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Abstract 
State estimation is a mathematical method used for determining the most-likely current behavior of  

a power grid based on a set of measurements and the structure of the network itself. This method has  

been used on transmission systems for decades to achieve and calibrate network visibility, but it is not  

yet widely adopted for distribution system operations outside demonstration areas. 

This report concludes an investigation by Smarter Grid Solutions into the application of state  

estimation for distribution systems. Throughout the study on distribution state estimation (DSE),  

Smarter Grid Solutions evaluated (1) initiatives supporting DSE development in the U.S. and in  

New York State, (2) DSE Use Cases, (3) implementation challenges, (4) state-of-the-art literature  

on DSE issues, (5) gaps in literature and demonstration projects, and (6) best practices for DSE. In 

addition, Smarter Grid Solutions has prepared a software toolkit with which some DSE concepts  

may be explored in a hands-on experiential environment. 

While research into DSE has gone on for two decades, there exists a real gap between academic 

understanding and operational practices. Many of the implementation challenges have their root in  

the fundamental differences between transmission and distribution systems. Most importantly, it is  

the passive nature with which distribution systems are operated that has reduced the need for 

measurement, communication, and centralized computing infrastructure necessary to operate  

a state estimator. The information presented in this report provides the material necessary to  

understand the context and workings of DSE, as well as offers practical information on how to  

evaluate a plan for implementing an estimator. 

Keywords 
state estimation; distribution system; observability; implementation challenges; visibility; measurements; 

pseudo-measurements; advanced metering infrastructure; state of the art review; literature review; 

algorithms; weighted least squares; bad data detection; network model; advanced distribution 

management system; toolkit; Octave; OpenDSS 
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Summary 
State estimation is a method for analyzing power systems in which all known information regarding a  

live power network is used to assemble the most-likely internal state of the system. As a tool, state 

estimation is extensively applied to transmission systems to support system visibility, optimization,  

and market operation. However, distribution state estimation (DSE) has not yet seen widespread  

adoption due to the relatively low monitoring and oversight of distribution systems compared to 

transmission. Despite lack of adoption, DSE is an important aspect of the dynamically managed 

distribution systems envisioned by utilities and policymakers such as New York State’s Reforming  

the Energy Vision (REV) and the New York State Energy Research and Development  

Authority (NYSERDA). 

This report concludes Smarter Grid Solutions’ (SGS) research on navigating the challenges  

and approaches to DSE. SGS approached this problem with the following key questions: 

Figure S-1. Distribution State Estimation—Key Questions 

Why install a distribution state estimator?

•How does DSE fit into current grid modernization initiatives?
•What problems does DSE solve?
•What system operation functions does DSE enable?

What are possibilities for navigating implementation 
challenges?

•What challenges exist for DSE implementation?
•What measurement and monitoring infrastructure is necessary?
•How accurate must the network model be?

What decisions must be made regarding implementation?

•In what circumstance would DSE implementation make sense?
•Are system upgrades justified by performance?
•What methods are best suited to a given system?
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S.1 Project Phases 

SGS pursued this investigation into DSE in three phases:  

1. DSE Context: Initiatives and Utility Usage 
2. State-of-the-Art Review 
3. DSE Software Toolkit 

In its initial research on DSE context, SGS studied the place of DSE among distribution modernization 

initiatives. High-level objectives were as described by policymakers in New York State, the United 

States, and abroad, while implementation plans were laid out by distribution utilities themselves. SGS  

had conversations with these utilities as well as with industry and academic experts in order to frame  

the problem and formulate its approach. This information was used to compile an overview of DSE  

use cases and implementation challenges. 

The wealth of academic research on the topic as well as conversations with leaders in academia 

contributed heavily to this project. SGS broke down the necessary components of DSE and provided an 

in-depth review of current research in the state-of-the-art review. As part of this review, SGS documented 

published studies and demonstration programs into DSE, and identified gaps where the body of literature 

might be further developed to benefit operational DSE installations. Gaps identified by SGS included a 

standardized metric for evaluating a utility’s measurement infrastructure and a critical analysis on using 

forecasted pseudo-measurements for bad data detection.  

Lastly, SGS put together a DSE software toolkit: A software-based DSE example for users to download 

and be guided through DSE concepts. This toolkit enables users to run three-phase DSE through different 

scenarios and custom measurement configurations. Users can easily examine the performance of the 

estimator in relation to the underlying “true state” of the system and are given the power to further  

extend and explore the toolkit capabilities—as all code is provided in a sandbox environment with 

documentation. The goal of this task is to provide interested parties a hands-on opportunity to  

familiarize themselves with DSE concepts presented in this report. 

S.2  Project Takeaways 

State estimation is only as powerful as the information that it is given. In understanding the goals  

of network visibility and the infrastructure available to the utility, it can be determined if upgrading  

the system to support DSE is expedient. At its most basic, Table S-1 is a summary of what must be 

considered to implement DSE: 
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Table S-1. DSE Minimum Requirements 

What items are necessary to support DSE? 
1 An up-to-date network model 

2 

At least two pieces of operating data about each system node 
• Examples of this could be (among others): 

o Real and reactive customer load 
o Voltage magnitude and angle 

• This can take the form of load forecasts—understanding the compromise in system 
accuracy and inability to detect bad data 

3 A communication infrastructure to support real-time measurements and model updates 

4 A state estimation engine 

It should be noted that having a state estimation engine is just as important to DSE as having any one of 

the first three items. Without upgrading all four items in a convergent manner, the effectiveness of DSE 

implementation will suffer. To demonstrate this, the relation between input quality and potential outputs 

are summarized in Figure S-2. 

Figure S-2. Input Quality versus Possible Outputs to a Distribution State Estimator 
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The four outputs shown in Figure 13 are results that could benefit the operation of any utility. However, 

the effectiveness with which DSE can realize these results is a direct result of the quality of the three 

inputs shown at the top of the figure. For instance, both detection of bad measurements and network 

model correction are impossible without redundancy in the system measurements. It is vital that utilities 

understand the relation between what goes into the state estimator versus what the state estimator  

can provide. 

The largest challenges to DSE implementation are summarized in the Table S-2: 

Table S-2. DSE Implementation Challenges Summary 

Implementation Challenges Accuracy and Effectiveness Challenges 
Observability Uncertainty in Network Parameters  
Communication Infrastructure Uncertainty in Topology 
Complexity of Network Uncertainty in Load and Forecast 
Line Parameters 

As every distribution system faces its own challenges and has a unique mix of visibility and control 

applications, no two solutions will have the same approach. However, there are common characteristics  

to successful DSE implementations. One of the most important components is a network model that  

can be updated dynamically and shared in real-time. The Common Information Model (CIM) not only 

enables the network model to be communicable across platforms, but also enables upgrades in flexibility 

and automation that are necessary for DSE. 

Beyond network model considerations, the measurement infrastructure is the most important factor  

for a DSE implementation. With the sparse placement of measurement points on distribution systems, 

DSE must rely heavily on load forecasts to maintain an observable network. While there are limits to  

the benefits obtained from using forecasts as measurements, it is reasonable to focus first on how to 

maximize their accuracy. Even small levels of advanced metering infrastructure (AMI) adoption can  

lead to more granular, targeted, and accurate load forecasts throughout the system. Furthermore, load 

allocation methods powered by AMI and iterating with DSE can improve performance all around. 
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With measurements being at the core of a state estimator, their placement is of utmost importance. The 

financial burden of widespread measurement placement means optimizing the types of measurements 

placed, their accuracy, and where on the network they will reside. Once a state estimator has been 

modelled, a utility will be able to run assessments on how each measurement considered for  

placement will beneficially impact the visibility of the system. 

This report outlines the motivations and findings of SGS’ research into DSE, as well as providing an 

overview of all previous phases of the project. The project should provide clarity to utilities investigating 

DSE as an upgrade to their system visibility. The topic of system visibility is difficult, without a simple 

prescribed avenue to success. However, the best way to implement a successful state estimator is to 

become familiar with DSE as a method and a tool that is as powerful as the systems built around it. 
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1 Introduction 
1.1 Project Background 

State estimation is a method for analyzing power systems in which all known information regarding a  

live power network is used to assemble the most-likely internal state of the system. More simply, it is  

the calculation of voltages and power flows from a distribution of measurements and forecasts. Offline 

power analysis often makes the assumption of perfect knowledge or worst-case scenario. However, 

during operation, no knowledge is absolute—measurements include a level of uncertainty and the 

possibility for data corruption. Using state estimation, an operator can use any available information 

(including measurements, forecasts, and network considerations) to create the most-likely state of  

current operation. 

As a tool, state estimation is extensively applied to transmission systems to support system visibility, 

optimization, and market operation. While in-the-loop operation of state estimation has been widely 

adopted for transmission systems, the same has not been the case for distribution systems. There are  

few examples of distribution state estimation (DSE) that go beyond controlled research settings, in  

large part because the measurement and communication infrastructure is not built to support such  

system-wide real-time analytics. 

Despite lack of adoption, DSE is an important aspect of the dynamically managed distribution systems 

envisioned by utilities and policymakers. Widespread distributed energy resource (DER) integration  

in particular is driving the need for better monitoring and control throughout distribution systems—

capabilities enabled by DSE. The need for advanced distribution systems with state estimation capability 

has been described as crucial to the successful implementation of New York State’s Reforming the 

Energy Vision (REV) markets and the High-Performing Grids (HPG) initiative driven by the New  

York State Energy Research and Development Authority (NYSERDA). 

Smarter Grid Solutions (SGS) has provided unbiased assessment of the current state of DSE in order  

to provide guidance to New York State utilities on the implementation of DSE on their systems in 

accordance with REV and HPG objectives. This includes identifying current public initiatives supporting 

the development of DSE, reviewing current academic literature including demonstrations and pilot 

programs, and developing a toolkit for utilities to experiment with DSE concepts. As an outcome of  

this project, the State’s utilities will be better equipped to make decisions on DSE integration, which  

in turn will facilitate a more dynamically managed grid. 
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This report concludes SGS’s research on navigating the challenges and approaches to DSE and 

encompasses all the research findings, which include (1) identification of public policy initiatives,  

(2) implementation use cases and challenges, (3) a review of the state-of-the-art techniques, and  

(4) a software toolkit developed with open-sourced tools to allow hands-on study of DSE concepts.  

The software toolkit is available as an accompaniment to this report. 

To bring context to this project, SGS identified three key questions regarding DSE. The questions 

encapsulate the goals of the assessment and are presented in Figure 1. 

Figure 1. Distribution State Estimation—Key Questions 

In providing answers to these questions, SGS will guide the State’s utilities in navigating the state 

estimation landscape at the distribution level. Instead of performing a demonstration of DSE feasibility  

as has been done in several other studies, SGS identified the most valuable approach would be to lay out 

the fundamental concepts, challenges, and approaches of state estimation. 

SGS pursued this investigation into DSE in three phases:  

1. DSE Context: Initiatives and Utility Usage 
2. State-of-the-Art Review 
3. DSE Software Toolkit 

Why install a distribution state estimator?

•How does DSE fit into current grid modernization initiatives?
•What problems does DSE solve?
•What system operation functions does DSE enable?

What are possibilities for navigating implementation 
challenges?
•What challenges exist for DSE implementation?
•What measurement and monitoring infrastructure is necessary?
•How accurate must the network model be?

What decisions must be made regarding implementation?

•In what circumstance would DSE implementation make sense?
•Are system upgrades justified by performance?
•What methods are best suited to a given system?
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In its initial research on DSE context, SGS studied the place of DSE among distribution modernization 

initiatives. High-level objectives were as described by policymakers in the State, the United States,  

and abroad, while implementation plans were laid out by distribution utilities themselves. SGS had 

conversations with these utilities, as well as with industry and academic experts in order to frame  

the problem and formulate its approach. This information was used to compile an overview of DSE  

use cases and implementation challenges. 

The wealth of academic research on the topic as well as conversations with leaders in academia 

contributed heavily to this project. SGS broke down the necessary components of DSE and provided  

an in-depth review of current research in the state-of-the-art review. As part of this review, SGS 

documented published studies and demonstration programs into DSE, and identified gaps where the  

body of literature might be further developed to benefit operational DSE installations. Gaps identified  

by SGS included a standardized metric for evaluating a utility’s measurement infrastructure and a  

critical analysis on using forecasted pseudo-measurements for bad data detection.  

Lastly, SGS put together a DSE software toolkit: A software-based DSE example for users to download 

and be guided through DSE concepts. This toolkit enables users to run three-phase DSE through different 

scenarios and custom measurement configurations. Users can easily examine the performance of the 

estimator in relation to the underlying “true state” of the system and are given the power to further  

extend and explore the toolkit capabilities—as all code is provided in a sandbox environment with 

documentation. The goal of this task is to provide interested parties a hands-on opportunity to  

familiarize themselves with DSE concepts presented in this report. 

1.2 Using This Report: Structure and Intended Audience 

This report presents the research results from several different phases of SGS’ investigation into DSE, 

with the intended audience ranging from policymakers to utility engineers and academics. The following 

table has been provided to elaborate on the content of each section so that the reader can focus their 

attention on the most important parts of the project. 
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Table 1. Report Phase and Section Overview 

Phase Detail Section Detail 
1. Introduction 

DSE Context: 
Initiatives and 
Utilities 

The four sections which 
comprise this phase of the 
DSE project lay a 
groundwork for the context 
of DSE in modern 
distribution systems. This 
phase provides insight into 
the state of DSE in the 
distribution industry. 

2. State Estimation 
Definition and 
Utilization 

Introduction to the mathematical method of state 
estimation, and how it compares to other approaches to 
network visibility. 

3. Public Policy 
Initiatives 

Discussion of State and Federal initiatives that incentivize 
DSE, including relevant findings from agency-funded 
reports and assessments of distribution modernization. 

4. DSE Use Cases 
Discussion of the place of DSE among other smart grid 
objectives, and the potential benefits of DSE as an 
enabling technology. 

5. DSE 
Implementation 
Challenges 

Roadblocks to DSE implementation, breaking down the 
fundamental differences between distribution and 
transmission systems that impede widespread adoption of 
DSE. 

State-of-the- Art 
Review 

The state-of-the-art review 
covered by these five 
sections is a thorough dive 
into the research 
surrounding every block in 
the DSE process. The 
review also includes 
documentation of and 
lessons learned from 
implementations of DSE in 
various studies and field 
demonstrations, and a 
look at where further 
research is required. 

6. Origin of DSE 
Literature 

Summary of initial state estimation research and how it 
transitioned from transmission to distribution systems. This 
section provides context for the DSE literature cited in the 
review.  

7. Components of a 
State Estimator 

Outlining the building blocks of a fully functional state 
estimator. This section goes in-depth on current research 
surrounding each vital component of DSE. 

8. State Estimation 
Algorithms 

In-depth study of many of the most common algorithms for 
solving the state estimation problem.  

9. Documented 
Implementations 

Thorough documentation of all known implementations of 
DSE in real systems—both in offline studies and in online 
demonstration projects.  

10. Gap Analysis 
Analysis of areas where further research would be 
beneficial to the widespread adoption of DSE, both in 
academia and in demonstrations. 

DSE Software 
Toolkit 

The DSE Software Toolkit 
is a companion tool that 
may be downloaded to 
provide a hands-on 
experience for interested 
users to investigate the 
concepts discussed in this 
report. 

11. DSE Software 
Toolkit: Overview and  

Overview of the DSE Software Toolkit which is provided as 
an accompaniment to this report. This includes a guided 
example for running a simple DSE case. 

12. DSE Software 
Toolkit: Further 
Guidance and 
Advanced 
Functionality 

Further documentation of the DSE Software Toolkit that 
enables users to customize the tool and explore DSE 
concepts on their own.  

13. Project Takeaways: Challenges and Best Practices 
14. Concluding Remarks 

Note 

Throughout the report, important takeaways that are particularly applicable to distribution system 
implementation are highlighted. Many of these takeaways can be found in boxes such as this one. 
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2 State Estimation Definition and Utilization 
State estimation is a mathematical method that has a well-studied set of inputs, outputs, and methods  

from which a solution may be obtained. State estimation is the most thorough method with which network 

information can be used to determine the behavior of a power system. However, it is not the only method. 

Depending on the available information and its quality, there are a range of methods available to estimate 

network flows and voltages with varying accuracy. Therefore, it is important to define the state estimation 

problem and its relation to other methods. 

In this section, a high-level description of the state estimation problem is presented. This is an overview 

of the context, inputs/outputs, and methodology of state estimation as it compares to other power  

system functions. 

Approaches to distribution network visibility are then discussed in order to provide a context for state 

estimation. The reader should come away from this section with a clear understanding of how state 

estimation differs from other approaches to visibility in terms of requirements and quality of result. 

2.1 State Estimation 

In a state estimation problem, no bus values are assumed to be known, and no measurement device is 

assumed to be absolute. Instead, the knowledge base is composed of a set of distributed measurements, 

each with a specified amount of error. Any new measured point in the power system improves the state 

estimation result. Load forecasts and other known characteristics can also be incorporated in a state 

estimator as measurements and assigned an error tolerance. 

The known values are therefore: 

• Any system measurements (injection, bus, line, etc.) 
• Load forecasts and known characteristics 
• Network topology 
• Network model 

From these known values, the most-likely system state is calculated, which will be a feasible power  

flow solution that minimizes the deviation from the known values it is given. 
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Measurement points can be any electrical characteristic of the system that is measured in real time.  

This could be node voltage magnitude and/or angle, line current magnitude and/or angle, line power or 

load/generation power. Note that angle measurements are only possible when using phasor measurement 

units (PMUs). These measurements are incorporated into a calculation that incorporates the physical 

behavior of the network model and weighs each measurement based on the confidence placed on the 

individual measurement.  

Depending on how many measurement points exist in a network, a system state solution may or may not 

exist. This is what is referred to as observability—a system is only observable when there are requisite 

measurements with which the state might be recreated. Because the state of a power system is defined  

as two values (voltage magnitude and angle or any other two independent values) at each node (or bus),  

it is necessary to have measurements numbering at least twice the number of nodes in order to have a 

solution. This number is used as a benchmark in Table 2. 

Table 2. Determination Levels of System Observability 

System 
Classification 

Number of Measurement Points Ramification 

Underdetermined Less than twice the number of system 
nodes. 

Infinite solutions; Not enough information to 
calculate state estimate 

Determined Approximately equal to twice the number 
of system nodes. 

One exact solution; No redundancy; Subject to 
erroneous measurements 
Measurements must be distributed across system 
nodes to achieve observability. 

Overdetermined Greater than twice the number of system 
nodes. 

