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Abstract 
Within the Huntington Forest in the central Adirondack Mountains of New York State there has been a 

significant decrease in the concentrations of the major anions in wet only deposition (e.g., sulfate [SO4
2-] 

and nitrate [NO3
-]) associated with acidification of soils and surface waters. These decreases are a direct 

function of the reduction of emissions from anthropogenic sources. Another major air pollutant, mercury 

(Hg), has shown no such decline. Concomitant with the decreases in “acid rain,” there has been an increase 

in the temperature and precipitation amounts as reflected in regional changes associated with climate 

change. The overall decrease in SO4
2- in surface waters is being affected by the contribution of internal 

sulfur (S) sources (i.e., organic S, S-bearing minerals, SO4
2- desorption) that appear to be most important in 

those lake/watershed systems with high levels of acid neutralizing capacity (ANC) and thus these internal S 

sources will likely not have a major influence on the recovery of soils and waters from acidification. The 

concentrations of NO3
- in surface waters show marked annual variation with the amount of NO3

- generation 

in the late summer/early fall appearing to be a major factor in determining the amount of NO3
- loss during 

the period of snow melt, which is the period that dominates the amount of NO3
- lost from forested 

watersheds. One of the most important forms of mercury (Hg) is the methylmercury form (MeHg), which is 

toxic and accumulates along terrestrial and aquatic food chains. The generation of MeHg is coupled with 

bacterial SO4
2- reduction and hence those periods with high biotic activity generate the most MeHg and 

result in low SO4
2- concentrations in ground and surface waters. A major challenge for scientists and 

policymakers is evaluating the entire range of factors including the decrease in “acid rain” and increasing 

influence of climate change on forest ecosystem structure and function. 

Keywords 
Acid rain, acidic atmospheric deposition, Adirondacks, climate, forests, methyl mercury, mercury, nitrogen, 

precipitation, sulfur, temperature, watersheds 
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1 Introduction 

1.1 Changes in Atmospheric Deposition in the Adirondacks 

The Adirondack Mountains in New York State (USA) have been a focal region for research on the 

deleterious impacts of acidic deposition (“acid rain”) since observations in the 1970s and 1980s showed  

a substantial decline in the fisheries (Kretser et al. 1989a and 1989b; Driscoll et al. 1991a and 1991b). 

The Adirondacks have historically received high sulfur (S) and nitrogen (N) deposition compared to  

many regions in the United States. In addition, acidic soils and shallow surficial deposits make the region 

highly sensitive to acidification (Driscoll et al. 2009).  

Major components of acidic inputs include wet and dry deposition of oxides of sulfur and nitrogen 

(Mitchell and Driscoll 2004). The emission of sulfur oxides from powerplants and other sources in the 

atmospheric source area of the Midwest and Northeast and the subsequent transport to the Adirondacks 

and other regions of the northeast U.S. have been clearly documented (Driscoll et al. 2001, Mitchell et al. 

2013). Sulfur emissions and resultant deposition in the U.S. peaked in the mid-1970s as a result of air 

quality management programs and have been subsequently declining. Oxides of nitrogen are derived from 

a broader range of sources including electric power generation plants and high temperature combustion in 

vehicles. Nitrogen oxide emissions in the U.S. peaked in 2003 and have declined in recent years. These 

temporal emission patterns are reflected in observations from the National Atmospheric Deposition 

Program’s National Trends Network (NADP/NTN) station that measures wet only deposition in 

Huntington Forest (HF) in the Central Adirondacks (Station ID NY20; Figure 1). From 1979 to 2013, 

there have been declines in the precipitation concentrations of sulfate (SO4
2-) (-1.0 µmolc L-1 yr-1;  

p< .0001; r2 = 0.76) and nitrate (NO3
-) (-0.44 µmolc L-1 yr-1; p<.0001; r2 = 0.72), coincident with 

decreases in emissions.  

