d).  

Figure 50. Amber Alerts 

Procedures exist that provide a viable and safe alternative to distractions such as texting while driving, 

etc. Speech-based cell phone use is less disruptive to driving performance than handheld cell phone  

use, such as texting or typing.46 Another study by Cao47 showed that performing a secondary speech 

comprehension task may not affect the performance of primary driving activities such as lane keeping, 

although concurrent comprehension increased drivers’ mental workload and reduced drivers’ capability  

to comprehend speech correctly. In addition, a study by Owens48 found that speech-based interaction 

reduced the number of glances, the total glance durations and subjective mental demand compared to 
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handheld interactions for dialing a phone. Crisler et al.49 showed that a manual texting task requires  

the driver to look at the phone and press the correct buttons, while an audio cell phone interaction or 

conversation requires less visual and manual distraction.  

In conclusion, it should be noted that this study does not involve active collection of tweets from drivers 

for the project; rather, the study uses a historical set of tweets that have already been posted. In other 

words, the researchers have not requested drivers to tweet during traffic incidents for the purpose of  

this project. Thus, all of the tasks in the study are in compliance with New York State Vehicle and  

Traffic law article 33, sections 1225-c and –d. 
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8 Statement on Implementation 
As discussed throughout this report, social media tools have been identified as one of the top trends  

and technologies for transportation incident management. Social networks such as Twitter are growing  

in popularity and can be employed by transportation management agencies as a source for real-time 

information. Through the use of social media, members of the public who witness incidents can  

provide public safety organizations with timely, geographic-based information. Although the amount  

of information that can be collected and processed in real time by these systems still presents some 

significant challenges, this information can be used by decision-makers in planning response strategies, 

deploying resources in the field, and, in turn, providing updated and accurate information to the public. 

Therefore, some transportation agencies are using or considering using data from social media to support 

decision-making in an operational context. For adoption in practice, the need for tools to search and  

filter social media content in real time has emerged. According to a report from Science and Technology 

of the U.S. Department of Homeland Security, there are now dozens of applications available to search 

and monitor social media information streams for specific keywords and mentions.4 The 2013 Homeland 

Security report documented that the majority of the major players in this area offer some kind of free 

service that allows organizations to monitor social media streams by offering free search capabilities  

from their web sites or free widgets that can be incorporated as part of a web page.  

Transportation Management Centers (TMC) are recognizing the benefits of deploying social media  

tools to support transportation incident management. Some state DOTs are developing data sharing 

partnerships with crowd-sourced organizations like Waze. For example, Georgia DOT, Virginia DOT, 

Pennsylvania DOT, and North Carolina DOT have entered into a data sharing partnership with Waze,  

the real-time, crowd-sourced navigation application, to reduce congestion and improve travel information. 

Partnerships with third-party data providers are recommended given the fact that DOTs have limited 

experience in processing big data and designing mobile applications. A national survey on applying 

advanced technologies at TMC (TRB Paper, 15-0290)5 found that TMCs consider the main obstacle  

to deploying new technologies as institutional, technical, and financial issues.  

                                                

4  Innovative Uses of Social Media in Emergency Management, Science and Technology, U.S. Department of 
Homeland Security, September 2013 

5  Jin et al. (2015) Potential for Applying Advanced Technologies at TMCs – Results from a Nationwide Survey,  
TRB Paper # 15-0290 



 

87 
 

For some TMCs cybersecurity is the main issue, while for another it is legal issues, and for others it is 

staffing. Other factors to consider by agencies for implementation of social media tools are the direct and 

indirect costs of these tools. Agencies should consider developing new measures of effectiveness to better 

evaluate the benefits of these tools for their operations. 
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