No exact solution; Redundancy; Measurements 
weighted based on their accuracy to achieve a 
solution; Resilient to erroneous measurements 

State estimation is impossible when the system is underdetermined. In the case of a determined system, 

the system has no measure with which to incorporate measurement accuracy, but the state estimation 

calculation is possible. An overdetermined system allows state estimation to be resilient to measurement 

errors, as it is able to identify measurements which do not match a feasible power flow solution. 

Figure 2 depicts a four-bus system in order to demonstrate overdetermined (redundant) state estimation. 
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Figure 2. State Estimation Example 

Notice that there are 15 measurements on the four-bus system. Because there are more measurements  

(15) than unknown state variables (8), this is an overdetermined system. There are no exact solutions to 

an overdetermined system as some measurements will be conflicting—however, the problem is solved  

by determining the most-likely solution: one which minimizes the discrepancy between the measurements 

and the underlying state. The result of this approach is a state estimate which is more accurate than even 

the measurements used to solve it, as the measurements and network model are combined to find the best 

mathematical solution to the problem. Increasing the number of measurements can only improve the state 

estimate—and this redundancy can lead to useful applications such as eliminating erroneous data points 

from consideration. 

If the measurements were reduced until there were only two at each bus, it would be a determined  

system. There would not be any room for minimizing error or eliminating bad data as there would  

only be one feasible solution. 

If the measurements were further reduced, it would be an underdetermined system. There are infinite 

solutions to an undetermined system, and therefore it is not solvable as a state estimation problem. 

Additional information such as load forecasts or new installed measurements would be necessary  

in order to solve the problem. 
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Exceptional textbook overviews of the state estimation problem are provided by Monticelli [1] and  

Abur and Gómez-Expósito [2]. Both have provided extensive background knowledge for this report. 

2.2 Approaches to Network Visibility 

State estimation is not the only approach to visualizing the electrical characteristics and behavior of 

distribution systems. Depending on the extent of measurement infrastructure, network visibility can  

take one of several forms. Approaches to network visibility are summarized in Table 3, in increasing 

order of breadth and accuracy. 

Table 3. Approaches to Network Visibility 

Approach Necessary Information Description Visibility 
Point monitoring • Critical constraint point 

measurements 
Infer secure operation based on 
certain critical bottleneck conditions. 

None 

Load allocation • Upstream transformer load 
measurement or estimate 

• Locational load forecasts 
• loads assigned to transformers 

Estimate loads at each bus based on 
customer forecast rectified with 
upstream transformer loads. 

Customer loads 

Load flow • Upstream transformer load 
measurement or estimate 

• Distributed power injection (load and 
generation) measurements of 
forecasts 

• Network model and topology 

Predict or calculate internal system 
state based on input injected power 
and estimated customer loads. 

Entire system state 
(assumed) 

Non-redundant 
state estimation 

• Same requirements as load flow 
• Additional line and bus 

measurements 

Rectify load flow results with 
measurements for realistic state 
estimate. 

Entire system state 

Redundant state 
estimation 

• Distributed SCADA, line/bus, and 
customer measurements 

• Locational load forecasts 
• Network model and topology 

More measurements resulting in 
improved state estimation accuracy. 
Ability to detect bad data inputs. 

Entire system state 
Bad data inputs 

Many utilities do not operate with real-time measurements in the loop, relying on forecasts and assuming 

normal operation unless alerted to a contingency, at which point measurements may be used to ensure 

normal operation. When real-time measurements are used in day-to-day operations, the most common 

tools for network visibility and operation for utilities are point monitoring and load allocation. Load  

flows are often pursued in the network planning and expansion phase to calculate worst-case conditions 

and plan for contingencies. 
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The introduction of distribution management systems (DMSs) and advanced DMSs (ADMSs) to 

distribution utilities have helped streamline and modernize distribution operations, centralizing 

information across utility platforms to reduce outages and improve efficiency. However, while an  

ADMS may have the capability to perform all five functions listed in Table 3, the systems in practice 

rarely perform extended load flows or state estimations due to the challenges surrounding the passive 

operation of distribution grids. 

Each function from Table 3 is described in more detail in the following sections, with additional 

references provided for further reading. 

2.2.1 Point Monitoring 

The simplest and most common use of real-time measurement point monitoring is the collection of 

operating characteristics from select points on the distribution network to ensure constraints are not  

being violated and the system is running as intended. Some common examples of measurement points: 

• Distribution automation (DA) and protection measurements 
• Bottleneck line flow measurements 
• End-of-line voltage sensors 

In most cases, current distribution systems operate in a passive, predictable manner. Distribution networks 

are mostly radial, with customers aggregated to transformers and power flowing in a single direction at all 

times. Operating the network means maintaining flows within bounds to protect equipment, and isolating 

equipment when constraints are breached (often an automated process). Certain lines may be identified as 

bottlenecks—more likely to be overloaded or more vital to system operation—and might be monitored for 

control systems such as active network management (ANM). 

One-way flows result in predictable voltage decreases along a feeder, with the end-of-line representing 

the lowest voltage on the feeder. Therefore, voltages can be ensured within bounds with an end-of-line 

voltage sensor. Reactive and other voltage-supporting elements may be engaged along the feeder to adjust 

voltage based on the end-of-line or upstream transformer measurements. In this way, simple volt-VAR 

control (VVC) and even some volt-VAR optimization including conservation voltage reduction (CVR) 

may be implemented with only a few voltage measurements [3]. 
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The predictable, passive, and unidirectional paradigm of traditional distribution networks that allows 

point monitoring to be an effective method for network visibility relies on a set of assumptions that 

becoming less reliable in modern systems. This approach may need to be updated to keep up with 

elements of modernized distribution systems such as distributed energy resources (DER). 

2.2.2 Load Allocation 

Load allocation is the process with which forecasts or measurements of customer loads or secondary 

transformers are mapped to corresponding upstream transformer loads. This process can take many  

forms and can be used for different end goals, such as determining the peak flow at a given time or 

visualizing network operations in real-time. The general load allocation process uses estimated load 

curves, based on customer type and often with many time steps per day, to interpolate the behavior of 

downstream loads based on upstream measurements or forecasts. One example of this methodology is 

shown by Carmona, et al. [4], detailing how load allocation can include iterations until the best estimate 

of load distribution has been reached based on the available information. 

Miranda, Pereira, and Saraiva [5] discuss load allocation in the context of generating inputs for DMS load 

flow functionality with a lack of customer load measurement data. Kersting and Phillips [6] expand the 

discussion to include 15-minute meter readings in the context of load allocation, comparing various 

methods under different circumstances. Both papers recognize the limitations of estimating load 

distribution based on very minimal (or no) measurements and emphasize that measurements should  

take precedent when making control decisions. However, both papers also describe the importance of 

accurately estimated loads both for planning and as inputs to other distribution management functions. 

Load allocation can be an important step to calculating power injections for load flow or to generating 

pseudo-measurements for state estimation, as is described by Carmona-Delgado, Romero-Ramos, and 

Riquelme-Santos [7]. Arritt and Dugan [8] compare four different methods for allocating loads intended 

for input into DSE. Wan and Miu [9] describe a method of load allocation based on weighted least 

squares (WLS). 

2.2.3 Load Flow 

Load flow, otherwise known as power flow, is a fundamental calculation in which a power system  

is solved for the internal state based on the power injections and generation voltages present at each 

system bus.  
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In load flow, the information known is as follows:  

• Reference bus voltage and angle (e.g., substation)  
• Real and reactive power injection at each node (load and generation)  
• Additional generation buses where real power and voltage magnitude are set  
• Network model and topology information 

The system state is then calculated based on this known information. It is sufficient to have two known 

data points per network node to solve the load flow problem. The system state is generally considered to 

be full-system knowledge of node voltage and angles. With this state information, the line currents as well 

as real and reactive power flows may be calculated in a trivial manner. 

In operation, load flow is currently used primarily as a planning tool. Planning software uses the most up-

to-date and accurate network model available, then uses load distributions and growth forecasts to predict 

operating conditions under various worst-case conditions such as maximum or minimum load, as well as 

any number of contingency scenarios. 

With the introduction of ADMS platforms, using load flow as an on-line operational resource has become 

more common. In order to run a load flow, real and reactive power injections must be known at each bus, 

as well as voltage at the feeding transformer. These injections could be load forecasts (or the output of a 

load allocation application), or they could also be measurements based on transformer automation sensors 

or advanced metering infrastructure (AMI). The number of known state variables must be equal to the 

number of unknown state variables to calculate a state solution. 

However, load flow itself has its own limitations: 

• Load flow is not structured to incorporate real-time measurements of line flows or bus voltage 
• Load flow does not easily allow breaking the problem into sub-problems 
• Load flow is sensitive to error in its input injections or network model 

Per the first item, should a load flow result be different from the true internal operation of the system, 

there is no straightforward mechanism to rectify the two. The second item limits the potential for high-

performance computing or parallelization, and additionally makes it difficult to focus the problem on a 

specific region of the network without network reduction techniques. The third item describes a limitation 

for day-to-day operation: there is no mechanism to detect unrealistic input data or incorrect network 

parameters or topology, and therefore the output is susceptible to errors when present on the network. 
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2.2.4 Non-redundant State Estimation 

Non-redundant state estimation is a state estimation problem where similar types of inputs to a load  

flow are introduced to the formulation of a state estimation problem. Formulated as a state estimation 

problem, the system has the capability to incorporate line flow and bus voltage measurements as well  

as the injection measurements and forecasts that are used for load flow. If the inputs to the problem are 

the same as load flow, the result will be the same—though each additional measurement improves this 

result. This category is distinct from a redundant state estimation in that there are approximately as many 

measurements as state variables (a determined system)—with no redundancy to further improve the 

accuracy of the system. 

In addition to improved accuracy in real-time network visibility over load flow due to incorporation  

of measurements, state estimation allows the network to be broken into sub-problems. This means that 

areas of the network with better measurement infrastructure can be considered on their own, or the 

computation can be parallelized for fast convergence with high-sample rates.  

Non-redundant state estimation is the most realistic implementation of state estimation for modern-day 

distribution utilities as many of these utilities have the capability to run a load flow on their system,  

if only offline. Implementation of this function requires up-to-date network model and topology, load 

forecasts with the desired resolution in both time and location, and synchronization with real-time 

measurements—probably from a distribution supervisory control and data acquisition (SCADA) system. 

This state estimation problem is considered to be observable because it can utilize the inputs of the  

load flow problem—even if these inputs are just forecasts. However, without an extensive measurement 

infrastructure, there will be little to no measurement redundancy required to detect erroneous data, so this 

problem is still sensitive to input error. For detail on the requirement of measurement redundancy in order 

to run the bad data detection and identification application, see section 7.4.1. 

2.2.5 Redundant State Estimation 

The best possible method of visualizing internal power network operations based on available  

information is a state estimator with redundant measurements. This problem includes all the benefits  

of non-redundant state estimation, with the improved measurement infrastructure providing redundancy 

that makes operations resilient to erroneous data points, measurement calibration, or network parameters 

and topology. 
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A redundant state estimator typically has on the order of at least twice the number of measurements as 

unknown state variables, though any introduction of new measurements improves the result of the state 

estimator. The redundant formulation has the advantage of making the fewest assumptions from the 

options discussed in this section. It is closest to the state estimation example given in section 2.1. 

2.2.5.1 Notes on Comparing State Estimation and Power Flow 

State estimation relies on many of the same assumptions as load flow, such as an accurate network  

model, but its foundation in measurements as opposed to generation schedules and load forecasts 

inherently makes it the better option for monitoring and operating a system in real-time. If a generation 

schedule or load forecast were significantly inaccurate, the state estimator would still give an accurate 

estimate of the state and may identify these data sources as erroneous. 

Additionally, while the power flow problem cannot easily be broken down into sub-problems, this  

comes naturally to a state estimation problem. In order to refocus the problem on a subset (or “island”)  

of the entire network model, the flows along lines connecting the island to the larger model become 

unknown variables. Because a power flow is dependent on knowing power injections at each bus, 

increasing the number of unknown injections can make the problem difficult. Meanwhile, a state 

estimation solution is not dependent on predicated knowledge of bus injections and thus is more  

flexible to diversity in known values. 

However, for all its advantages, state estimation on distribution systems suffers from issues in 

implementation such as too few measurements and inaccurate network models. 
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3 Public Policy Initiatives 
Research into DSE has been incentivized as part of initiatives at both the federal and state levels. The 

U.S. Department of Energy (DOE) has funded national laboratories as well as university researchers  

and industry as part of the Grid Modernization Initiative. The State has seen a number of agencies come 

together to support the goals of the NYS REV. Figure 3 shows a breakdown of some major initiatives  

that directly or indirectly support research into DSE. 

Figure 3: Initiatives Supporting DSE 

3.1 Federal Initiatives 

DOE supports research into grid modernization at a national level. Its Grid Modernization Initiative 

(GMI) works with both public and private entities, including national laboratories to support research  

and facilitate discussions. SGS reviewed several avenues in which DOE is supporting DSE development 

both directly and indirectly. 
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3.1.1 Grid Modernization Laboratory Consortium 

DOE’s Grid Modernization Laboratory Consortium (GMLC) is a partnership between DOE and  

national laboratories that oversees mentorship and funding of research projects on the subject of grid 

modernization for academic and industry recipients. It funds projects in a wide range of areas, several of 

which have a direct or indirect relation to DSE. These projects are summarized in Table 4. There are also 

many projects not highlighted in this table which assume good knowledge of the distribution grid state to 

begin with—meaning that implementation of much of the research in this area is predicated on DSE being 

present on the system. 

Table 4. DOE GMLC Award Topics, Key Projects, and Relation to DSE 

Subject Area Project and Laboratory Relation to DSE 

Core Activities 
Project 6—ORNL: Grid Sensing and 
Measurement Strategies: 
Requirements for Full System 
Visibility 

• Advanced sensing and measurement placement 
tools to achieve state visibility 

• Improved telemetry is a precursor to DSE adoption. 

Regional Partnerships Project 14—BNL, NYSERDA et al: 
Technical Support to the NYS REV 

• Technical support in policy, planning/operations, 
and DER integration in the State. 

Crosscutting Activities 

Project 19—ORNL et al: Advanced 
Sensor Development 

• Developing low-cost sensors and asset monitoring 
• Cheaper sensors are more deployable in 

distribution networks to support DSE. 
Project 20—LANL et al: Multi Scale 
Data Analytics and machine Learning 
for the Grid 

• Distributed and machine learning algorithms for 
enhanced network information exchange, analysis, 
and forecasting. 

• Highlights need for reliable system state 
information and seeks to improve knowledge base. 

Buildings 
No identified projects with relevance to DSE 

Fuel Cells 

Solar Energy 

Project 8—NREL: Opportunistic 
Hybrid Communications Systems for 
Distributed PV Coordination 

• Communications system based on variety of data 
sources and channels for coordinating photovoltaic 
(PV) generation. 

• Research will allow gaps to be filled with measured 
data and inferences from state estimation. 

• Distributed steady and dynamic state estimation 
techniques for PV generation and multiple levels of 
the power grid. 

Project 13—ANL et al: Integrated 
Tool for Improving Grid Performance 
and Reliability of Combined 
Transmission-Distribution with High 
Solar Penetration 

• Includes development of unbalanced DSE tool 
using semi-definite programming with 
noisy/missing measurements. 

• Unbalanced, three-phase DSE tool benchmarked 
against IEEE systems. 

Project 15—SLAC: Visualization and 
Analytics of Distribution Systems with 
Deep Penetration of Distributed 
Energy Resources (VADER) 

• Machine learning-based power flow as 
advancement on DMS and state estimation 

• Takes state estimation and power flow as 
traditional approach to distribution analytics. 
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Table 4 continued 

Vehicles 

No identified projects with relevance to DSE Wind and Water Power 
Advanced Grid 
Modelling 

ADMS 

Project 1—lPNNL, NREL: 
Development of an Open-Source 
Platform for ADMS 

• Developing ADMS in utility-centric environment 
• Leveraging increased types and volume of data 

with communication between applications. 
• New applications will greatly enhance observability 

and controllability. 
• No mention of DSE, but it would fit as a tool to 

leverage observability and improve data. 
• DSE could be an application within ADMS. 

Energy Systems Risk 
and Prediction 

No identified projects with relevance to DSE 

Energy Storage 
Smart Grid 
Transmission 
Reliability 
Transformers 
Cybersecurity 

* U.S. Department of Energy, "DOE Grid Modernization Laboratory Consortium (GMLC) - Awards," 2016.  
Accessed 8 September 2017, https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-
laboratory-consortium-gmlc-awards. 

 

3.1.2 PNNL Modern Distribution Grid Documents 

The Modern Distribution Grid, presented in three volumes, is a series of informational documents 

published by Pacific Northwest National Laboratory (PNNL) in 2017 with the aim of facilitating 

discussions and decisions among policymakers, utilities, and industry [12] [13] [14]. It serves as  

a roadmap for utilities and regulators alike in adopting modern distribution technologies and  

navigate decisions. 

State estimation is mentioned as a key enabler for a number of advanced distribution applications. 

Volume I provides a mapping of state estimation, along with other applications, to many modern 

distribution functions. The context of state estimation in this map is described in Table 5. 

https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards


17 

Table 5. Mapping State Estimation to Modern Distribution Functions 

Distribution System Planning Distribution Grid Operations Distribution Market Operations 
• Forecasting, Comparison, 

and Cost/Benefit Analysis 
• DER Locational Value 

Analysis 
• System Operations Planning: 

Outages, Reconfigurations, 
Analysis 

• Telecommunications for 
Connecting Intelligent 
Devices 

• Analytics 
• DER Development and 

Market Participant 
Information Access 

• Observability 
• Distribution Grid Controls 
• Asset Optimization 
• Integrated Operational 

Engineering & System 
Operations 

• Distribution System Model 
• Transmission-Distribution 

Interface Coordination 
• Steady-State Volt-VAR 

Management 
• Power Quality Management 
• DER Operational Control 
• Data Management and Data 

Processing/Storage 
• Reliability Management 
• Operational Forecasting 

• DER Portfolio Management 

This list of distribution functions facilitated by state estimation feeds into SGS’ discussions regarding 

context of DSE implementation and use cases in the modern system. Despite being such a broad  

enabling technology, Volume II identifies DSE as firmly in the “Operational Demonstration” phase. 

The findings of Volume II align with SGS’ own research: while there are several documented 

demonstrations and pilot projects featuring DSE, there are few if no examples of in-the-loop utility 

operations making use of DSE. This is in contrast to other applications which may fall under the umbrella 

of a DMS or other planning/analysis software. While DSE has been advertised as one of many modules  

of these broader tools, SGS is not aware of any utilities using it for day-to-day operations. Volume III 

identifies challenges associated with DSE, which help to explain the lack of commercial deployment. 