Another important component of atmospheric nitrogen inputs is ammonium (NH4
+). The emissions of 

ammonium are poorly estimated but thought to be relatively constant since the early 1990s (USA EPA, 

1999). The proportion of NH4
+ in dissolved inorganic nitrogen (DIN) has been increasing during the 

measurement period from approximately 30% in the early 1980s to approximately 50% currently 

(+0.5% yr-1; p<.0001; r2 = 0.52). The declines in the strongly acidifying compounds SO4
2- and NO3

-  



have resulted in a concomitant increase of pH of wet deposition from approximately 4.3 (early 1980s) 

 to approximately 5.0 (early 2010s). This increase in pH would have been greater if there had not been  

a concomitant decrease in the sum of base cations, Σ[Ca+2+Mg+2+Na++K+], in wet only precipitation for 

this same period (-0.21 µmolc L-1 yr-1; p< .0001; r2 = 0.62) (Figure 1).  

Figure 1. Annual wet only deposition at Huntington Forest NADP/NTN site in the central 
Adirondack Mountains of New York State 

In addition to wet deposition, atmospheric inputs of dry deposition include gases, aerosols, and 

particulates. For HF, dry S deposition was estimated to contribute approximately 24% of the total S 

atmospheric deposition from 1984 to 2002 (Mitchell et al. 2013). Dry deposition of N was a larger 

component (34 and 40%) of total N deposition during the periods from 1986 to 1988 and from 1992 to 

1993, respectively (Mitchell et al. 2001). These percent dry deposition values are substantially higher  

than those reported from the more recent period from 2005 to 2013 during which dry deposition of S and 

N constituted 9% and 8%, respectively, based on values from the NADP/NTN 

(http://nadp.sws.uiuc.edu/NTN/) and CASTNET (http://epa.gov/castnet/javaweb/index.html) programs.  

1.2 Mercury Deposition 

Northern forest ecosystems, including the Adirondacks, are sensitive to atmospheric mercury (Hg) 

deposition (Evers et al. 2007). Atmospheric deposition is the predominant input of Hg to remote 

watersheds like the Adirondacks (Fitzgerald et al. 1998; Driscoll et al. 2013). The inputs and fate of  
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Hg to the Huntington Forest Ecosystems were examined through long-term measurements of wet Hg 

deposition and by conducting Hg mass budgets in forested watersheds over the annual cycle. 

Measurements of wet Hg deposition have been made at the HF since 2000 as part of the National 

Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN).  

Average annual volume weighted Hg concentration in precipitation at HF for the study period (2011-

2014) was 5.84 ng/L (Figure 2). To date, there has been no significant long-term trend in annual volume 

weighted concentrations of Hg in precipitation at the HF. The time series of weekly Hg concentrations  

in precipitation exhibit seasonal patterns, with low concentrations occurring in the beginning of January, 

increasing through March, and then decreasing through July. Over the course of the study, 90% of the 

measured total Hg concentrations in weekly precipitation samples were less than 13.6 ng/L.  

Figure 2. Total annual mercury concentration and deposition at the Huntington Forest MDN site 
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Wet Hg deposition (ng/m2) exhibits a similar seasonal pattern over time with wet Hg generally being 

lower in the beginning of January, increasing through March, decreasing through July, increasing through 

the fall and finally decreasing again at the beginning of January. Average annual wet Hg deposition for 

the study period was 6,530 ng/m2-yr (Figure 2) at the HF. To date, there is no significant long-term trend 

in annual wet Hg deposition at the HF; indeed year-to-year variation in annual wet Hg deposition is 

strongly controlled by the quantity of precipitation that occurs for that year. Although there have been 

recent decreases in emissions of Hg in the eastern U.S., these decreases are not reflected in concentrations 

or deposition of Hg in precipitation at the HF. 

Mercury exchange processes evaluated at the HF include wet deposition, dry deposition, foliar 

accumulation, throughfall, litterfall, soil evasion, and vertical and horizontal soil drainage loss. The  

Hg transport processes were quantified by integrating data collected from different sources over recent 

years (2004-2011). Dry Hg deposition (16.3 µg m-2 yr-1) is more important than wet Hg deposition  

(6.3 µg m-2 yr-1) at the HF; most of the atmospheric Hg deposition (> 60%) was retained in the forest  

soils where litterfall (17.2 µg m-2 yr-1) was the major input pathway. (The fate of Hg inputs is described  

in a following section). 

1.3 Climate Change in the Adirondacks 

1.3.1 Ice Record 

Recently Beier et al. (2012) used ice phenology records (1975-2007) for five lakes in the HF in the 

Adirondacks to evaluate climate change. Their study found rapidly decreasing trends of up to 21 days  

less ice cover over the record that was attributed mostly due to later freeze-up and partially due to  

earlier break up. An evaluation of local meteorological factors suggested that November and December 

temperatures and snow depth consistently predicted ice-in for these lakes. Furthermore recent trends of 

aboveground warming and decreasing snow during these months were consistent with later ice formation.  

1.3.2 Temperature and Precipitation 

These results from the lake ice records are consistent with other studies in the northeast U.S. that have 

shown significant warming in recent decades (Campbell et al. 2011, Frumhoff et al. 2007, Hayhoe et al. 

2007). NOAA meteorological data were analyzed for Newcomb, NY. The weather station at Newcomb 

had a change in location (Station ID 305711, Latitude 43.9667, Longitude -74.2167, Elevation 494 m  

to Station ID 305714, Latitude 43.9708, Longitude -74.2219, Elevation 502 m, on Dec. 1967 through 

present). Meteorological data was also analyzed from the Tupper Lake NOAA (Station ID 308631, 
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Latitude 44.2308Lon. -74.4383, Elevation 512 m) station (37.1 km NW from Newcomb) for which  

data were available for a longer period and at a single location with different station IDs. Tupper Lake 

precipitation and temperature results are available from 1899 to present. For these analyses, the period 

from 1900 through 2013 was used because the record for 1899 was incomplete. Both annual and monthly 

changes were examined using regression analyses and included those years in which the monthly data 

were incomplete. But when some of the monthly data were absent, those years without monthly values 

were not used in the analyses of annual trends.  

The distances between the HF to Newcomb and Tupper Lake are approximately 3 and 30 km, 

respectively. Significant relationships were not found over time in either the annual or monthly 

temperature and precipitation records for Newcomb, NY. This lack of significant change may be 

attributed to the relatively short record (e.g., starting in 1940 and the change in the location of the  

weather station). However for Tupper Lake, significant (p<0.001) increases were found in annual 

precipitation of 2.8 mm yr-1 (28 cm per century) (Figure 3) and a trend (p=0.10) of increasing mean 

annual temperature (0.06 oC yr-1 or 0.6 oC per century) (Figure 4). Note that the months with significant 

increases in precipitation (p < 0.05) occurred during the fall and winter periods (i.e., October, November, 

January, and February).  

Figure 3. Annual precipitation change at the Tupper Lake NOAA (Station ID 308631) site in the 
central Adirondack Mountains of New York State  

Slope = 2.8 mm yr-1; p<0.001   
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Figure 4. Annual temperature change at the Tupper Lake NOAA (Station ID 308631) site in the 
central Adirondack Mountains of New York State 

Slope = 0.06 ◦C yr-1; p=0.1 

Climate change is occurring over the entire northeast United States, including the Adirondacks 

(Huntington et al. 2009). A recent report has provided supporting information derived from broad  

range of sources that indicate trends of increases in temperature and precipitation in the Adirondack 

region (Horton et al. 2011). The results from Tupper Lake also agree well with the more detailed 

measurements at Indian Lake in the Adirondacks that have shown a change through the 1900s of 0.7 oC 

per century (Rosenzweig et al. 2011). Horton et al. (2014) reported for Indian Lake that there was a 

significant greater temperature increase from 1901 to 2010 of 0.12°C/decade. Such differences among 

locations may be due to local edaphic conditions that can affect meteorological variables.  