3.1.3 PNNL Grid Architecture Documents 

PNNL’s Dr. Jeffrey Taft released a series of two documents entitled Grid Architecture [15] [16].  

While Grid Architecture is focused on the grid as a whole, and much of it covers transmission systems, 

distribution system operation does feature as an important aspect of the larger architecture. Specifically, 

the Architectural Insights relevant to DSE are shown in Table 6. 
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Table 6. PNNL Grid Architecture—Architectural Insights Relevant to DSE 

Architectural Insight Summary Relevance to DSE 
Grid Architecture 1: 
Architectural Insight 17 

Distribution suffers from poor 
observability. Adjustable load flow and 
partial meshing help ease constraints with 
more DERs. 

DSE improves observability by making 
best use of the available measurements. 
This supports distribution control 
functions. 

Grid Architecture 2: 
Architectural Insight 10 

Current distribution control does not meet 
modern environment requirement: DERs, 
distribution markets, locational value. 

DSE is beneficial if not a necessary step 
in bridging the gap between current 
distribution control and the requirements 
of the modern environment.  

Dr. Taft references the importance of measurement and observability on the distribution system, 

especially in the evolving context of locational real-time pricing. DSE is a vital component of this 

observability as well as generates situational electricity prices based on the state of the system. It  

is situational awareness that DSE provides that enables system-wide control, coordination, and  

real-time locational markets to take place. 

3.2 New York State Initiatives 

The State itself is a leader in public policy initiatives for the modern “smart grid.” The State Public 

Service Commission’s (PSC) REV is a pioneer among state-led programs for sparking change in  

our energy systems, and this has manifested in several initiatives across different agencies,  

including NYSERDA. 

3.2.1 NYSERDA Clean Energy Fund 

As part of the NYS REV, NYSERA established the Clean Energy Fund (CEF) to spur innovation in the 

State’s energy system by way of a number of investment plans. Among these investment plans is the  

Grid Modernization Chapter, which features three initiatives: 

• DER Interconnection 
• Next Generation Power Electronics 
• High-Performing Grids (HPG) 

It is the HPG initiative that has provided funding to this project. The goal of HPG is to create a  

digitally enhanced and dynamically managed electric grid. The detailed plan broken down in Figure 4. 



19 

Figure 4. NYSERDA High-Performing Grid Logic Model 

* The New York State Energy Research and Development Authority, "Clean Energy Fund Investment Plan:  
Grid Modernization Chapter. Portfolio: Innovation & Research," Albany, NY, 2016, Revised 2017. Page 35. 

 

DSE is a vital component of the HPG outcomes as presented in this logic model. It allows for 

visualization and accurate dynamic management of distribution systems, including support of  

many auxiliary grid operations functions. The relevance of this DSE assessment and toolkit  

project to the HPG Logic Model is highlighted in Figure 5. 
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Figure 5. DSE Relevance to HPG Logic Model 

This figure shows the aspects of the logic model that apply to DSE by quoting passages from relevant 

logic blocks. The key takeaway is that DSE a tool to improve observability of a system, can help 

overcome lack of intelligence by extending and improving confidence in system data and models. 

Without a state estimator, it is difficult to observe the impact of grid control functions in real  

time—an issue when it comes to optimizing performance in a dynamic fashion. Utilities and  

research entities are all interested in DSE implementation methods to improve distribution  

network performance. 
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3.2.2 New York State REV 

The NYS REV features a number of avenues that benefit from research into state estimation. The  

REV is organized into three pillars which each support the seven initiatives, as shown in Table 7. 

Descriptions of the pillars and corresponding agencies are given, as well as notes on how DSE  

relates to the REV initiatives.  

Table 7. New York State REV—Pillars and Initiatives 

Strategic Pillars  Initiatives and Relevance to DSE 
Regulatory 
Reform 

• State PSC 
• Support clean energy 

markets 
• Catalyze and leverage 

innovation 

Renewable Energy • DER state monitoring and estimation 

Building & Energy 
Efficiency No identified relevance to DSE 

Market 
Activation 

• NYSERDA CEF 
• Self-sustaining clean energy 

markets 
• Innovation and research 
• Reducing adoption barriers 

Clean Energy Financing • NYSERDA CEF funds this DSE 
assessment project 

Sustainable & Resilient 
Communities 

• State estimation for islanded 
microgrids 

Energy Infrastructure 
Modernization 

• DSE improves utilization of 
measurements 

Leading by 
Example 

• NYPA 
• Public power example 
• Deploy clean energy 

solutions 

Innovation and R&D • NYSERDA CEF 
• DSE technology transfer to industry 

Transportation 
No identified relevance to DSE 

* New York State Public Service Commission, "Reforming The Energy Vision: REV," 2016. 

The NYSERDA CEF is the key agency behind the Market Activation pillar which drives industry growth 

and innovation. However, it can be seen that all three pillars have a role to play for the REV initiatives, 

including the development of DSE technology. 

3.2.3 Joint Utilities of New York State 

The Joint Utilities of the State (JUs) were formed under the NYS REV as a method of collaborating on 

grid advancement technologies to achieve the policy- and grid-modernization goals outlined by NYS 

PSC. The JU support members in releasing documents outlining plans, guidance, and expectations for 

implementing modern distribution systems. The utilities as well as industry stakeholders collaborate 

periodically to discuss avenues of development, data availability, and the needs of their customers and 

industry partners. 
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Each member of the JU has released a Distribution System Implementation Plan (DSIP) outlining the 

goals for distribution system modernization on their networks. Each document is a thorough account  

of the tools and functions that will be rolling out in the next five years in order to handle the evolution  

of distribution grids to dynamically managed, distributed networks. In addition, the JUs together  

released a Supplemental DSIP which outlines the tools and processes that will be developed jointly  

by all member utilities. 

While documenting distribution network modernization, the DSIPs bring context to DSE on their 

systems, as detailed in Table 8. 

Table 8. Joint Utility Distribution System Implementation Plans 

Utility DSIP Mentions 
DSE? Relevance to DSE 

Avangrid (NYSEG & RG&E) 
[19] No 

• Plan to build-out existing telemetry and AMI for improved 
operational visibility. 

• ADMS to expand current DMS to include power flow and 
optimization. 

o This will improve visibility. 
• DA for automated VVO and circuit switching. 

Central Hudson Gas and 
Electric [20] No 

• Planning upgrades for increased functionality, visibility, 
and control. 

• Integrated System Model supports advanced network 
functions. 

• AMI is not currently a planned roll out. 
• Installation of a DMS and improved DA, these will 

improve system visibility and enable optimization. 
o DSE can help achieve both of these goals, 

potentially as part of DMS. 

Consolidated Edison [21] Yes 

• State estimation is a key technology platform for 
achieving REV goals. 

o Would be implemented based on their load flow 
software. 

• Existing system does not have the full system visibility 
necessary for optimization. 

o Optimization in targeted circuits. 
• Current AMI roll out. 

National Grid [22] Yes 

• Goal to install ADMS for visibility and optimization. 
• State estimation as future technology for optimizing 

platform. 
• Only half of feeders have interval monitoring 

o No ability for system-wide visibility and 
optimization. 

o VVO in targeted locations. 
• Proposed implementation of AMI. 
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Table 8 Continued 

Utility DSIP Mentions 
DSE? • Relevance to DSE 

Orange & Rockland [23] Yes 

• Integrated System Model supports advanced network 
functions. 

• Long term, ADMS leads to state estimation. 
• System-wide VVO requires AMI & state estimation among 

other inputs. 
• AMI deployment pending, will support DSE. 
• Increased visibility required to support REV 

implementation. 

JU Supplemental DSIP [24] Yes 

• DSE used for distribution LMP formulation. 
• Increased grid complexity drives need for increased 

distribution system visibility. 
• Increased visibility is supported by DMS, DA, and AMI 

rollouts by most of the JUs. 
• Utilities will expand forecasting capabilities. This supports 

DSE pseudo-measurements.  

While not all DSIPs mention DSE by name, all members of the JU have the goal of increasing system 

visibility. This is most often planned by using a combination of AMI and ADMS advancements, which 

will allow utilities to model feeder voltage profiles and loads in a more accurate and dynamic fashion. 

Where DSE is discussed, it is most often to explain on a high level that state estimation is necessary for 

some system-wide calculations—such as volt-VAR optimization (VVO) or locational marginal prices 

(LMPs). Only Consolidated Edison reports their intention to implement DSE in some fashion. 

Each DSIP discusses the utility’s plans in terms of implementing AMI. This technology has been  

widely discussed as a catalyst to modernized distribution systems, and with good reason—it enables  

high-resolution (generally 15 minute) customer load and voltage data to be collected automatically by 

distribution utility systems. It could support certain implementations of DSE, though its contribution 

varies based on the planned estimator. Its greatest contribution will be in load forecast calibration and 

enhancement, as 15-minute load measurements will be a huge step forward for systems that often rely  

on monthly meter readings to estimate daily and hourly forecasts. Using AMI as a measurement is less 

straightforward, as challenges arise in calibrating the customer connection parameters in the network 

model and syncing the often-delayed meter readings with more real-time SCADA measurements. 
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4 DSE Use Cases 
DSE is regarded as an enabling function: it is not an application in and of itself, but it allows and assists 

the use of other, more practical operation functions. Similar to a power flow, which calculates system 

state based on power injections, state estimation provides a better picture upon which operators may  

make decisions. While some functions require a state estimator to enable full capability, its most 

important use is to provide expanded system data with improved confidence—which truly benefits  

all operations. 

This concept of a modern “smart grid” encompasses a wide range of modern network operation 

applications that benefit all stakeholders, including regulators, utilities, and ratepayers themselves.  

It is such a broad concept that its purpose cannot be simplified to one goal. Thus, Figure 6 shows  

how DSE feeds into the main components of what is known as the “smart grid.” 

Figure 6. DSE Context in the Modernized Distribution System 

Each of the functions depicted in Figure 6 could be implemented to some degree without a distribution 

state estimator. However, all of the functions benefit from the improvement in data confidence that  

DSE provides. For the items marked with red “necessary” arrows, SGS determined that a fully functional 

system-wide implementation of this element would require DSE, even if it could be implemented to  

some extent without DSE—perhaps as a targeted approach with spot measurements. 
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For instance, VVO may be implemented on a feeder by taking a few spot measurements: generally,  

in the substation, the end of the line, and any critical points and locations of reactive elements. Voltage 

optimization may occur using assumptions that the system is radial with one-way flows, but these 

assumptions will become less reliable in modernized distribution networks, with increased meshing  

and DER causing backwards flows. Without the strength of these assumptions, the function moves from 

volt-VAR optimization to simpler volt-VAR control (VVC) based on end-of-line voltage. DSE can not 

only improve the knowledge of system voltages along the feeder by incorporating other measurements 

(loads, currents, etc.), but can give a more holistic view of VVO across feeders and distribution levels. 

As part of the requirements analysis, SGS identified use cases where utilities might use DSE to perform 

functions on their networks. SGS has identified nine categories of use cases, as shown in Table 9. It 

should be noted that DSE is a facilitator of network operations. While it has applicability in many 

different areas, it must in many cases be supported both by improved infrastructure and additional 

analytic functions. 

Table 9. DSE Use Case Categories 

Use Case Category Summary of Use Cases 

Data Cleansing 
• True state estimate 
• Bad data detection 
• Historical data cleansing 

Visibility 

• Measurement placement 
• Improved forecasting methods 
• Measurement inferences 
• Billing inferences 

Optimization 
• Volt-VAR optimization 
• Optimal power flow 
• DER scheduling 

Network and Topology • Network calibration 
• Topology detection 

System Reliability: Preventative Measures 
• Contingency studies 
• Network topology changes 
• Health of system 

System Reliability: Corrective Measures • Fault location 
• Condition-based maintenance 

Dynamic Energy Prices 

• Locational marginal prices 
• Energy price forecasting 
• LMP+D: “The value of D” 
• Transactive energy 
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Table 9 continued 

Use Case Category Summary of Use Cases 

Distribution Operation 

• Firming dataset for operation 
• Extending measurement network 
• Network simulation and forecasting 
• Network diagnostics 
• Demand response 

Advanced Distribution Operation 

• System-level optimization 
• Combined transmission-distribution operation 
• System-level active network management 
• Islanding microgrids 

The use cases outlined in this table are presented with more detail in the sub-sections to follow. 

4.1 Data Cleansing 

Data cleansing is the act of improving confidence in network measurement, state, and load forecast  

data. This “hardening” of the dataset (i.e., minimizing error) is often considered the primary objective  

of state estimation. 

Table 10. Use Cases—Data Cleansing 

True State Estimate 
Provide higher accuracy given a measurement 
tolerance 

• Each measurement offers a certain range  
of confidence 

• DSE can improve the accuracy by providing  
a reduced tolerance window 

• Calculate line flow direction 
• State corresponds with mathematical solution 

Bad Data Detection 
Use redundant data to identify erroneous values 

• Identify inaccurate measurements which  
are introducing error 

• Remove bad measurements from state estimation 
calculation to improve accuracy 

• Repair and replace bad measurement devices 
Historical Data Cleansing 
Improve accuracy of historical data 

• Planning studies require analysis of historical 
dataset 

• DSE can remove bad data and reduce error 
• Meter data collected in post-real time can be used 

to correct system state 
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4.2 Visibility 

System visibility involves providing the network operator with up-to-date knowledge on what is 

happening on the system. The goal of full-system visibility is knowledge of the system state in  

real-time, though current distribution systems are often limited to basic knowledge such as the  

on/off status of protection equipment. 

Table 11. Use Cases—Visibility 

Measurement Placement 
Real-time visibility of system state with minimal 
measurements and forecasts 

• Measure current observability 
• Determine optimal measurements for desired 

system visibility 
• Analyze boost in data confidence with additional 

measurements 
• Determine minimum number of load forecasts to 

introduce as measurements 
Improved Forecasting Methods 
Use system state to calibrate and improve forecasts 
 

• Incorporating measurements improves the 
accuracy of forecasts 

• Evaluate new forecasting techniques for their effect 
on system state accuracy 

Measurement Inferences 
Use system state to measure points where no 
measurements are present 

• Placing measurements in certain location may be 
precluded by cost or practicality 

• Use system state as measurement device for 
network management decisions 

• Local measurements allow inference of specific 
unmeasured point (e.g., line flow)  

Billing Inferences 
Use DSE to estimate customer billing information 

• If real-time metering unavailable, utilities can give 
customers estimate of bill [25] 

• No AMI present at node, or temporary error in 
device or communication 

4.3 Optimization 

Optimization is utilization of resources in the best possible way, given the constraints of the system. A 

power system may be optimized subject to different goals (or “objective functions”) such as constraint 

management, energy efficiency, and cost of operation. Optimization could occur at scales ranging from 

the system level to the component level. 
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Table 12. Use Cases—Optimization 

Volt-VAR Optimization 
Optimal allocation of voltage support 

• Voltage controls and reactive elements on 
distribution system can be centrally allocated. 

• Improve system voltage, reliability. 
• CVR: Conservation Voltage Reduction. 
• Important to have accurate depiction of node 

voltages. 
• Optimization must be based on accurate system 

state. 
Optimal Power Flow 
Minimize cost of generation subject to network 
constraints 

• If generation is present on distribution system, 
optimal dispatch and scheduling. 

o Minimizing system losses. 
o Important to have accurate depiction of 

loads and line flows to optimize generation. 
• Optimization must be based on accurate system 

state. 
DER Scheduling 
Optimizing dispatch of distributed energy resources for 
reactive support or generation 

• DERs are a valuable resource that can be 
dispatched for VVO or optimal power flow. 

• Optimized resource scheduling in the context of 
real-time markets. 

4.4 Network and Topology 

The network model is a vital piece of information that describes the electrical parameters of the power 

delivery system. Without an accurate network model, many operation functions result in error. The 

topology refers to the current settings of the network such as switch states and transformer tap ratios.  

This information is also important for grid operation, though its discrete nature means it can be  

monitored or deduced from measurements or system state. 
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Table 13. Use Cases—Network and Topology 

Network Calibration 
Correct an inaccurate/incomplete knowledge of system 
model or topology 

• One-time offline study to identify errors in network 
model. 

• Calibrate load forecasts, line flows, bus voltages, 
switch positions. 

• Basis for network planning and analysis. 
• May require manpower to update model 

o Tradeoff: 

Topology Detection 
Determine topology as output of real-time DSE 

• In-the-loop method of monitoring topology changes. 
o Switch positions, capacitor banks, 

transformer taps, lines removed. 
• Method 1: Bad topology detection. 

o Error in measurements identifies location of 
topology error. 

o Run scenarios to minimize error. 
• Method 2: Topology as state vector. 

o Solve for topology as part of the system 
state. 

4.5 System Reliability: Preventative Measures 

Distribution utilities have the goal of delivering electrical power with the highest possible reliability.  

In order to achieve this goal, they enact preventative measures to avoid contingencies before they  

happen. This is done by enforcing network constraints and identifying components for upgrade. 

Table 14. Use Cases—System Reliability: Preventative Measures 

Contingency Analysis 
Use current state to determine effect of losing N 
components 

• Contingency analysis must be based on most 
accurate voltages and flows. 

• Determine which components in which combination 
will cause constraint violation. 

• Manage network and determine necessary 
upgrades. 

Network Topology Changes 
Consider unmonitored changes in topology 

• Using topology detection, DSE may determine 
unmonitored changes in network topology. 

• Changes such as down lines may not violate 
constraints but may bring system closer to 
contingency. 

• Determine where to send field crews and how to 
manage grid to prevent contingency. 

Health of System 
Monitor usage conditions of components to predict 
when they might fail 

• Components (such as transformers) are rated for 
lifetime based on maximum load. 

• If a component is utilized at lower than maximum 
load, lifetime estimates may differ. 

• Use DSE to monitor accurate usage of components 
and estimate lifetime. 

accurate model ↔ accurate state estimate 
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4.6 System Reliability: Corrective Measures 

In order to maintain delivery to the most customers with the highest reliability, distribution utilities must 

react quickly and effectively to restore operation in any contingency after it occurs. 

Table 15. Use Cases—System Reliability: Corrective Measures 

Fault Location 
Real-time topology detection may indicate location of 
fault, isolated component, topology error 

• Running DSE with topology detection will aid in 
locations of faults and isolated components 

• Improve upon asset monitoring for system 
reliability. 

o Direct field crews to faulted location. 
Condition-Based Maintenance 
Monitor signs of component wear and upcoming failure 

• Use DSE to accurately monitor real-time usage of 
components. 

• Detect signs of wear that could indicate potential 
failure. 

• Replace failing components.  

4.7 Dynamic Energy Prices 

In transmission networks, electricity prices are volatile and depend on the current generation dispatch as 

well as locational and temporal constraints. In distribution systems, the ability to differentiate prices by 

time and location is limited by the primitive visibility on the system. One of the directives of the State’s 

REV goals aims to modernize electricity markets for distributed generators, and to financially evaluate 

the benefit to the system of generation at particular locations. 
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Table 16. Use Cases—Dynamic Energy Prices 

Locational Marginal Prices 
System state as basis for LMP determination 

• LMPs are based on cost of delivering an 
incremental increase in power to a specific location. 

• Factors for determining price: 
o Cost of generation 
o Line flow limitation 
o Voltage constraints 

• Generation must be re-dispatched if constraints are 
violated, increasing price. 

• Determination of constraint violation is based on an 
accurate state estimate. 

Energy Price Forecasting 
LMP forecast based on load, system, and state 

• Combine calibrated load forecasts with system data 
to determine future LMPs. 

• Predict how load will respond to market and other 
signals. 

LMP+D: “The Value of DER” 
Value of DERs at distribution locations  

• Based on LMPs and scenario assessment, the 
value of DER at grid locations can be calculated. 

• DSE helps improve accuracy of simulation model to 
forecast the “Value of D.” 

Transactive Energy 
Controlling energy system using market-based signals 

• Real time electricity prices and incentives can 
create dynamic loads and generation. 

• DSE is the basis for optimizing which resources 
should be incentivized using prices. 
o Peak shaving, ancillary services, etc. 

4.8 Distribution Operation 

Distribution operations can benefit from DSE in a number of ways. Some of the potential use cases for 

distribution operation have been presented in previous sections—this section aims to bring them into the 

context of planning and in-the-loop use cases to aid in distribution network decision-making.  
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Table 17. Use Cases—Distribution Operation 

Firming of Dataset 
DSE solidifies confidence in dataset for operations and 
analysis across the board  

• Eliminate discrepancies between load flow and 
system state. 

• Enable visibility in areas with fewer measurements. 
• Create a more accurate baseline for expansion 

planning and hosting capacity. 
Extending Measurement Network 
Increase utility of current set of measurement devices 

• Combine load forecasts with real-time 
measurements to describe system behavior. 

• Accumulate different types of measurements at 
different time resolutions. 
o All measurements benefit the state estimate. 

Network Simulation and Forecasting 
DSE calibrates network and forecasts for more 
accurate analysis 

• Forecasts can be compared to real-time system 
behavior to improve models. 
o Improved load forecasting. 

• Calibrate how system responds to changes based 
on modelled response. 

• Improve simulations and planning studies. 
Network Diagnostics 
Use output of DSE to locate and diagnose network 
issues 

• Topology detection identifies normally unmonitored 
changes. 

• Identify the nature of discrepancies between 
measurements and state. 
o Incorrect mapping of loads and 

measurements. 
o Measurement error vs topology error 
o Identifying faults. 

• Condition-based maintenance and planning. 
Demand Response 
Dynamically manage loads for peak shaving and other 
benefits 

• DSE improves the basis for sending load-altering 
signals to dynamic consumers. 

• Added confidence to justify customer load 
alteration. 

4.9 Advanced Distribution Operation 

Many research topics in DSE assume a level of network maturity not currently present on the distribution 

system. The broad applicability of DSE extends to many of these use cases which may require significant 

system improvements before they are realized. 
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Table 18. Use Cases—Advanced Distribution Operation 

System-level Optimization 
Move optimization from local to system-wide 

• VVO and reactive support along feeders and 
across primary and secondary networks. 

• Optimize loss reductions across system. 
• Optimal dispatch of generation.  

o Active network management (ANM). 
Combined Transmission-Distribution Operation 
Unified approach to operating both co-dependent 
networks 

• DSE improves load forecasting techniques and 
accuracy of current state for integration into 
transmission model. 

• Accurate load models integrated into transmission 
system. 

• Predict how transmission changes will impact 
distribution system. 

System-Level Active Network Management 
Improve current ANM techniques at a system level 

• Optimize DER generation dispatch. 
o Not just local constraints, but for system-wide 

operation. 
• Extend measurement functionality. 
• Monitor adaptable line ratings. 

Islanding Microgrids 
DSE improves visibility at distributed level to support 
islanding microgrids 

• DSE uses “observable island” approach to 
monitoring system. 

• DSE necessary for monitoring island tie-lines and 
islanded state. 
o Islanded systems change more rapidly. 
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5 DSE Implementation Challenges 
With the policy goals, definition, and use cases of DSE having been laid out in previous sections, the 

following section discusses the context of DSE in relation to current distribution utility operations. 

5.1 DSE Implementation Challenges 

State estimation is a well-established practice in most transmission systems—however it has almost  

no established usage in distribution systems. This discrepancy is attributed to a variety of differences 

between transmission and distribution systems that make bridging this gap challenging. At the root of  

the challenge facing DSE is the fact that while transmission networks are highly monitored and controlled 

on a real-time basis, distribution networks have traditionally been managed in a passive manner with 

limited system visibility, knowledge of the network, and control opportunities. A summary of the 

challenges regarding the adoption of state estimation in distribution systems is provided in Table 19. 

Table 19. Challenges Blocking the Road to DSE 

Challenge Description 
Implementation Challenges 

Observability 
• Lack of visibility requires forecasts of load and DER generation as pseudo-

measurements. 
• Real-time measurements often only located at protection and transformers. 

Communication 
Infrastructure 

• Network model must be on-line and updated with latest topological changes. 
• Measurements must be relayed to control point in real-time. 
• Incorporating AMI increases infrastructure requirements by an order of magnitude.  
• Incorporating AMI also means combining data from protection/operation systems 

with customer data. 

Complexity of Network 
• High number of nodes due to customer connections. 
• Phase imbalance necessitates three-phase modeling, further increasing the 

number of nodes and the complexity of the method. 

Line Parameters • High resistance to impedance ratio on low-voltage lines restricts possible methods 
and can impact convergence. 

Accuracy and Effectiveness Challenges 

Uncertainty in Network 
Parameters  

• Distribution network models are updated and calibrated infrequently. 
• Solution is sensitive to parameter error due to lack of measurements. 
• Incorporating AMI requires accurate customer connection models. 

Uncertainty in Topology • Frequent and underreported changes in network topology. 
• Limited topology and asset monitoring. 

Uncertainty in Load and 
Forecast 

• Un-aggregated loads are harder to forecast than aggregations. 
• High rate of change with DERs. 
• Over-reliance on forecasted pseudo-measurements increases system error. 
• Forecasts may be at system- or feeder-level, not at the bus. 
• Forecasts may be hourly, while the state estimator may operate at a much faster 

frequency. 
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Each distribution system intending to install a distribution state estimator must address each of these  

11 challenges, though the challenges may have different solutions depending on the nature of the 

network, and some may be more difficult to solve than others. Some of these challenges merit further 

discussion due to their scope in the following sections. 

5.1.1 Observability 

Observability is the biggest challenge in DSE implementation. In control theory, observability is the 

ability to infer a system’s state based upon a set of outputs. This definition applies as well to power 

systems, with the outputs being the measurements incorporated into state estimation. Note that there  

is a mathematical difference between monitoring a network and observing a network. For instance,  

while a feeder may be monitored using an end-of-line node to ensure its voltage stays within constraints, 

the feeder is only observable if the DSE features sufficient measurements along the length of the feeder. 

The system state cannot be inferred using several spot measurements unless they form a cohesive set that 

fully describes each node. 

A general rule of thumb for observability is that there must be two measurements per node, as there  

are two characteristics that describe each node (voltage and angle) and two characteristics that describe 

each line (real and reactive flow). Any two known characteristics can be used to describe the other two  

at a system level. The location of these measurements also affects its observability, as they must be 

distributed such that information from each node may be obtained. 

Distribution systems face the challenge of observability because there are very rarely two  

measurements for each node in the system. This makes the system underdetermined and means that 

additional information is required in order to make any determination in terms of system state. This 

additional information usually comes in the form of pseudo-measurements and virtual measurements. 

 

 

Pseudo-Measurement 

A load forecast specific to the load at one node on the network, which is used in the paradigm of a 
measurement with a specified error tolerance. This tolerance is generally much greater than that of an 
actual measurement and could be as high as 50% depending on the forecast. 

Virtual -Measurement 

A known quantity on the network (e.g., a bus with no load) that is used in the paradigm of a 
measurement with little or no error. 
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Given a lack of additional information, other measures may be taken such as performing topology 

simplification or focusing on observable islands. 

5.1.2 Complexity of Network 

Compounding the issue of limited monitoring on distribution networks is the issue of scale: distribution 

networks, in general, have many more buses than transmission networks due to the large number of 

requisite customer connections. 

To compound this, distribution networks tend to operate with imbalance between the phases, which 

means that each phase must be analyzed individually. A three-phase solution to the state estimation 

problem triples the number of state variables per bus and therefore increases the complexity of the 

problem. In a three-phase unbalanced system, there must be two measurements per node, per phase,  

in order to achieve observability. 

Solving a state estimation problem on a distribution network therefore requires higher power computing 

than transmission for a given network size. To reduce computing time in a real-time implementation, 

utilities and operators may opt for topology simplification, parallel computing with network regions,  

or to focus only on certain regions and voltage levels of the distribution system.  

Topology Simplification 

Identifying and removing parts of the network from consideration in the state estimator by considering 
them as part of a single bus or load. This reduces the number of unknown state variables but does not 
give insight into the state of the removed nodes. 

 Observable Islands 

In this approach, certain regions or branches of a network with sufficient observability are estimated, 
while others are left uncalculated. This may or may not be suitable for a given use case as it sheds no 
knowledge on uncalculated parts of the network. Also, using pseudo-measurements to fill in the 
missing information, even if they are inaccurate, often allows the network to be solved as a whole. 
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5.1.3 Gaps and Uncertainty in Network Parameters, Topology, and Load 

A glaring issue at the distribution level is the uncertainty of the entire system. In Table 19 this was 

presented as three separate items: Uncertainty in Network Parameters, Topology, and Load/Forecast.  

The uncertainty involved in distribution systems takes root in the traditionally passive nature of the 

systems. While transmission networks are meticulously monitored, optimized, and planned, distribution 

networks have been designed to deliver power to the most customers with the highest reliability, under 

the assumption of unidirectional power flows from substations to customers. Unidirectional flow made 

unnecessary advanced monitoring and control techniques applied to transmission systems. Thus, 

distribution networks have little automation and many processes are manned instead of automated, 

limiting the flow and reliability of information that could be used in a state estimator. 

5.1.3.1 Network Parameters 

The network model itself is a source of uncertainty in distribution systems. Depending on the system 

level, a distribution utility may not have full confidence in its network model and continuously updates 

and improves the model. Inaccuracy of the network model can cause error in a state estimator, as it will 

converge a solution to an incorrect problem formulation. 

Utility confidence in the network model tends to decrease as the voltage level decreases, and lower 

voltage networks and the associated customer connections may be almost entirely unmodeled. 

Particularly with the use of AMI, the connection between the customer and the distribution network  

is a vital piece of information that is often not included in the network model. Parameters might  

change as maintenance crews repair lines, but updates may not make it back into the network model.  

With constant expansions and upgrades to host new customers, it is difficult to maintain an accurate 

distribution network model. 

In addition, as reactance levels are lower on distribution networks than on transmission networks, the 

model is more sensitive to changes in system reactance due to changes in loading and temperature, which 

can be unpredictable. This adds another challenge in maintaining accurate network parameter values. 
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5.1.3.2 Topology 

The network topology refers to network equipment settings, such as transformer tap ratios, protection 

equipment, reactive components, and reconfiguration switches. In distribution systems, many of these 

components may be unmonitored. Reactive components and transformer taps are often automated based 

on local measurements that are not delivered to central operations.  

Distribution networks are much more susceptible to faults than transmission networks. After a fault, a  

line may be taken down by network protection elements, which may not be monitored by the control 

center. Particularly in meshed secondary networks where missing lines may not cause an interruption  

in service, these topology changes often remain unknown to network operators. Additionally, in 

contingency situations, networks can be reconfigured to maintain connection to certain customers.  

These reconfigurations are performed by crews on site and the information may not make it back into  

the system’s network model. 

5.1.3.3 Load 

DSE generally makes heavy use of load forecasts as pseudo-measurements. Current utility  

forecasting methods often focus on the worst-case peak loads in a day. Depending on the particular  

DSE implementation, these peak-load forecasts may need to be interpolated with higher resolution  

data points such as hourly or sub-hourly pseudo-measurements. This interpolation in combination  

with the high reliance on pseudo-measurements in DSE is a source of error. 

Depending on the level of the distribution network being estimated, these load forecasts are aggregated  

to a certain extent at network buses. However, the number of aggregated loads at each bus is much lower 

than in a transmission system, where each load might be an entire distribution network. When estimating 

secondary networks, there may be no aggregation at all. The issue this presents is in predictability of load 

forecasts: as a rule, aggregated loads are more predictable than disaggregated loads, as the behavior of a 

large group of people will typically remain within a standard deviation of the forecast while an individual 

may not. This introduces additional error in load forecasting techniques. 

In current distribution systems, the most common monitoring that occurs at customer loads is the monthly 

energy bill. Many utilities are resolving this issue with the roll-out of AMI. However, not all utilities are 

following this approach, and utilities that are installing AMI will take a matter of years to complete the 

implementation and centralization of load data. AMI often takes the form of 15-minute measurements  
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of load and voltage data points—though depending on telemetry, this information may not make it to  

the operations center for a delayed period of time. One area where AMI will be particularly useful is  

in calibrating advanced load forecasting techniques, significantly reducing the error of high-resolution 

forecasts that was discussed previously. 

All of these sources of error in load forecasting and measurement are made more complicated with the 

introduction of higher penetration of DERs. Especially in the case of PV, these resources can be highly 

volatile—causing large, fast, and unpredictable changes in net load at their respective load. Momentary 

reductions in DER generation can reveal “masked load,” or load that was previously unknown due to  

net metering. Masked load in particular can cause large ramping at customer loads. Fast changes in  

DER generation add yet another source of error to distribution loads which compound with the sources 

previously mentioned. 

5.1.4 Diversity of Network 

Distribution systems, when compared to transmission systems, are extremely diverse. There is a wide 

range of voltage levels, from sub-transmission voltage to feeder voltage and down to delivery voltage  

on secondary systems. Each level of the distribution system has a different topographical nature and can 

vary from meshed to slightly meshed to entirely radial. Beyond this, the diversity among radial systems 

alone causes difficulty in the observability analysis, as each network will require a different approach to 

consolidated observable and unobservable areas. Compromises will have to be made in terms of omitting 

certain unobservable areas of the system, which will depend on the nature of the particular distribution 

network and its customers. 

Measurement and protection devices also vary between networks. Some higher voltage networks may 

have real-time SCADA and protection measurements arriving at the control center periodically, while 

others may rely on customer smart meter data, or some combination of the two. The challenges involved 

with centralizing these data sources and incorporating them into a unified state estimator will vary based 

on the measurement, metering, protection, and telemetry architectures. 

The diversity of networks in distribution systems therefore ensures that no two solutions will be the  

same. Software and in-house implementations will be significantly different between different utilities, 

and also between different networks under the same utility umbrella. This is important to keep in mind 

when studying DSE, as a proposed solution or software product may be applicable to only a subset of 

distribution systems. 
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6 Origin of DSE Literature 
State estimation has become a vital aspect of power system operations and control. Since the concept  

of state estimation was first applied to power systems by Fred Schweppe in 1970 [26], the body of 

literature has grown, and applications have become more widespread. However, power system state 

estimation has historically been applicable only to high-voltage transmission systems. In power 

transmission, measurement devices are prevalent in order to protect expensive high-voltage equipment 

from contingency, which at the transmission level could mean loss of power to a region. These thorough 

networks of measurement devices allow state estimation to occur, enabling highly accurate knowledge  

of the power system’s behavior which in turn enables outcomes such as real-time power markets and 

optimized generation dispatch. 

State estimation was not considered applicable to distribution networks until the 1990s [27] [28] [29]. 

This delay was the combined result of several factors differentiating transmission and  

distribution systems: 

• Distribution networks feature far fewer measurements, accompanied by less mature 
communications and telemetry. SCADA implementations are less commonly implemented  
in distribution substations. 

• Distribution networks have many more buses and lines than transmission systems due to  
the geographic distribution of customer loads, making the unknown variables much  
more numerous. 

• Distribution networks historically operate on a passive basis—meaning that the control  
centers have not had the ability to perform actions and therefore have not had real-time 
visibility. Distribution equipment is therefore built to handle worst-case conditions. 

• Contingencies and outages for distribution systems have less severe consequences than  
for transmission systems, as they service smaller geographic areas and feature less costly 
equipment. This further reduces the need for real-time network visibility and in-the-loop 
control. Distribution utilities typically perform actions after a contingency event is reported. 

• The radial nature of distribution systems along with predictable one-way power flows permits 
inferences of the system state by ensuring conditions at the feeder head and end-of-line, the 
distribution utility assumes proper operation of the entire feeder. 

Bringing state estimation theory from transmission systems to distribution systems in the 1990s involves 

considering the minimal set of measurements required to perform the state estimation function at the 

minimal resolution to provide operational benefit. This was the case for one of the earliest demonstrations 

of the technology, which was implemented in Rochester, NY and was published in 2000 [30]. 
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However, as has been described in the first phase of this project, the incentives and use cases for DSE 

have expanded in recent years—especially due to the transforming role of distribution utilities into  

system operators in the modern distributed environment. Building upon research into DSE policy 

initiatives, use cases, and challenges, this study serves as a review of the state of the art, including 

academic literature and published implementations on the subject. It also includes an analysis of  

literature gaps that may become vital to fill for the purposes of widespread implementation of DSE.  