1.3.3 Discharge 

The changes in temperature coupled with changes in precipitation affect hydrological processes including 

snow depth, snow duration, rain on snow events and discharge (Campbell et al. 2011, Hayhoe et al.  

2007, Huntington 2003). For example, results at Hubbard Brook Experimental Forest (HBEF) in New 

Hampshire indicated that an earlier snowmelt and the diminishing length of snowpack are advancing  

the timing of peak discharge and reducing the level of peak discharge occurring with snowmelt  
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(Campbell et al. 2011). Despite substantial variation among years in precipitation inputs and discharge, 

there was a significant linkage between the amount of precipitation and discharge as shown for Arbutus 

Lake at HF (years 1984-2010) (Figure 5) (cm yr-1 discharge = -25.9 + 0.48 cm precipitation yr-1;  

r2=0.48; p<0.0001). Increases in precipitation would likely lead to greater amounts of stream discharge  

in the future. The means (standard deviations) of precipitation, discharge and calculated 

evapotranspiration for the period of measurement were 111 (12), 61 (14) and 50 (12) cm yr-1  

(45% evapotranspiration), respectively. The calculated evapotranspiration values of the Arbutus  

Lake Watershed are very similar to those for the HBEF (45 to 60 cm yr-1) (Bailey et al. 2003).  

Figure 5. Relationship between the annual discharge from the Arbutus Watershed and annual 
precipitation  
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2 Effects of Changing Climate on Biogeochemical 
Processes 

2.1 Sulfur 

The decrease in the atmospheric emissions of S, and the resultant decrease in both wet and dry deposition, 

is clearly reflected in decreases in SO4
2- concentrations in surface waters. This decrease is shown in the 

Adirondack Long-Term Monitoring (ALTM) program that originally started with 17 lakes in 1982 to 

monitor concentrations of major solutes including SO4
2- (Driscoll and van Dreason 1993). Results were 

used from 16 (14 drainage and 2 seepage lakes) of the 17 original Adirondack Long-Term Monitoring 

Lakes (ALTM) from 1984 through 2010 and found significant (p<0.001) declines (average for all  

lakes; -2.14 µmolc L-1 yr-1) in SO4
2- concentrations (Figure 6). Although there has been a decline in  

SO4
2- concentrations, the formulation of lake-watershed S budgets (atmospheric inputs - drainage water 

losses) showed that there were significant internal watershed sources (i.e., net S release from soil mineral 

weathering, mineralization of organic S and/or SO4
2- desorption). The relative amount of internal SO4

2- 

released (i.e., sulfur budget discrepancy) for each of the lake/watersheds was related to normalized 

discharge (Figure 7).  

Other studies examining hydrological events have found that following a period of wetness that was 

preceded by dry conditions that some of the previously immobilized reduced sulfide was re-oxidized  

to SO4
2- and mobilized in soil leachates and surface waters (Eimers et al. 2004a and 2004b, Mitchell et al. 

2006, Kerr et al. 2012). This mobilization of a watershed-internal SO4
2- source can be shown by 

examining both chemical and isotopic changes over a hydrograph for a storm event (Figure 8). The 

stream SO4
2- concentrations increased with increased discharge at Archer Creek at the HF while the S  

and O isotope ratios of SO4
2- are lower in the middle of the storm suggesting that this SO4

2- was derived 

from reduced sulfide minerals (Mitchell et al. 2006). These studies indicate that the biogeochemical 

regulation of SO4
2- in watersheds is shifting from the dominant influence of atmospheric deposition  

to internal watershed supply which is particularly influenced by meteorological factors, especially 

moisture conditions (Mitchell et al. 2011, Mitchell and Likens 2011). These general relationships  

between hydrological/soil moisture conditions and SO4
2- mobilization to soil, ground, and surface  

waters are depicted in Figure 9. 
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Figure 6. Declines in SO4
2- concentrations for 16 (14 drainage and 2 seepage lakes) of the  

17 original Adirondack Long-Term Monitoring Lakes (ALTM) from 1984 through 2010 

Mean change: -2.14 µmolc L-1 yr-1; p<0.00001 for each lake 

From Mitchell et al. 2013 

Figure 7. Effect of discharge amount on sulfur budget discrepancy with sulfate concentration 
normalized to the amount of discharge showing 

From Mitchell et al. 2013 
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Figure 8. Hydrograph of early fall storm at Archer Creek (within the Arbutus Watershed)  

The increase in SO4
2- concentration is shown peaking at the greatest discharge being derived from  

the oxidation of previously reduced sulfide with characteristic lower δ34S and δ18O values of SO4
2-. 

From Mitchell et al. 2006 used with kind permission of Springer Science+Business Media 
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Figure 9. Relationships between soil moisture content and the mobilization of SO4
2-  

Conceptual diagram showing the relationships between water availability and SO4
2- generation from 

various internal S sources in a watershed. All four internal S sources are predicted to show increases  
in SO4

2- mobilization with greater water availability as predicted with climate change in the Northeast US. 
Most cases show a monotonic increase in SO4

2- release with greater moisture and resultant increase in 
discharge. 

2.2 Nitrogen 

There has been increasing concern (Aber et al. 2003, Binkley et al. 2004, Fenn et al. 1998, Vitousek et al. 

1997) about the deleterious impacts of excess N to ecosystems. Forested watersheds may be particularly 

sensitive to elevated N inputs (Mitchell 2011). This concern has been amplified as SO4
2- concentrations 

have become lower and NO3
- concentrations have become a more dominant contributor to acidification  

in soils and surface waters especially in association with snowmelt a period in which biotic demand for  

N is low (Mitchell et al. manuscript in prep). The relationship between snowmelt and NO3
- losses has 

been shown for numerous watersheds (Figure 10; e.g. Archer Creek, Adirondacks). Examining  
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well-studied watersheds in the Northeastern U.S. and Southeastern Canada showed that 12 out of 15 

watersheds experienced a pattern for which the NO3
- concentrations in October to December were 

excellent predictors of January to May NO3
- concentrations in surface waters including the snowmelt 

period (e.g., Figure 11; e.g., Archer Creek).  

Figure 10. Hydrograph from Archer Creek in winter 2003 showing the relationship between 
snowpack depth, discharge, temperature and NO3

- concentrations  
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Figure 11. Relationship between annual winter/spring NO3
- concentrations and fall NO3

- 
concentrations at Archer Creek 

One of the most intriguing questions of watershed N dynamics is what is regulating the long-term 

temporal patterns in NO3
- concentrations and fluxes in surface waters draining forested watersheds 

(Mitchell et al. in prep.). There has been considerable conjecture on the causes for temporal changes.  

The “N saturation” hypothesis suggests that over time, as N biotic demand is reached, that the 

concentration of NO3
- in surface waters will increase (Aber et al. 2003, Stoddard 1994), but long-term 

monitoring of surface waters in the northeast United States have not found a consistent pattern of 

increasing trends. In many cases, there are long-term decreases in NO3
- concentrations (e.g., Goodale  

et al. 2003, Driscoll et al. 2007, Yanai et al. 2013). The causes for these temporal patterns have not been 

ascertained (Aber et al. 1991, Groffman et al. 2009, Mitchell et al. 1996). However, the coincidence of 

annual N export temporal patterns among surface waters within a region suggest some type of temporal 

synchronization such as that associated with climate (Goodale et al. 2003).  
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Climatic factors that have been shown to have a marked impact on NO3
- loss from forests include soil 

frost (Fitzhugh et al. 2003, Groffman et al. 2001) and rain on snow events (Eimers et al. 2007, Casson  

et al. 2010, Kurian et al. 2013). The recent climatic trends of more precipitation amounts in the winter, 

shorter periods of snow cover and more rain on snow events will be further amplified based on climate 

change predictions for the northeast U.S. including the Adirondacks and may result in greater NO3
- 

export. In addition, climate change will have long-term impacts on watershed N biogeochemistry  

through the alteration of soil processes and the composition of the forest vegetation which have been 

shown to have marked impacts on the cycling of N (Mitchell et al. 1992, Christopher et al. 2006,  

Lovett et al. 2009). 