This review is a survey of the current research on DSE with the perspective of evaluating useful 

contributions towards utility implementation. In the depth of material discussed from all angles of  

DSE implementation, this work is unique. However, other holistic studies on the subject provide  

useful references: 

• For concise literature reviews on DSE, reference authors Chan-Nan [31] and Ahmad, et al. [32]. 
• For a discussion on DSE methods together with implementation challenges, reference Liao  

and Milanović [33]. 
• A survey of algorithms for DSE and forecasting as well as planned implementation  

and algorithm details was documented as part of a European project in 2015 [34]. 
• For more detailed tutorials on core state estimation methods, reference the textbooks by 

Monticelli [1] and Abur and Gómez-Expósito [2]. The latter textbook was used as the  
primary background reference for state estimation methods in this report. 
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7 Components of a State Estimator 
The preceding conversation regarding algorithms for DSE—a discussion of the building  

blocks comprising the function—is necessary, largely because the greatest challenges that exist  

in implementation are not due to the algorithms used to solve the problem but to the building blocks  

that contribute to the system. An overview of the functionality broken down into layers is shown  

in Figure 7. 

Figure 7. DSE Components and Layers 

7.1 Data Layer 

The data layer comprises the information technology and physical attributes that are accumulated in  

the control center of a distribution utility. The data layer is the input of the state estimator, that is, all 

knowledge of the system that could impact the result of state estimation—this characterizes the network. 

The information includes measurements and forecasts as well as network model and topology. 
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7.1.1 System Measurements 

Measurements are the most important aspect of the state estimator. Without adequate measurements,  

state estimation could either be unsolvable or unusable. There are three main criteria to consider  

regarding the measurement infrastructure of a utility network: 

• Distribution and placement 
• Accuracy 
• Temporal resolution 

These topics are expanded in subsections below. In addition, special attention is given to the use  

of AMI, smart inverters, and PMUs in subsequent subsections. 

7.1.1.1 Measurement Distribution and Placement 

Measurement distribution impacts the observability and redundancy of the state estimator. For a state 

estimator to be fully observable, the measurements must be distributed such that there are at least the 

same number of independent measurements as there are unknown states—this is generally on the order  

of two measurements per bus. Note that a single device can constitute multiple measurements so long  

as it is measuring independent quantities. For instance, PMU could potentially measure bus voltage and 

voltage angle as well as a number of line currents and current angles—all of which are independent of 

each other and count as measurements. 

Academic literature is strong in terms of determining optimal measurement of measurements, dating  

back to foundational papers in the 1980s that proposed methods for placing measurements to achieve 

observability [35] [36]. Dr. Abur has more recently become a prominent author on the subject and  

co-authored a textbook with Dr. Antonio Gómez-Expósito [2] and several additional papers on 

measurement placement. 

In Abur’s (et al.) works on measurement placement for state estimation, he primarily discusses 

measurement placement for achieving system-wide observability. As part of this discussion, Abur  

(et al.) considers merging existing observable islands into a single observable system and achieving 

redundant observability resilient to loss of measurements. Abur has co-authored papers on measurement 

placement with Magnago [37], Gou [38], Huang [39], Xu [40] [41] [42], Yoon [42], and Emami [43]. 
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As PMUs are the most capable measurement equipment and widely used on transmission and certain 

distribution networks, Abur’s work focuses on them in these papers. However, Gou and Abur [38] 

analyze non-PMU measurements such as voltage and current magnitude or real/reactive power  

flow. Findings from his works regarding PMU placement can also be applied to non-PMU  

measurement placement. 

Other works on measurement placement focus on improving accuracy of the result, with the 

understanding that the system is already observable: 

• Shafiu, Jenkins, and Strbac [44], Korres, Xygkis, and Manousakis [45], and Nusrat [46]  
discuss approaches to placing voltage and power measurements to improve estimator  
accuracy, with Nusrat providing a thorough description of placement algorithms. 

• Singh, Pal, and Vinter [47] present a sequential approach placing voltage and power 
measurements to improve estimator accuracy. 

• Singh, et al. [48] present a non-iterative approach for efficiently determining the minimal 
voltage magnitude and real/reactive power measurements for achieving desired accuracy. 

• Wang and Schulz [49] discuss improvements in accuracy by measurement type (voltage 
magnitude, current magnitude, and real/reactive power flow) on state estimation with  
branch state variables. 

• Li [50] analyzes the impact of measurement placement on the accuracy of DSE. 
• Akingeneye, Wu, and Yang [51] discusses limited PMU placement for improving  

accuracy of state estimation. 
• Rice and Heydt [52] provide an extensive report that discusses results and various consideration 

factors for PMU placement to improve accuracy, and also proposes a method for eliminating 
phase angle estimation in favor of directly using the measurement of the PMU as the state. 

• Kahunzire and Awodele [53] investigate PMU placement distribution consideration for DSE 
and the effect on improved monitoring and accuracy. 

• Liu, et al. [54] investigate a design approach for optimizing the measurement infrastructure, 
including PMUs in addition to more traditional distribution system monitoring devices. 

7.1.1.2 Measurement Accuracy 

Accuracy is the second defining characteristic of the measurement infrastructure for state estimation.  

In the foundational weighted-least-squares (WLS) formulation, measurements are incorporated into  

the estimator with a weight corresponding to their known accuracy. Other formulations of the state 

estimation problem have a similar mechanism. In this way, measurements with higher accuracy have  

a stronger influence on the result than those with a lower accuracy. 

Distribution state estimators typically have less advanced measurement equipment than transmission 

systems. Particularly when using a large number of pseudo-measurements with high uncertainty.   
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Several studies have addressed the issue of measurement accuracy: 

• Xu, et al. [55] present an algorithm for working with uncertainty of measurements  
in a three-phase state estimator using the unknown-but-bounded theory. 

• Huang, et al. [56] provide a method of reducing uncertainty in historical data state  
estimation used for planning purposes. 

• Li [50] analyzes the impact of measurement accuracy on the resulting accuracy of DSE. 

7.1.1.3 Measurement Temporal Resolution 

Distribution state estimators are commonly made up of a wide variety of measurement sources. As most 

distribution systems do not have system-wide deployments of on-line bus measurements, operators need 

to take advantage of every piece of information available in order to achieve useful state estimation. This 

leads to conglomerate systems taking in data with a wide range of temporal resolution. Common data 

resolutions for distribution measurement equipment are shown in Figure 8. 

Figure 8. Distribution Measurement Temporal Resolution 

There are two options for real-time state estimation when confronted with measurements of varying 

temporal resolution: 

• Perform the state estimation at the resolution of the lowest measurement frequency. 
• Perform the state estimation at a resolution higher than the lowest measurement frequency  

using a method to incorporate older and out-of-sync measurements. 

Depending on the needs of the system, the first option may not be suitable for operations. When  

pursuing the second option, one has to consider the fact that older measurements have less relevance  

to the current state than newer measurements. Direct inclusion with no adjustment to the state estimation 

method is possible, but this can introduce error to the state estimator as these measurements will be 

influencing the solution of a system state that may have changed. 
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A variety of literature has been published on the subject of incorporating measurements of  

different timescales: 

• Gómez-Expósito, Gómez-Quiles, and Džafic [57] discuss an architecture for a distribution  
state estimator at two levels and timescales: load-based pseudo-measurements and AMI, and 
higher resolution SCADA measurements. The paper is a valuable and holistic approach to DSE. 

• Alimardani, et al. [58] approach unsynchronized measurements in DSE on the bases of each 
measurement’s credibility, adjusting the variance based on their age. 

• Han, et al. [59] discuss the issues regarding synchronously accommodating 10-minute 
resolution measurements for a real-time DSE, including loss of communication issues. 

• Stanković, et al. [60] propose a method for managing irregular sensor samples using a Kalman 
filter, providing data alignment for PMU and SCADA measurements in a hybrid state estimator. 

• Janssen, Sezi, and Maun [61] similarly propose a synchronization method for PMUs on a 
distribution system, with an underdetermined three-phase radial network system. 

7.1.1.4 Advanced Metering Infrastructure 

One of the largest current initiatives for modernizing distribution systems is the installation of smart 

metering at the customer level. Known as AMI, this program is incentivized by benefits across the 

spectrum of distribution utility operation. In addition to automating the meter-reading and billing  

process, AMI provides data that allows for great improvements in the accuracy and granularity of 

forecasts, and also that can be incorporated into central operation functions, such as state estimation. 

AMI generally consists of a full deployment to all customers of smart meters in a geographic area  

that measure real power, and potentially voltage and reactive power as well. Accumulated energy is 

calculated as well for billing purposes. The resolution is usually around 15 minutes. 

AMI can benefit the effectiveness of state estimation in one of two ways: 

• Incorporation directly into the state estimator as measurements 
• Enabling advanced forecasting at the customer level, generating accurate pseudo-measurements 

Incorporating AMI directly as measurements is the best-case scenario for utilization. However, there are 

challenges that may prevent real-time incorporation of measurements into an on-line estimator. Primarily, 

there is the challenge of having sufficient telemetry infrastructure to relay data points back to the control 

center. Distribution systems cover a wide geographic area, and with the rapid rollout of smart meters, 

many systems do not have the bandwidth to transmit measurements to the data hub without significant  
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delay. Frequently the system is designed to receive an extended period of data at one time, even upwards 

of 24 hours, such that there is no periodicity to the measurements. This setup prohibits real-time use of 

AMI measurements, though historical state estimation would still be possible—and could be applied to 

event playback or steady state network diagnosis. 

Additionally, there is the challenge of hosting and processing the large amount of data accumulated by  

the meter data management system (MDMS) from the smart meters. AMI data is not necessarily in the 

correct format for input into grid operations, and the sheer quantity of data can cause delays in the system. 

A third challenge could be the protection of customer privacy, and issues related to obtaining  

high-resolution data that could theoretically be used to ascertain customer behavior. The extent  

to which this affects utilities varies widely by the region and its customer privacy laws. 

Without a strong communications network to support on-line state estimation, a good option for  

utilizing AMI is in advanced forecasting techniques. Forecasting loads is doubtless a goal for any  

utility pursuing an AMI program, as many utilities use feeder-level or transmission-level forecasts  

as a basis for loading predictions. AMI enables forecasts to be customized to consumers and  

correlated to narrow timeframes— significantly improving the accuracy of the forecast and  

corresponding pseudo-measurement. For brevity, a review of forecasting methods will not be  

presented in this report—though a discussion of pseudo-measurements appears in section 7.1.2. 

Another consideration in the use of AMI is that meters are often located on the secondary distribution 

network. If the distribution state estimator does not estimate buses near these measurements, they  

cannot necessarily be used as measurements and must feed into the forecasting application for  

pseudo-measurements. 

In its report on Voltage and Reactive Power Optimization [62], Pacific Gas and Electric Company 

(PG&E) presents the results of a VVO project where AMI was used to verify the voltage results.  

As part of the report, PG&E discusses the challenges faced with the smart meters: 

• Temporary data unavailability due to communication network limitations. Improving  
the communications network to prevent this is proposed as a way of improving  
project performance.  

• Data management issues in terms of storage and processing. As AMI was deployed primarily  
to streamline billing, the data infrastructure is not conducive to utilizing measurements for 
operations. A better MDMS would benefit network operations, including state estimation. 
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Several existing works discuss the design of a state estimator to include AMI data: 

• Baran and McDermott [63] analyze branch-current-formulated state estimation of a  
radial distribution network using AMI first as input for pseudo-measurements and second  
as real-time measurements—comparing the results of the two approaches. 

• Alimardani, et al. [58] present a method to incorporate non-synchronized meter data from  
AMI and other sources into the same estimator on the bases of age of measurements. 

• Xygkis, et al. [64] discuss using AMI both as near-real-time measurements and as inputs  
into load estimation and forecasting for a state estimator. 

• Wakeel, Wu, and Jenkins [65] use AMI data to extend the observability of a state estimator  
on an 11-kV distribution system, using the data both as real-time measurements and to  
support pseudo-measurements. 

• Abdel-Majeed and Braun [66] investigate the use of accurate smart meter data for  
performing observability analysis and state estimation in low-voltage networks. 

• Feng, Yang, and Peterson [67] discuss incorporating AMI data into an existing state estimator 
that uses SCADA data. Because of AMI limitations, the data is incorporated into forecasts as 
pseudo-measurements. 

• Samarakoon, et al. [68] present a method to using AMI data from the previous day to  
integrate with real-time system measurements and provide an accurate state estimate. 

• Pau, et al. [69] present an architecture for a cloud-based AMI platform that integrates with  
a computationally efficient and parallel two-level, low-voltage state estimator. 

• Huang, Lu, and Lo [70] approach AMI integration into the heterogeneous utility dataset from  
a holistic operational standpoint, including offline and online operations and state estimation 
and forecasting. 

7.1.1.5 Smart Inverters and DERs 

An increase in DERs is one of the driving factors for distribution network modernization, including  

the push for grid visibility and state estimation. DERs present a challenge to the traditional, passive,  

and unidirectional operation of distribution systems, but at the same time offer opportunity as well.  

In addition to acting as participating elements in power markets and voltage support, the connection  

point has the potential to be a source of measurement. 

While many existing DERs on current distribution systems do not feature controllability or measurement 

capability, new standards for such interconnection such as IEEE 1547 and its complementary standards 

set the stage for smarter interoperability [71]. Utilities may opt to require adherence to these standards  

for DER connection, in this way ensuring not only the controllability of assets but the availability of 

generation data. 
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Challenges to incorporating DER data from smart inverters into a distribution state estimator include: 

• Navigating the landscape of data ownership with developers who own the inverters and 
resources. 

• Handling outages in data availability with developers. 
• Synchronization of measurements with utility measurement infrastructure. 
• Telemetry and communications protocols to relay data to control center. 

One project funded by the U.S. Department of Energy (DOE) under the GMLC and the SunShot National 

Laboratory Multiyear Partnership (SuNLaMP) seeks to address some of these challenges. Led by the 

National Renewable Energy Laboratory (NREL), this project designs an opportunistic communications 

infrastructure to take advantage of various existing communications systems to provide reliable streams 

of data. Additionally, the project includes advanced PV estimation methods such that lost data sources 

can be interpolated based on nearby measurements. All of these innovations are incorporated into a state 

estimator for distribution network visibility [72]. This project is ongoing. 

Other resources on smart inverters relevant to DSE: 

• Ranković and Sarić [73] present an algorithm to include both monitored and unmonitored  
DERs into a distribution state estimator, discussing the generation of pseudo-measurements  
for distributed generation. 

• Shabaninia, et al. [74] propose a formulation for DSE that is tailored to systems with 
uncertainty in DER generation for the purposes of preventative control of the system. 

• Pau, et al. [69] present a cloud-based smart metering infrastructure used for DSE. 

7.1.1.6 Phasor Measurement Units 

A PMU is an advanced piece of measurement equipment that is currently widespread in transmission 

systems. However, its accuracy and temporal resolution make it more expensive than other meters, and 

the ideal case of placing PMUs throughout a distribution system remains unrealistic in the near future. 

They are much more commonly found on transmission systems, where network visibility is more vital  

to system operations and security, and there are fewer buses to monitor. Use of PMUs for state estimation 

in the State dates back to a report by Fardanesh, et al. on synchronized measurements in the New York 

Power Authority (NYPA) transmission system [75]. 
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A PMU takes many samples per second of a waveform in order to determine the phase angle with  

respect to a reference angle (in addition to magnitude information). The PMU is generally connected  

to a bus to determine three-phase bus voltage, as well as to at least one line to measure three-phase 

current. Depending of the device, multiple current branches may potentially be measured at once. 

Phase angle is an important state variable that has direct bearing on line flows. In fact, the simplified  

“DC power flow” method, which omits reactive flows, also omits voltage magnitude: phase angle is  

the only state variable in this case. This is because real power flow is approximately proportional to  

phase angle difference. The inability to directly measure phase angles without a PMU therefore poses  

a limitation on distribution networks. Without a PMU, a state estimator will simply assign a reference 

angle as a virtual measurement and estimate the relative angles of the system based on the flow patterns. 

Introduction of a PMU to a distribution network can provide a host of benefits for accuracy and 

performance. The development of a smaller and less expensive PMU form factor designed for  

distribution systems, called a µPMU (micro-PMU) has opened the door to more widespread  

introduction of the technology [76]. Recent works have analyzed the importance of µPMUs in DSE: 

• Silva, Laburu, and Almeida [77] discuss methodology and benefit to using µPMUs in  
branch-current-formulated state estimation. 

• Chen, Tseng, and Amaratunga [78] discuss methodology to incorporate µPMUs into  
node-voltage-formulated state estimation. 

• Janssen, et al. [61] explore the handling of unsynchronized PMU measurements on a  
three-phase distribution system. 

• Zhang, et al. [79] investigate the optimal selection of buffer length for calibrating PMUs  
for periodic state estimation. 

• Macii, Barchi, and Schenato [80] discuss the tradeoffs associated with installing PMUs  
for DSE, identifying a diminishing returns of system accuracy, and exploring a method  
for directly using the phasor measurement as the state value. 

• Bolognani, Carli, and Todescato [81] propose a scalable state estimation algorithm for  
poorly synchronized PMU measurements placed on every bus for multi-area DSE. 

As discussed earlier, Abur, et al. have several articles on the placement of PMUs to achieve redundant 

observability [37] [39] [40] [41] [42] [43]. 

Similarly discussed, Akingeneye, et al. [51] and Rice, et al. [52] investigate the effect of incorporating 

PMUs on system accuracy. 
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Zhao, et al. [82] discuss the potential causes of error on PMUs and the impact this error has  

on applications of PMU data, which is relevant for state estimators reliant on this data. 

Works that discuss state estimation with widespread installments of PMUs may not have direct  

influence on the direction of DSE, but include papers by Zhao and Abur [83], Pegoraro, et al. [84], 

Fardanesh [85], and Jiang, et al. [86]. 

One application that relies heavily on PMUs being present throughout the system is the development  

of a phasor-only state estimator, as described by Fernandes, et al. [87], Lackner [88], and Lackner,  

Zhang, and Chow [89]. Vanfretti, et al. [90] discuss phasor-only state estimation as a potential 

supplement to traditional state estimation, and with PMUs not necessarily on every system bus.  

Chiocel, et al. [91] explore applications of the phasor-only state estimator. 

Transient (or dynamic) state estimation takes into account generator and substation dynamics that are  

only obtainable through high-resolution measurement devices such as PMUs. This is more applicable  

to the transmission level where these measurements are more widely available, though notable works 

include those by Watson and Yu [92], Watson and Farzanehrafat [93], Zima-Bockarjova, Zima and 

Andersson [94], Zhou, et al. [95], Akhlaghi, Ning, and Zhenyu [96], Huang, et al. [97], Zhao  

and Mili [98]. 

7.1.1.7 Other Notes on Measurements 

The measurement infrastructure of a utility is the most critical aspect of running a state estimator. 

Likewise, it has been a focus thus far in this report and has been well-studied in the academic  

literature. This sub-section presents insights into the measurement infrastructure that do not  

correspond to the previous sections but are important contributions to consider for DSE implementation. 

As discussed in section 7.1.1.4, the communications telemetry can become a bottleneck for real-time DSE 

implementation. Without a strong communications network, the latency for retrieving measurements can 

limit both the frequency of update and the accuracy of the system. To mitigate this issue, Alam, Natarajan 

and Pahwa [99] discuss data compression in the context of DSE, evaluating performance with different 

levels of measurement compression. 
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Muscas, et al. [100] discuss the impact of correlation among measurements, pseudo-measurements, or 

both. The authors analyze this correlation and the effect it has on the results and different methods that 

can be incorporated to mitigate these effects. 

Similarly, errors in device calibration can add systematic error to the state estimator and be difficult even 

for DSE with a bad data detector to pick up and correct. Zhong and Abur [101] investigate this issue by 

proposing a solution in which the control center can “remotely calibrate” these measurements through a 

state estimation scheme. 

Offline methods to adjust or determine measurement weights based on the accompanying measurement 

residuals are discussed by Zhong and Abur [102]. 

7.1.2 Pseudo-Measurements 

Pseudo-measurements are pieces of data that are estimated about the power system that can be converted 

into useable measurements for state estimation. The most common application of pseudo-measurements  

is in the form of load forecasts at distribution transformers or customer connections. This is distinct with 

“virtual measurements,” which are precisely known pieces of information about the network—such as 

zero-power injections at buses. 

Pseudo-measurements are vital to DSE, as these systems are very rarely observable solely on the basis  

of actual measurements and require additional information. As such, many of the algorithms for placing 

measurements presented in section 7.1.1.1 mention the introduction of pseudo-measurements. 

7.1.2.1 Generating Pseudo-Measurements 

While pseudo-measurements at load points can be directly obtained from load forecasts, most utilities  

do not have the capability to generate forecasts at the locational and temporal granularity required for 

DSE. Many utilities use high-level forecasts from the transmission or substation level that may not be 

appropriately scaled to more granular small-scale loads. Compounding this problem is the decrease in 

aggregation in lower-voltage systems: fewer customer loads averaged together means less predictability 

and more variation. 

Load forecasting is a broad topic that will not be exhaustively covered in this report, though a few 

relevant papers to distribution load forecasting have been presented here: 
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• Hernandez, et al. [103] describe on the use of automated neural network (ANN) for  
load forecasts, with the focus on microgrid systems. It does not tie these forecasts to  
DSE pseudo-measurements. 

• Couraud and Roche [104] present a method for using ANN as well as SCADA data from  
the transmission connection point to accurately forecast distribution loads. 

• Sun, et al. [105] pursue a hierarchical load forecasting method also based on neural networks 
that accounts for distribution-specific challenges such as network topology and high number  
of customer loads. 

• Kampezidou and Grijalva [106] present two linear load forecasting methods for forecasting 
distribution transformer loads in the presence of highly variable DERs. 

• Jiang, et al. [107] present a high-resolution distribution forecasting method making use  
of support vector regression and particle swarm optimization. 

Papers describing forecast methods specifically for incorporation into state estimation as  

pseudo-measurements are detailed below: 

• Ghosh, et al. [108] and Ghosh, Lubkeman, and Jones [109] are early (1997) examples  
of working to apply stochastic load forecasts and models to DSE inputs. 

• Arritt and Dugan [8] compare four methods of load allocation that can be used to generate 
pseudo-measurements and compares them for their accuracy in predicting different aspects  
of distribution operation. 

• Manitsas, et al. [110] present two methods for generating pseudo-measurements: a method 
correlating load estimates with real-time measurements, and a Gaussian mixture model method. 

• Singh, Pal, and Jabr [111] propose a method for generating pseudo-measurements the  
Gaussian mixture model. 

• Manitsas, et al. [112] discuss the use of ANN for modeling pseudo-measurements. 
• Dansk Energi [34] provides an overview of different load and generation forecasting methods. 

The load allocation methods discussed in section 2.2.2 can also be used as part of the forecasting  

and pseudo-measurement generation process. External factors such as day-of-week and weather 

measurements can also come into the pseudo-measurement generation process. 

7.1.2.2 Integrating Pseudo-Measurements into DSE Algorithms 

As pseudo-measurements are forecasts of system loads, there is a level of uncertainty associated  

with them that is much higher than the uncertainty related to actual measurements (a value commonly 

associated with pseudo-measurement uncertainty is ±50%). As this accuracy is difficult to quantify 

because pseudo-measurements have no relation to current network operation, the weight selection can  

be adjusted in a tuning process in an attempt to improve results. This process has been described and 

tested by Atanackovic and Dabic [113], who found it difficult to establish a reliable tuning method. 
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In their study on state estimation in two simultaneous time scales [57], Gómez-Expósito, et al. discuss  

the different approaches to incorporating pseudo-measurements based on the nature of the available  

data. This discussion includes extrapolating pseudo-measurements if future forecasts are available  

and interpolating pseudo-measurements to account for states between pseudo-measurement time steps. 

When using load allocation as a means of generating pseudo-measurements, the outputs of state 

estimation can be used to update the load allocation function in closed-loop. Once state estimation  

has been run, the aggregated load point that is used to govern load allocation can be updated with a  

more accurate state estimate. In addition, the line losses calculated from state estimation can be 

incorporated into the load allocation method to adjust load points accordingly. After load allocation  

has been updated, the new results are re-incorporated into updated pseudo-measurements and in this 

iterative fashion the two combined functions can converge to a more accurate result. Several studies  

have investigated this iterative closed-loop integration of load allocation and state estimation, beginning 

in 2003 with Wan, et al. [9]. Iterative load allocation with state estimation was subsequently investigated 

by Carmona-Delgado, et al. [7], Hayes, Gruber, and Prodanovic [114], and Karimi, Mokhlis, and Bakra 

[115], and was demonstrated on real systems by Deng, He, and Zhang [116] and Gonzalez, et al. [117]. 

Note that pseudo-measurements should not be used to improve measurement redundancy for the purposes 

of bad data detection and identification because they do not reflect the current state of the system. This is 

further explored in section 7.4.1. 

7.1.2.3 Impact of Pseudo-Measurements on Results 

Likewise, there may be concern that adding this type of data might have a negative effect on the  

result. The following theorem from Monticelli and Wu [118] sheds light on this discussion: 

This theorem puts forth that the addition of pseudo-measurements to achieve observability does  

not necessarily affect the accuracy of system states with monitoring. It does not, however, claim  

that pseudo-measurements do not have a negative impact on accuracy, as the theorem deals with  

only the pseudo-measurements necessary to ensure base observability. 

Theorem 

If a minimal set of additional non-redundant (pseudo)-measurements is so selected that they make the 
network barely observable, then the estimated states of the already observable islands will not be 
affected by these pseudo-measurements. 
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Clements [119] further explores the impact of integrating pseudo-measurements on accuracy.  

Beyond the aforementioned theorem, the author finds that pseudo-measurement errors negatively  

impact the calculated states of branches that are not otherwise observable. The author also finds that 

pseudo-measurements beyond what is required to ensure observability can have a negative impact  

on the accuracy of the estimator, with the impact depending on the weight associated with the  

pseudo-measurements. 

7.1.3 Network Model 

The state estimator relies on the assumption of an accurate network model in order to base its 

calculations. Because the “most-likely state” is based on the physical relations between branches  

and buses, an error in the model leads to an error in the physical relations and therefore the state  

estimate. The quantified impact of network model errors on the result of state estimation are discussed  

by Reig and Alvarez [120] as well as Zarco and Gomez [121]. 

Inaccuracy and incompleteness of the network model is an area of particular weakness in distribution 

systems. Maintaining an accurate model is less important to a utility when the system is operated 

passively, and many utilities do not have accurate parameters or up-to-date knowledge of the  

entire system. 

Fortunately, the innate ability of a state estimator to break down a system into sub-networks allows  

a partial work-around, that is, if only a portion of the network is accurately modeled, the state estimator 

can be programed to only solve that portion. This is useful if only a few higher-voltage areas of the 

system require accurate monitoring. 

7.1.3.1 Network Parameters 

Network parameters are all permanent characteristics of a power system that do not change in  

day-to-day operation. Most notably, network parameters include: 

• Network connectivity/incidence mapping 
• Line parameters (line and mutual impedance, phase configuration, etc.) 
• Bus parameters (connected customers, network equipment, shunt elements, etc.) 
• Equipment parameters (transformers, switches, protection elements, etc.) 
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Utility advancements in network modeling include the use of a geographic information system  

(GIS) to map the physical architecture of power networks, including line distance, into a network  

model application. These systems can help keep the network parameters up-to-date with expansions, 

though many systems still experience a lack of calibration of line parameters with these systems. 

An additional challenge, as was discussed in section 7.1.1.4, is the modeling of the customer connection 

when integrating AMI measurements into the system. Many utilities have a gap between the end of the 

network model and the location of a smart meter, a gap which can lead to an unknown voltage drop. In 

order to incorporate these measurements, a utility might have to measure these lines to determine the 

missing parameters. 

In place of field measurements to correct the network model, online measurements can be used to 

calculate parameters as well. Chapter 7 of the textbook Power System State Estimation by Abur and 

Gómez-Expósito [2] gives a good overview of parameter estimation. It includes a discussion of the 

possibility of using the state estimator itself to correct parameter errors, which will be discussed further  

as part of the Application Layer in section 7.4. It is notable that this function is only possible in the 

presence of redundant measurements, and the resulting parameters have associated error proportional  

to the error used to estimate them. 

Yu, Weng, and Rajagopal [122] present a more recent data-driven approach for estimating both  

line parameters and network topology accounting for measurement errors on distribution networks. 

However, this approach (as well as other parameter estimation techniques) relies on the use of PMUs  

at many system buses and therefore may not be applicable for many distribution systems. 

Other useful resources for parameter estimation have been authored by Prostejovsky, et al. [123],  

Davis, et al. [124] (using historical data), and Zarco and Gómez-Expósito [125] (a survey of  

parameter estimation approaches, dated 2000).  
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7.1.3.2 Network Topology 

In addition to the network model and line parameters, a state estimator requires up-to-date information  

on the topology configuration. Network topology is the elements of the network that are configurable 

during regular operation, and may include: 

• Switch positions 
• Auto-transformer tap ratios 
• Protection equipment status 
• Reactive element status 

On distribution systems, topology changes are both frequent and under-reported. Many aspects of 

distribution automation, such as transformer tap ratios, can happen without relaying the information  

back to the control center. Others, such as reconfiguration switches, might be a manual field crew  

action that by process should be reported, but can at times go unreported due to human error. Errors  

in topology can lead to valid measurements being discarded as erroneous or non-convergence of the  

state estimator. 

When topology changes are unreported, or unreported in real-time, estimation of the topology  

is necessary. This often occurs as part of a topology processor which uses known information  

and measurements to create the most-likely topology configuration. The topology processor then  

creates a simplified network model that provides only the necessary information for state estimation. 

The textbook Power System State Estimation by Abur and Gómez-Expósito [2] again gives a good 

overview of topology processing and estimation in chapters 7 and 8. Like parameter estimation,  

this process can occur as an output of state estimation, and will be discussed further as part of the 

Application Layer in section 7.4. It should be noted that this function is only possible when the  

desired topology variables are observable via real measurements. 

Other useful resources for topology estimation include: 

• Vempati, et al. [126] present a simplified estimation model to be run prior to state estimation  
for topology estimation. This model requires real power flow measurements to be present on  
the system. 

• Weng, Faloutsos, and Ilic [127] present a more recent data-driven regression approach  
to topology estimation. 
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• Shahsavari, et al. [128] present a distribution monitoring approach using very few  
feeder-level µPMUs to estimate the status of switch-bank capacitors. This approach  
can potentially be generalized to other topological changes. 

• Sharon, et al. [129] present a stochastic approach to topology identification using maximum 
likelihood of the topology based on the probability distribution for a set of measurements. 

• Bolognani, et al. [130] presents an analysis of voltage measurement correlation to reconstruct 
distribution network topology.  

7.1.3.3 Network Model Format and Flexibility: The Common Information  
Model (CIM) 

The method in which the network model is stored can have an impact on the involvement required  

for implementation of DSE. This is primarily because of three oft-overlooked challenges: 

• Central Operation: The network model is central to many distribution operation applications, 
from online operation to planning analysis. All these applications require up-to-date model  
and topology information, though not necessarily in the same time scales or the same detail.  
A central network model must deliver the appropriate information to each application. 

• Compatibility: Likewise, each application might not operate in the same data format.  
Planning, outage, and online operations applications might each run on different proprietary 
software platforms which keep different network model formats and variables. In addition,  
any interface with external entities such as a transmission system operator might require a 
specific data format. 

• Real-Time Information: Distribution network topology is constantly changing, and this must 
be reflected in real-time updates to the network model. Any central model must be compatible 
with topology information coming from the control center or a topology processor. 

In the context of these challenges, utilities can find the implementation of real-time DSE to be difficult. 

Modernizing the network model approach to be an automated up-to-date system compatible will all 

network applications and external connections is an implementation challenge in itself. Traditional 

network models reside in the planning application and are not synchronized with topology updates,  

nor are they easily communicable to real-time applications such as a state estimator. It is a challenging 

task to rectify the static network model maintained by many utilities with real-time information from  

SCADA and other sources so that state estimation can be effectively run. Obstacles in regard to keeping 

an up-to-date network model have been discussed by Lightner, McDermott, and Baran [131], Mutanen,  

et al. [132], and Hollingworth, Lloyd, and Hetherington [133]. An automated and standardized approach 

is therefore vital for success, or else countless hours of manpower will be required on a regular basis to 

tend to the model. 
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The most recognized approach to address the issue of network model incompatibility is the publication  

of a set of standards referred to as the Common Information Model (CIM): IEC 61970 and IEC 61968 

[134]. CIM is a standardized method of representing network model information. It is prescribed in 

unified modeling language (UML), in which the relations and attributes of network components are 

defined as structures. CIM does not define the data format used to store this information, but instead 

defines a standard extensible markup language (XML) in which network model information can be 

exchanged using the resource description framework (RDF).  

What CIM offers is a standardized, flexible, and communicable method to store network model 

information, which facilitates integration with internal and external applications as well as upkeep  

of the model. Many planning applications and DMSs already support integration with CIM, and several 

utilities have either considered or have already adopted it as their approach to network modeling. 

Resources on CIM: 

• Simmins [135] provides a good instructional overview of CIM, including the RDF XML 
communications format, application integration, and various tutorials. 

• McMorran, et al. [136] give a presentation of the benefits to using CIM to integrate models  
for existing transmission and distribution systems. 

• Celik [137] presents a discussion on a generalized DSE using CIM as a network  
model interface. 

• Wang, Shulz, and Neumann [138] convert the IEEE radial test feeders into CIM-based  
XML documents. 

• The Environmental Systems Research Institute (EPRI) [139] provides a guide by the leader  
in GIS software for translating GIS model information into CIM. 

• McMorran, et al. [140] discuss the translation of CIM data into proprietary format to interface 
with in-house or legacy applications. 

7.1.3.4 Three-Phase Network Model 

Compared to transmission systems, many distribution networks operate with some amount of imbalance. 

Indeed, some distribution systems might be designed to partition exactly one-third of the power delivery 

to each customer on each phase, creating balance. Other systems might deliver a single phase to each 

customer, or even deliver power to an entire branch of the network on a single phase—and this practice 

can create imbalance in the three phases. In addition, failure to transpose power lines in order to mitigate 

the effect of asymmetric delivery towers can add further imbalance—and this practice is less common on 

distribution systems as well. 
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Depending on the amount of imbalance on the system, maintaining a three-phase network model may  

be necessary. As distribution systems are much more susceptible to imbalance than transmission, this 

problem is specific to DSE. Certain distribution systems may have asymmetrical network models  

where one or two individual phases branch off from the main three-phase feeder as laterals—a  

condition which requires three-phase modeling. 

Modeling a distribution network in three-phases has been thoroughly analyzed in Kersting’s textbook  

on distribution modeling [141]. 

Zhong and Abur [142] investigate the effects on state estimation of modeling a network with both  

non-transposed lines and unbalanced loads in single phase instead of in three-phase. The authors  

found that both sources of imbalance affect the results and could introduce error to the point of  

triggering the bad data detection mechanism. Unbalanced loads were found to introduce more error  

than non-transposed lines. These results should be considered when determining if a system warrants 

three-phase modeling. 

Note that three-phase networks can feature four wires in a line: three phases and a neutral. When  

using a three-phase model, the neutral wire must be incorporated into the three-state model by use  

of a Kron reduction or similar technique [141]. 

In its discussion of DSE studies, section 9 lists the studies that have used three-phase models. 

7.2 Function Layer 

The function layer comprises the core functionality of a state estimator, where the input data is processed 

to determine the most-likely state of the power system. The main components of the function layer are  

the observability analysis and the state estimation algorithm itself. 
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7.2.1 Observability Analysis 

The goal of the observability analysis is to determine if the data provided to the system is sufficient  

to determine the electrical state of the power network. This definition of observability is very similar  

to the definition present in control theory, which measures whether the internal state of a system can  

be determined from its outputs. This analysis is a vital process to the estimator—without observability, 

state estimation is not possible. As a rule of thumb, there must be approximately two measured values on 

the system for each observable bus. This number changes based on the nature of the network architecture. 

The textbook Power System State Estimation by Abur and Gómez-Expósito [2] provides a thorough and 

fundamental discussion on the observability analysis for state estimation. Figure 9 provides an overview 

of the structure and terminology involved with the observability analysis. 

Figure 9. Overview of the Observability Analysis 

Figure 9 shows the observability analysis process, including the various method formulations for  

the function. These processes will be described in the following subsections, including discussion  

of current literature on the subject. 

7.2.1.1 Numerical versus Topological Methods 

Observability can be determined using either numerical methods or topological methods. It is independent 

of both network parameters and system state, depending only on the type and location of measurements 

and the network model architecture. 
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Topological methods, as outlined by Krumpholz, Clements and Davis [143], uses a spanning tree 

technique to determine if the system is reducible to one observable tree or to several sub-network  

trees. However, this method focuses only on real power measurements to generate the trees, assuming  

that power measurements are paired with reactive power, and magnitude-only current measurements  

are not present. This might not always be the case with distribution systems. Topological methods  

have computation speed advantages over numerical methods and are agnostic to the state estimation 

problem formulation. 

Numerical methods for observability are more widely applicable for a variety of measurements  

available, though they involve going through steps similar to the state estimation problem itself. The  

basis for numerical methods is determining the rank of the gain matrix using factorization techniques.  