2.3 Mercury 

Concentrations of total Hg (THg) and methylmercury (MeHg) were monitored in Archer Creek at the  

HF (Selvendiran et al. 2008 and 2009). Similar temporal patterns were observed for upland and wetland 

waters for THg and dissolved organic carbon (DOC), though the concentrations were distinctively 

different. The highest stream concentrations of DOC and THg occur under the lowest flow conditions 

during June and July. Low flow in combination with more highly reducing conditions and higher 

temperatures in the wetlands of Archer Creek during the summer increased the production of DOC. The 

average concentration of DOC in wetland streams increased almost twofold during the growing season 

(10.4 mg/L) relative to the non-growing season (5.8 mg/L). In the upland stream, DOC concentrations 

increased only slightly, from 3.2 mg/L to 4.3 mg/L during the growing season. Elevated discharge that 

followed dry periods during late fall and early summer also resulted in elevated concentrations of DOC 

and THg in stream water. Although no apparent seasonal patterns were evident, THg closely followed  

the pattern in DOC concentrations (r2 = 0.80; α = 0.05), highlighting the role of DOC in THg transport at 

Archer Creek. The strong influence of DOC in the transport of THg has been reported from other studies 

(Driscoll et al. 1995, Dennis et al. 2005). 

Marked differences in temporal patterns between upland and wetland stream water concentrations were 

evident for MeHg. Concentrations of MeHg in upland stream waters showed little temporal variation  

and often were near the analytical detection limit. In contrast, large variations with a strong seasonal 

component were observed for stream MeHg concentrations draining wetlands. Minimum MeHg 

concentrations in wetland streams were observed during the winter months. MeHg concentrations  
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increased during late spring with the onset of warmer temperatures and peaked during summer. 

Concentrations of MeHg increased almost three-fold in the wetland streams from 0.1 ng/L during the  

non-growing season to 0.3 ng/L during the growing season. Comparatively, MeHg concentrations in 

upland stream water were much lower during both seasons (0.02-0.04 ng/L). 

Wetland stream water SO4
2- concentrations were consistently lower than upland streams, indicating 

reducing conditions and SO4
2- retention in wetlands. Dissimilatory sulfate-reducing bacteria are linked  

to MeHg production in wetlands (Gilmour et al. 1992, Benoit et al. 2003). The greater difference between 

upland and wetland stream water SO4
2- concentrations was consistent with the observation of higher 

MeHg concentrations draining wetlands during summer months (Figure 12). Note that low SO4
2- 

concentrations in both upland and wetland streams resulting from snowmelt and high flow rather than 

reducing conditions during March, April, and November did not coincide with increases in MeHg in 

stream water. 

The increase in MeHg concentrations in wetland stream waters coincided with a decrease in SO4
2-. A 

significant negative relationship existed between MeHg and SO4
2- concentrations during the growing 

season (r2 = 0.28, P < 0.0001), which was not evident for the nongrowing season (r2 = 0.01, P = 0.12). 

Decreases in SO4
2- concentrations during the growing season in wetlands is often attributed to 

dissimilatory SO4
2- reduction (Bailey et al. 1995, Fitzhugh et al. 1999) (Figure 12), and has been linked t 

o MeHg production (Branfireun et al. 1999, Gilmour et al. 1998 and 1992). A weak but positive relation 

was found for DOC and MeHg concentrations during the growing (r2 = 0.20, P < 0.05) and nongrowing 

seasons (r2 = 0.17, P < 0.05). The slopes of the regressions were similar for the two seasons (Figure. 13), 

with the intercept being greater for the growing season. 
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Figure 12. Relationship between SO4
2- concentrations and MeHg concentrations as a function of 

season (growing versus dormant) at Archer Creek 

Data from Selvendiran et al. 2008. 