The gain matrix is a square matrix that factors in information about both measurements and their 

associated weights. The numerical observability can be formulated using bus state variables (outlined  

by Monticelli and Wu [144]) or branch state variables (outlined by Gómez-Expósito and Abur [145]). 

Depending on the formulation of the state estimator itself, one or the other of these formulations might  

be preferable as the gain matrix generated will be essentially the same as for the main problem.  

However, Abur and Exposito mention in Power System State Estimation [2] that the branch  

formulation is preferred as a non-iterative and less computationally expensive analysis. 

Other resources for observability analysis: 

• Magnago, Zhang, and Celik [146] present numerical observability analysis from a  
three-phase distribution perspective. 

• Thukaram, Jerome, and Surapong [147] present a topological approach to radial  
distribution system observability. 

• Gelagaev, et al. [148] present a numerical observability analysis for distribution systems, 
considering the high resistance-to-reactance ratio of distribution lines. 

• Benedito, et al. [149] combine concepts from both topological and numerical ideas to  
create a simple and efficient observability analysis. 

• Habiballah and Irving [150] present a linear programming optimization approach  
to observability analysis. 

• Montenegro and Ramos [151] provide an overview and example usage of the real-time 
observability analysis tool that is part of DS Sim-RT, a distribution network simulator  
based on the open-sourced tool OpenDSS. 
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It should be noted that certain formulations of the state estimation problem disallow seamless  

integration with some observability analysis methods. A state estimation method that relies on matrix  

or other characteristics beyond what is verified in a standard observability analysis may run into issues.  

It therefore must be investigated whether the method used for state estimation is compatible with the 

observability analysis. 

This is particularly true of Hachtel’s augmented matrix method and other methods with equality 

constraints, which do not use the gain matrix analyzed in the numerical methods and therefore  

can be numerically unstable when coupled with a standard observability analysis. Methods for 

observability analysis specific to Hachtel’s method have been investigated by Wu, et al. [152]  

and Bei [153]. The similar equality-constrained formulation is investigated by Wu, Liu,  

and Lun [154]. 

7.2.1.2 Evaluating the Extent of Observability 

When a system is observable as a whole, state estimation can be performed. Measurements in  

an observable system are either redundant or critical—the difference is that loss of a critical  

measurement leads to unobservability. When a critical measurement is in error, it will not be  

detected in a residual analysis as bad data and instead introduce error into the state result. It is  

therefore desirable to have redundant measurements, as several benefits of state estimation  

including bad data detection, parameter estimation, and topology estimation are only possible  

when measurements are redundant. 

For a system with n states, any measurement past n will introduce redundancy to the system. Critical 

measurements can be located by means of the observability analysis algorithm, with methods discussed  

in Power System State Estimation by Abur and Gómez-Expósito [2]. Magnago and Abur [37] and Emami 

and Abur [43] discuss measurement placement to achieve redundancy against loss of measurements. 

Other resources on critical measurements: 

• London, Alberto, and Bretas [155] discuss tools for assessment of measurement sets and  
their impact, including detecting critical measurements. 

• Bretas, et al. [156] present a topological method for detecting critical measurements. 
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When a system is unobservable, the goal of the observability analysis is to locate the subnetworks  

which do have observability, called “observable islands.” While section 7.1.1.1 discusses placing 

additional measurements to achieve observability and section 7.1.2 discusses using load forecasts as 

pseudo-measurements for observability, at the point of the observability analysis it is assumed that  

all additional measurements and pseudo-measurements have been placed.  

Observable island detection is performed as part of any observability analysis algorithm based on  

the location of zero pivots in the gain matrix (or, in topological methods, of locating isolated trees) and  

is discussed in Power System State Estimation. Each observable island is solved for its internal state 

independently with its own assigned reference angle unless there is PMU present across islands. In  

the presence of PMUs, observable islands can more easily be merged together, as described by Xu  

and Abur [40] [41] and Xu, et al. [42]. 

Due to the isolated reference angles, the flow along unobservable branches cannot be calculated except  

by additional placement of measurements. In some cases, the observable islands are sufficient for the 

necessary network operation and control, and unobservable downstream network zones can be simplified 

to be considered loads on the observable zones, as described by Simendic, Strezoski, and Svenda [157]. 

 Other resources on detecting observable islands: 

• Magnago, et al. [146] present detection of observable islands from a three-phase distribution 
perspective, with an island existing only when all three phases are observable throughout  
the island. 

• Gou and Abur [158] present a direct, non-iterative numerical approach to detecting  
observable islands. 

• Gou [159] presents observable island detection for numerical methods using Gaussian 
elimination on the Jacobian matrix. 

7.3 State Estimator 

The state estimator is the core solver. It uses the inputs from the data layer in addition to the observability 

analysis outputs (i.e., the observable islands) to generate the most-likely operating state of the power 

system. While more details surrounding the different algorithms used to solve the state estimation 

problem is presented in section 8, this section provides a background that is necessary to provide  

context for the layers of state estimation. This information is foundational and may be obtained  
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from many of the references in this report, most notably from the original paper by Schweppe and  

Wildes [26], or the textbooks by Monticelli [1], and Abur and Gómez-Expósito [2]. Note that the 

following discussion is presented based on the bus state variable formulation, but that it is extensible  

to the branch state formulation as well. 

At its most basic, state estimation has the objective of minimizing the difference between measurements 

and the estimated electrical state while upholding the physical properties of power flowing through a 

system. Any given measured value 𝑧𝑧 is taken as a function of the true underlying state 𝑥𝑥 and some 

amount of unknown (Gaussian) error 𝑒𝑒: 

Equation 1    𝒛𝒛 = 𝒉𝒉(𝒙𝒙) + 𝒆𝒆 

The goal of the problem is to solve for the most-likely electrical state 𝑥𝑥 by minimizing the error 𝑒𝑒.  

As each measurement might have a different level of confidence, the importance of measurements  

is weighted based on their variance. The variance of each measurements is included in a covariance 

matrix 𝑅𝑅, which will be a diagonal matrix of measurement variances unless measurements have bias  

or correlation in their errors. This covariance matrix 𝑅𝑅 is inverted to determine measurement weights. 

The measurements must be mapped from the internal true state via the measurement function ℎ(𝑥𝑥),  

which consists of the power flow relations between measurements and state variables. While the function 

mapping a voltage magnitude state to a voltage magnitude measurement is a trivial identity function, 

other functions are highly nonlinear. For instance, if the measurement is real power flow along a line,  

the function mapping voltage magnitude state at the receiving bus to real power flow would be: 

Equation 2   𝒉𝒉�𝑽𝑽𝒋𝒋� = 𝑷𝑷𝒊𝒊𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒆𝒆 = 𝑽𝑽𝒊𝒊𝟐𝟐�𝒈𝒈𝒔𝒔𝒔𝒔 + 𝒈𝒈𝒊𝒊𝒊𝒊� − 𝑽𝑽𝒊𝒊𝑽𝑽𝒋𝒋�𝒈𝒈𝒊𝒊𝒊𝒊𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽𝒊𝒊𝒊𝒊 + 𝒃𝒃𝒊𝒊𝒊𝒊𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽𝒊𝒊𝒊𝒊� 

Where: 

• 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 are the voltage magnitude at the sending and receiving bus, respectively 
• θij is the voltage angle difference between the sending and receiving bus 
• 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured real power between the two buses 
• gsi is the shunt conductance of the sending bus 
• gi𝑗𝑗 and bi𝑗𝑗 are the line conductance and susceptance, respectively 
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This equation is based directly on power flow equations relating real power flow to voltage angle  

and magnitude at each bus (𝑖𝑖 and 𝑗𝑗), where 𝑔𝑔 and 𝑏𝑏 are admittance values from the network model. 

In order to solve the state estimation problem, using these nonlinear measurement functions, a 

measurement Jacobian 𝐻𝐻 is created that relates changes in the measurement variables to changes  

in electrical state: 

Equation 3.    𝑯𝑯(𝑿𝑿) =
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Where: 

• 𝑋𝑋 is the state vector 
• 𝑃𝑃 is the set of real power measurements 
• 𝑄𝑄 is the set of reactive power measurements  
• 𝐼𝐼 is the set of current magnitude measurements 
• Vm is the set of voltage magnitude measurements 
• 𝑉𝑉 is the set of voltage magnitude state variables 
• θ is the set of voltage angle state variables 

This allows the state estimation problem to be solved iteratively by evaluating a new value of 𝐻𝐻  

based on the current internal state at each iteration. 

State estimation and observability analysis approaches make use of what is called the gain matrix 

 G, which is a square matrix that incorporates both the measurements and the weights, and is  

equivalent to: 

Equation 4     𝑮𝑮(𝑿𝑿) = 𝑯𝑯𝑻𝑻(𝑿𝑿)𝑹𝑹−𝟏𝟏𝑯𝑯(𝑿𝑿) 

The algorithm chosen to solve the state estimation problem determines how these matrices are  

used to approach the most-likely electrical state estimate. 
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7.3.1 Evaluating State Estimation Results 

After a state estimator has converged to the most-likely solution, it is important to look at the accuracy  

of the result. As a rule, the resulting accuracy from a state estimator will be limited by the accuracy  

of the measurements used as inputs to the process. 

A common way to look back at the results is to analyze the residuals between the measurements and 

underlying state of the system. This is possible by going back to (1) – the residual r associated with  

each measurement is therefore given as follows: 

Equation 5    𝒓𝒓 = 𝒛𝒛 − 𝒉𝒉(𝒙𝒙) 

Residuals can be normalized so that they are comparable across measurements. To do this, the residual 

sensitivity matrix 𝑆𝑆, which describes the sensitivity of residuals to measurement error, must be created: 

Equation 6    𝑺𝑺 = (𝑰𝑰 − 𝑯𝑯𝑮𝑮−𝟏𝟏𝑯𝑯𝑻𝑻𝑹𝑹−𝟏𝟏) 

Where 𝐼𝐼 is the identity matrix. The standard deviation of the residual σr can be taken from the  

square root of the residual covariance matrix diagonal: 

Equation 7.     𝝈𝝈𝒓𝒓 = �𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑺𝑺𝑺𝑺) 

Finally, the normalized residual rN can be calculated: 

Equation 8     𝒓𝒓𝑵𝑵 = |𝒓𝒓|
𝝈𝝈𝒓𝒓

 

Normalized residuals are used extensively in bad data detection and identification as well as network 

model estimation, as discussed in sections 7.4.1 and 7.4.2. Large residuals indicate sources of error in  

the state estimation framework, as the estimator has determined that the measurement cannot be  

closely related to the underlying state. 

Methods for evaluating performance include error estimation and quality indices are presented in works 

by Wan, et al. [9], Maciel-Barbosa, Vide and Carvalho [160], The SuSTAINABLE Project [161], and 

Therrien [162]. Approaches to these indices vary, but they each give an evaluation of how well the  

state estimator is representing the underlying state from a certain aspect such as convergence,  

normalized residuals, or accuracy. 

Cobelo, et al. [163] present the generation of variances in the state variables based on the creation  

of a new Jacobian matrix of state variables with respect to themselves, 𝐾𝐾:  
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Equation 9    𝒗𝒗𝒗𝒗𝒗𝒗(𝑿𝑿) = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑲𝑲𝑮𝑮−𝟏𝟏𝑲𝑲𝑻𝑻) 

Singh, Pal and Jabr [164] present practices for determining the bias and consistency of a state  

estimator. Bias is an evaluation of the degree to which residuals are centered on zero, while  

consistency is an evaluation of whether the residuals correspond to the variance of the measurements. 

It is also possible to adaptively tune the measurement and pseudo-measurement weights in an effort to 

improve accuracy. This is a nontrivial process, as error is generally detected in the form of normalized 

residuals and those residuals depend on the assigned measurement weight. Additionally, residuals only 

appear when redundancy is present—and the inclusion of pseudo-measurements is usually a sign of low 

or no redundancy. Approaches and challenges to tuning measurement weights have been discussed by 

Atanackovic, et al. [113]. 

It is a given that the performance of a state estimator is only as good as the data provided to it. Therefore, 

another valuable metric is the sensitivity of the state estimator to input errors. Stuart [165] provides  

a series of sensitivity analysis methods, which vary the values of different measurements or network 

parameters and monitory the corresponding change in the state estimate. From this analysis, a level  

of confidence in the state estimate can be deduced based on its sensitivity – a resilient state variable  

is more likely to be accurate than one very sensitive to error. 

Al-Othman and Irving [166] approach this same concept of sensitivity to error using linear programming 

to determine estimator error after state estimation has been run.  

7.4 Application Layer 

The application layer covers useful power network functions that are directly enabled by state  

estimation. While state estimation truly benefits all grid functions by improving the accuracy of  

network visualization, the most integrated applications are of state estimation and are described in  

this section: Bad data detection and identification and topology and parameter estimation. A brief 

discussion of other applications such as locational power markets is also presented. 
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7.4.1 Bad Data Detection and Identification 

Bad data detection and identification is one of the most common applications to be run directly from  

the output of a state estimator. This is the process with which the output of the state estimator is able  

to detect erroneous measurements. Power System State Estimation by Abur and Gómez-Expósito [2] 

provides a thorough background on the approaches to this problem. 

To detect the existence of bad data in the system, this application looks at the residuals between the 

measurements and the corresponding estimated state and decides if error has been introduced to the 

system. The two most common methods for this are the chi-squares test, where total system error is 

compared to a realistic threshold, and the largest normalized residual test, where the largest normalized 

discrepancy between measurement and state is analyzed. Power System State Estimation asserts that  

the largest normalized residual test can in certain circumstances be more accurate than chi-squares. 

Once bad data has been detected, the source of the bad data must be located. This is done based on the 

normalized residuals of the measurements and can be a non-trivial problem especially when there are 

multiple sources of bad data. The simplest method is to remove the measurement with the largest residual, 

and then run state estimation again to detect if the bad data issue has been resolved (repeat until no bad 

data detected). This approach may be inaccurate if multiple measurements have correlated error. Another 

more robust approach to bad data identification is hypothesis testing, where a set of measurements with 

high residuals is analyzed with various bad data hypotheses for the most-likely outcome. 

Other resources on bad data detection: 

• Mili, Van Cutsem and Ribbens-Pavella [167] compare different strategies for identifying  
and dealing with different types of bad data, including data elimination and hypothesis testing. 

• Wu, et al. [152] and Wu, Liu, and Lun [154] extend the normalized residuals test to hatchel’s 
augmented matrix method and the similar equality constraints case, respectively. 

• Chen and Abur [168] discuss a placement algorithm for PMUs to improve the capabilities  
of bad data detection and identification 

• Weng, et al. [169] presents a method to formulate bad data identification and detection  
as a convex optimization problem. 

7.4.1.1 Critical Measurements 

The capabilities of bad data detection and identification depend on the strength of the measurement 

infrastructure, in regard to, critical measurements (which were defined in section 7.2.1.2). This is 

highlighted with two important notes outlined below. 
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This is true because a critical measurement indicates a determined system, where there is only one 

solution—with no room to adjust based on error tolerance. For instance, this is the case with a load  

flow (section 2.2.3), as it is a set of equations with a single solution. When a critical measurement is 

erroneous, it will cause the state solution to adjust so the erroneous value appears correct. 

Note also that pseudo-measurements should not be used to improve measurement redundancy  

because they do not reflect the current state of the system. The use of pseudo-measurements for  

bad data detection has been investigated by Mutanen, et al. [132] to limited success. In the real 

implementation, a change in customer load due to weather patterns caused good data to be detected  

as bad data, as the pseudo-measurements based on historical data used did not account for the change. 

A critical pair is a set of two measurements where the removal of both causes the system to become 

unobservable. When a critical pair of measurements disagrees with each other, the state estimator  

chooses a value that is between the two of them such that their normalized residuals are equal. Therefore, 

if one of the measurements is erroneous, both measurements will have the same normalized residual  

and the erroneous measurement will not be identified. 

7.4.1.2 Improved Robust Methods and Leverage Measurements 

A leverage measurement is a redundant measurement that is still difficult for bad data detection  

and identification to target. This is because the measurement play reflects an important point in the 

distribution system, and error in the measurement strongly influences the surrounding state estimate. 

Power System State Estimation by Abur and Gómez-Expósito [2] identifies four common causes for 

leverage measurements, which be described in light of distribution systems as shown in Table 20. 

Note 

A critical measurement will have a residual of zero, and therefore will not be detected by a bad data 
detection application if it is providing erroneous data. 

Note 

An erroneous value that is part of a critical pair of measurements may be detected by a bad data 
detection application, but it will not be able to be distinguished from its pair as the erroneous 
measurement as they will have equal normalized residuals. 
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Circuit breakers may not always be saved as part of the network model, and in certain cases must  

be added into the model once a section of the network is determined suspect. This means that the  

circuit breaker locations must be readily available to insert into the model in an automated way, a  

process that is facilitated by CIM (section 7.1.3.3). 

Notes on network topology estimation: 

 

This requirement is identical to that for network parameter estimation. Without redundancy, there are  

no residuals on which to base the analysis. Pseudo-measurements should not be used because they do  

not reflect the time-varying nature of the network topology. 

 

A critical branch is defined as one whose removal causes the system to lose observability, while a  

critical pair is two branches whose simultaneous removal cause unobservability. This stipulation is 

therefore based on the same reasoning as for critical measurements in section 7.4.1.1. 

As an additional note, bad data should be detected and removed prior to topology estimation process  

and must be discernable from topology error which generally affects several measurements instead  

of just one. 

Additional resources on topology estimation since the publication of Power System State Estimation: 

• Lourenco, et al. [184] present a method for topology detection and identification using 
collinearity of the Lagrange multipliers of the covariance matrix, in the context of an  
augmented state vector. 

• Vosgerau, et al. [185] present a coordinated WLS state estimator with an on-line WLAV 
topology estimator. 

• Weng, et al. [169] discuss convexification of the topology detection error detection  
problem, improving on solvers that might only locate a local solution instead of a global one. 

Note 

In order to enable network topology estimation on switch status, there must be redundancy in actual 
measurements neighboring to the estimated switch. 
 

Note 

Single topology errors on critical branches are not detectable. Single topology errors on one of a 
critical pair of branches are not identifiable. 
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The applicability of robust methods to DSE has been questioned by Nusrat [46] and Singh, et al. [164]. 

Both of these studies note that the absence of redundancy in the measurement infrastructure and 

subsequent reliance on pseudo-measurements that is common in DSE prevents these robust methods  

from being effective. Robust methods tend to de-emphasize certain pseudo-measurements as erroneous 

and may not be able to determine which ones are introducing error to the system. 