The Hg mass balance for HF showed that coupled with atmospheric deposition (previously discussed), 

soil evasion (6.5 µg m-2 yr-1) was the most important Hg export mechanism, exceeding Hg fluxes in 

lateral and vertical drainage from soil (2.8 µg m-2 yr-1). Marked seasonal variation in the transfers of  

Hg is largely mediated by annual canopy development of the forest ecosystem. The upland hardwood 

forest ecosystem was a net sink for atmospheric Hg deposition.  
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Figure 13. Relationships between DOC concentrations and total Hg and MeHg concentrations in 
Arbutus Lake and Sunday Pond in the Adironack Mountains 

Reprinted from Selvendiran et al. 2009. 
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3 Role of Future Changes in Climate and 
Atmospheric Deposition on the Biogeochemical 
Responses 

An important shift is occurring in the biogeochemical regulation of watersheds in the Adirondack 

Mountains. Paleolimnological analyses of diatom, chrysophyte, and cladoceran assemblages in lake 

sediments have suggested that acidification of lakes began in the early 1900s and that lakes became  

acidic in the 1930s and 1950s with the timing of acidification being a function of lake type and level  

of acidic deposition (Cumming et al. 1991 and 1992). More recent paleolimnological studies have  

shown that some of the lakes are recovering from acidification and this recovery has been accelerated  

by the implementation of the U.S. Acid Rain Program in 1995. The recovery from acidification is a  

direct function of the decreases in atmospheric emission and deposition of acidifying compounds (e.g., 

Figure 1). Not all paleolimnological indicator taxa have returned to preacidification numbers and there  

is some suggestion that the increase of certain taxa (e.g., the chrysophyte, Synura echinulata) may be due 

to recent warming in the Adirondacks (Arseneau et al, 2011, Cumming et al, 2011).  

Along with work by other investigators in the Adirondacks, our study has suggested that the inputs of 

acidic deposition (especially S) have shown marked decreases, and chemical recovery of surface waters 

has been quantified with increases in ANC. The chemical recovery of soils, however, is going to be much 

slower because acid sensitive soils have lost nutrient base cations and the recovery of these soils will be a 

long process and possibly not occur within the next century. Also it appears that the biological recovery 

of surface waters and soils has also been notably slower than for chemical recovery although the data on 

biological recovery are substantially less. It is noteworthy, in marked contrast to the decrease in acidic 

deposition, the atmospheric inputs of mercury in the Adirondacks have not shown any significant 

decrease.  

Recent studies including those cited in this report clearly show that climatic factors (especially 

precipitation inputs and temperature increases) have changed and these changes are affecting the 

biogeochemical relationships of key elements such as sulfur, nitrogen, and mercury. For example, our 

study has shown how the losses of SO4
2- (Figure 9) and NO3

- (Figure 10) to surface waters are dependent 

on climatic factors such as temperature and precipitation in the Adirondacks. Hence in the future these  
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climatic factors (Jenkins, 2010, Horton et al. 2014) will be of greater importance in regulating the 

biogeochemical response of Adirondack ecosystems. Evaluating these climatic roles concomitantly with 

evaluating changes in atmospheric deposition is a major challenge for scientists and policymakers. This 

task is made even more difficult because of the impact of other extrinsic factors such as invasion of exotic 

species including pathogens and alteration of plant and animal communities as depicted in Figure 14.  

Figure 14. Interactions between acidic deposition and climate change in affecting forested 
watersheds including other extrinsic factors important for forest ecosystem processes such as 
ecological services  

Diagram derived from Campbell et al. 2009. 
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