7.4.2 Network Model Estimation 

In section 7.1.3, the impact of inaccuracies in the network model (specifically, the parameters and 

topology) was discussed. Accuracy in these data points is necessary to maintain a converging and  

useful state estimator. However, a state estimator with redundant measurements has the ability to  

estimate and correct suspicious aspects of the network model. 

Network model estimation can happen in one of two ways. The first option is similar to the way bad  

data is detected and identified, using residuals in the electrical state of the system versus the 

measurements. The second option is to incorporate these data points into the state vector that is  

solved parallel to the electrical state. 

Power System State Estimation by Abur and Gómez-Expósito [2] gives a thorough summary of  

the different methods used to estimate errors in both network parameters and topology in chapters  

7 and 8, using both residuals and state vectors. The following discussion is therefore a brief summary  

of the important points from this chapter. Further detail should be obtained from Power System State 

Estimation and its extensive list of references, some of which are indicated here for direction. 

Before discussing estimation techniques for the network model, it should be noted that detection of 

network model errors often requires an analysis of the residuals to decide if errors are based on bad  

data, incorrect parameters, or incorrect topology. Approaching one of these estimation problems requires 

knowledge of which type of information is being corrected, lest bad data be disguised as a network  

model error. Resources which have discussed this discernment problem: 

• Power System State Estimation discusses common patterns that can be used to discern different 
types of errors, such as correlation or errors on either side of a branch. It asserts that bad data 
must be removed prior to parameter or topology estimation, assuming that bad data appears  
as a single large residual unrelated to other errors on the system. 

• Zhu and Abur [178] present a method for identifying incorrect parameters that distinguishes 
them from bad measurements without state vector augmentation. 
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7.4.2.1 Network Parameter Error Estimation 

Network parameter errors can be viewed as analog errors, where the impedance value of lines or 

equipment is incorrect in some capacity and must be re-adjusted. Parameter errors often appear to  

the state estimate as a series of correlated measurement errors. 

The method using measurement residuals begins by detecting the presence of bad data. If bad data  

are correlated to a particular network parameter, a sensitivity of the state result to variations in that 

parameter is carried out to determine if the residuals can be explained by correction of the parameter. 

The method using network parameters as part of an augmented state vector can be solved in two ways. 

The first is using the standard network equations with an additional entry into the measurement Jacobian 

matrix corresponding to the suspect parameter, which will converge to an estimate of the parameter [179]. 

The second augmented state vector method makes use of the Kalman filter over a time-series of state 

snapshots. The assumption that parameters are constant over time drives their estimation, as their effect 

on the result can be filtered out from the changing network states [180] [181]. 

Parameter estimation can also occur on historical data using either method, which has the advantage of 

running offline and updating the network parameters for the on-line estimator as needed. Using historical 

data also takes into account the constant nature of network parameters, as with the Kalman filter method. 

Reference Reig and Alvarez [120] and Zarco and Gomez [121] for further detail. 

Line length can be viewed as a parameter on its own, being a direct contributor to impedance values on  

a line. Line resistance and reactance become scaled values from the line length. The line length parameter 

is more difficult to estimate when the line flows are relatively very low. 

Parameter estimation methods often make use of a new type of pseudo-measurement, which is an 

estimation of the parameter value – perhaps the existing parameter value that is suspect and in need  

of revision. 
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Power System State Estimation by Abur and Gómez-Expósito [2] gives the following guidance  

on choosing methods for network parameter estimation: 

• Analysis including residuals is necessary to identify suspect branches to define which 
parameters to estimate, but the task of estimation is more accurate when using an  
augmented state vector. 

• Similarly, using historical data in multiple snapshots improves redundancy, and therefore 
accuracy, in the presence of time-invariant parameters. Time-varying parameters may  
similarly be estimated with snapshots using a Kalman filter approach with a snapshot horizon. 

• Time-invariant network parameters are best estimated offline. 

Notes on network parameter error estimation: 

This is true for the same reasons as for bad data detection and identification: without redundancy,  

there are no measurement residuals and therefore no basis on which to identify and correct a parameter 

error. While pseudo-measurements from forecasts could theoretically be used for redundancy if they  

are based on previous system states (under the assumption network parameters do not change), they  

are not effective for parameter estimation due to the following additional note: 

This note is intuitive but also very important. A parameter that already has a certain level of confidence 

greater than the nearby measurements should not be estimated, as the estimated value cannot improve  

the parameter value. This is also a reason why forecasted pseudo-measurements should not be used for 

parameter estimation. Note that pseudo-measurements that represent the parameters themselves are  

often incorporated into the estimation algorithm and are useful for this purpose. 

Note 

In order to enable network parameter error estimation, there must be redundancy in actual 
measurements neighboring to the estimated parameter. Each redundant measurement permits 
estimation of one parameter. 

Note 

The estimated value of a network parameter will have an accuracy no greater than the accuracy of the 
local measurements used to estimate the value. 
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Additional notes on network parameter estimation: 

• Candidate parameters should be identified beforehand. This is either a suspicious parameter 
identified based on residuals, or a set of parameters identified to potentially have error. 

• Bad data should be detected and removed prior to this process, and be discernable from 
correlated parameter error. 

An additional resource on parameter estimation since the publication of Power System State Estimation: 

• Zhu and Abur [178] present a method for parameter estimation without augmented state  
vectors that does not require a set of suspected parameters. 

7.4.2.2 Network Topology Error Estimation 

Network topology errors are discrete errors, where integer network variables have an incorrect  

value. Most commonly, this translates to incorrect switch positions and transformer tap ratios.  

Topology errors, especially switch positions, often result in large residuals in the close proximity  

to the error – and could cause the problem to be unable to converge. Topology errors can also  

cause nearby injection measurements to be flagged as bad data due to the incorrect knowledge  

of local power flows. 

The method using measurement residuals isolates the expected value of the normalized residuals as  

a linear combination of potential topology errors. This problem can get very large as network size 

increases, however, and cannot detect multiple interacting topology errors. Reference Qu and Liu 

 [182] for more detail on this method. 

The method using network parameters as part of an augmented state vector uses a binary variable  

as a state variable for each suspected line connection, which is 1 in the case of a connected line and  

0 in the case of disconnection. It then introduces constraints in order to limit the value of this variable  

to 0 or 1 and lets the state estimator converge to the correct value. Reference Gómez-Expósito, Zarco,  

and Quintana [183] for more detail on this method. 

Power System State Estimation also discusses estimation of substation configuration, which can  

feature many zero-impedance switches. However, as distribution systems typically have very few 

substations, this discussion is less relevant than the others. Further, Power System State Estimation 

presents considerations for the observability analysis that depend on the estimated switch configurations. 

These are particularly applicable to substations but could be extended to reconfiguration switches on 

distribution systems as well. 
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Circuit breakers may not always be saved as part of the network model, and in certain cases must  

be added into the model once a section of the network is determined suspect. This means that the  

circuit breaker locations must be readily available to insert into the model in an automated way, a  

process that is facilitated by CIM (section 7.1.3.3). 

Notes on network topology estimation: 

This requirement is identical to that for network parameter estimation. Without redundancy, there are  

no residuals on which to base the analysis. Pseudo-measurements should not be used because they do  

not reflect the time-varying nature of the network topology. 

A critical branch is defined as one whose removal causes the system to lose observability, while a  

critical pair is two branches whose simultaneous removal cause unobservability. This stipulation is 

therefore based on the same reasoning as for critical measurements in section 7.4.1.1. 

As an additional note, bad data should be detected and removed prior to topology estimation process  

and must be discernable from topology error which generally affects several measurements instead  

of just one. 

Additional resources on topology estimation since the publication of Power System State Estimation: 

• Lourenco, et al. [184] present a method for topology detection and identification using 
collinearity of the Lagrange multipliers of the covariance matrix, in the context of an  
augmented state vector. 

• Vosgerau, et al. [185] present a coordinated WLS state estimator with an on-line WLAV 
topology estimator. 

• Weng, et al. [169] discuss convexification of the topology detection error detection  
problem, improving on solvers that might only locate a local solution instead of a global one. 

Note 

In order to enable network topology estimation on switch status, there must be redundancy in actual 
measurements neighboring to the estimated switch. 
 

Note 

Single topology errors on critical branches are not detectable. Single topology errors on one of a 
critical pair of branches are not identifiable. 
 



77 

• Korres and Manousakis [186] present an alternate augmented state vector approach to topology 
identification, and also investigates the network splitting problem in the context of observability 
analysis. 

• Xygkis, et al. [187] apply this same augmented state vector approach from [186] to  
topology identification on a Greek distribution system with limited measurements. 

• Zhu and Giannakis [188] present a method for identification of down lines. [189] and [190]  
take this further with a method to detect topology changes and down lines after a cyber-attack 
has eliminated measurement communication from a certain area of the system and bringing  
the analysis from the DC to the AC power flow model. 

• Hoffman [191] discusses topology estimation incorporating customer-reported outages as a 
measurement source. 

7.4.2.3 Transformer Tap Estimation 

The transformer tap ratio is sometimes considered a parameter (as it is a non-binary variable), but being  

a discrete variable, its estimation can be more similar to topology estimation. Regardless, the methods  

for estimation are sufficiently different as to warrant a separate section. 

Autotransformers are commonly used in distribution systems to support radial distribution voltage,  

but are rarely telemetered, such that their tap ratio is known at the control center. This makes transformer 

tap estimation an important topic for DSE. 

Like parameters and topology, transformer tap estimation can also be solved either using residuals or 

augmented state vectors. The residual method as studied by Fletcher and Stadlin  [192] uses a function  

of the residuals for measurements of terminal voltage magnitude and reactive power flow in the 

transformer to detect anomalies. The augmented state vector method as studied by Teixeira, et al. [193] 

includes additional sensitivity factors relating the turns ratio to the other state variables surrounding  

the transformer. This method is more accurate than the residuals method as it uses more state variables  

in the calculation. Often the transformer tap is estimated as a continuous variable and rounded to be  

a discrete value. 

A note on implementation of transformer tap estimation: 

 

Note 

In order to enable transformer tap estimation, measurements (or accurate real-time estimates) of the 
voltage at each terminal and the reactive power flow are necessary. 
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Without measurements of the terminal voltages, estimating the tap ratio is not possible. The  

reactive power flow through the transformer is another critical variable, as reactive power flow  

is heavily dependent on the difference in voltage magnitude between the two ends. 

Additional resources on topology since the publication of Power System State Estimation [2]: 

• Therrien, Kocar and Jatskevich [194] extend the augmented state vector approach introduced  
in Teixeira, et al. [193] by including it into a broader “unified” state estimator for three-phase 
distribution system. 

• Nanchian, Majumdar and Pal [195] describe the application of ordinal optimization to  
three-phase DSE for estimating transformer tap ratios as discrete variables. 

• Korres, Katsikas and Contaxis [196] discuss the observability of transformer taps  
and incorporates this into a numerical observability analysis. 

• Pires, Mili and Lemos [197] presents an augmented state vector approach to transformer  
tap estimation using robust estimation techniques that are resilient to bad data, including 
leverage measurement error. 

7.4.2.4 Generalized State Estimation 

State estimators which are designed to include methods for many or all of the aforementioned data 

correction techniques (bad data, parameters, topology, transformer taps) are frequently referred to  

as generalized state estimators because they broaden the scope of state estimation from simply the 

electrical characteristics to more general knowledge of the network. The concept of a generalized 

estimator was first introduced by Alsac, et al. [198] as a summation of network estimation methods. 

These methods were further expanded in collected form in Monticelli’s textbook State Estimation in 

Electric Power Systems [1]. Since this time, other authors have come to refer to a state estimation 

implementation with bad data detection and network model correction in this way. 

Zhu, et al. [199] take this one step further with the concept of an “enhanced” state estimator which  

not only includes bad data and network model correction, but generalizes the state estimator to  

multi-area coverage, measurement and PMU placement, and flexible multiphase support. 

Celik [137] describes the advanced and need in generalized state estimation for a flexible network  

model that can be easily adapted, simplified, updated, and communicated. He supports the adoption  

of CIM for this purpose (section 7.1.3.3) 
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7.4.3 Other Applications 

The primary benefit of state estimation to utility operations is an improved level of confidence in  

system data. The potential applications of the resulting state estimate have been described in detail  

in section 4 most of these applications stem from the assumption that the state estimator provides an 

accurate real-time depiction of the electrical state. While some of these applications might be possible 

without the use of state estimation, there are several for which a high level of confidence over a large  

part or entirety of the system—a level of confidence all but requiring a state estimator in the loop. 

An example of an application for which a state estimator is necessary is the creation of a locational  

power market. Locational markets are one of the priorities of the NYS REV initiative [200]. The vision  

is that trading power in real time at prices that represent their value to the system at a whole will create  

an environment incentivizing the third-party provision of distributed and renewable energy sources  

at critical locations. Representing the power market in terms of locational-marginal prices (LMPs)  

self-supports a level of efficiency that benefits system resiliency and incentivizes infrastructure and 

generation improvements. 

LMPs represent the real-time cost of energy for an incremental increase in demand at a given location.  

In order for these prices to be determined, there must be an accurate estimate of system state in relation  

to constraints such as flow and voltage. For instance, if a certain branch is nearing its limit for current 

flow, the LMPs will be calculated in such a way as to incentivize demand/generation changes to  

reduce the current to manageable levels. The importance of having an accurate state estimate is  

therefore apparent. 

The role of state estimation in the generation of LMPs for a locational power markets has been 

investigated by Ristanovic [201] and Liu, et al. [202]. 
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8 State Estimation Algorithms 
While Section 7.3 describes the background, overall theory, and context of the state estimation function, 

this section will provide more detail on the methods with which the problem is solved. The first and  

most fundamental method for state estimation is the weighted least squares (WLS) approach presented  

by Schweppe [26]. Since this foundational paper, the WLS method has been used extensively in the 

majority of state estimation applications. In some cases, WLS has been adapted for use with equality 

constraints (Constrained WLS (CWLS)), with augmented Jacobian matrices (Hachtel’s method), and  

has been applied to distributed problems as well. The state estimation problem has also been reformulated 

as an optimization problem to solve with linear programming (LP) or semi-definite programming (SDP). 

This section will provide a brief overview of each of these methods focusing on their differences and 

strengths and describe how they have been demonstrated for distribution systems. 

8.1 Weighted Least Squares Estimators 

The WLS estimator has been described thoroughly in the foundational paper [26] as well as in more 

recent textbooks on the subject [1] [2]. The WLS algorithm approaches the problem by minimizing a 

weighted sum of residuals, with the weights based on measurement accuracy as described in section 7.3: 

Equation 10   𝑿𝑿 � = 𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎
             𝑿𝑿

 𝑱𝑱 = ∑ (𝒛𝒛𝒊𝒊−𝒉𝒉(𝒙𝒙𝒊𝒊))𝟐𝟐

𝝈𝝈𝒊𝒊
𝟐𝟐𝒊𝒊<𝒎𝒎  

Where 𝐽𝐽 is the sum-of-squares objective function. This minimization problem can be solved by setting  

the gradient of 𝐽𝐽 to zero, resulting in a nonlinear matrix equation:  

Equation 11    𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

(𝑿𝑿) = −𝑯𝑯𝑻𝑻(𝑿𝑿)𝑹𝑹−𝟏𝟏[𝒁𝒁 − 𝒉𝒉(𝑿𝑿)] = 𝟎𝟎 

  

Note 

The DC model is a simplified power flow model that can be used for fast and approximate 
calculations, including for state estimation. However, the DC model relies on assumptions such as low 
resistance-to-reactance line ratios that do not hold for distribution systems, and therefore may be 
unsuitable for DSE. 
 
The decoupled power flow model operates on similar assumptions and likewise may be unsuitable for 
DSE. 
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This equation can be solved iteratively using low-order Taylor series approximation, with the gain  

matrix representing the first order expansion: 

Equation 12    𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

(𝑿𝑿) ≅ 𝝏𝝏𝑱𝑱
𝝏𝝏𝝏𝝏

(𝑿𝑿𝒌𝒌) + 𝑮𝑮(𝑿𝑿𝒌𝒌)(∆𝒙𝒙) 

Yielding 

Equation 13    𝑿𝑿𝒌𝒌+𝟏𝟏 = 𝑿𝑿𝒌𝒌 − 𝑮𝑮−𝟏𝟏(𝑿𝑿𝒌𝒌) 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

(𝑿𝑿𝒌𝒌) 

Which can be solved using a flat start for 𝑋𝑋 (bus voltages are nominal; phase angles are zero). The 

Computational complexity and stability issues stem from inverting the gain matrix 𝐺𝐺. Computational 

complexity can be mitigated using sparse matrix techniques and matrix factorization. However, if there 

are stability issues due to poor condition of the gain matrix, a modified approach may be necessary. 

Ill-condition of the gain matrix is a particular problem in DSE and can cause convergence issues and 

output error. Power System State Estimation by Abur and Gómez-Expósito [2] lists three contributing 

factors towards ill-condition of this matrix, which have been presented below in the context of  

relevance to DSE. 

Table 21. Factors Contributing to Ill-Condition of the Gain Matrix and Relevance to DSE 

Contributing Factor Relevance to DSE 

Relatively large weights on 
measurements 

• DSE depends on additional information in the form of zero injection 
buses, which can be frequent along feeders. These are incorporated 
in WLS as virtual measurements with large weights. 

• Reliance on inexpensive (and less accurate) measurement 
equipment to achieve observability means any high-accuracy device 
such as a PMU will have a relatively large weight.  

Simultaneous short and long lines 
connected at a bus 

• Wide geographic reach leads to diversity in line lengths. Long feeder 
lines may be connected to short delivery lines. 

Large proportion of injection 
measurements 

• DSE relies heavily on injection measurements such as customer 
smart meters and DERs with smart inverters. 

The condition of the gain matrix can be mitigated with decomposition methods such as LU and  

QR decomposition. These methods can be computationally expensive, however.  
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8.1.1 Constrained Weighted Least Squares and Hachtel’s Method 

Power System State Estimation [2] presents multiple matrix decomposition approaches towards mitigating 

the condition of the gain matrix. However, the WLS problem can be formulated in such a way that the 

gain matrix is not created in the same way as was described earlier. These are the CWLS method and 

Hachtel’s method of augmented matrices. 

In the CWLS approach introduced by Aschmoneit, Peterson and Adrian [203], any equality constraints 

such as virtual measurements are removed from the measurement Jacobian and reintroduced as a separate 

set of constraints 𝑐𝑐(𝑥𝑥) (which is differentiated to form the constraint Jacobian C). The constraint Jacobian 

and gain matrix are solved simultaneously to determine the electrical state as well as the Lagrange 

multipliers 𝜆𝜆 for the constraints. This removes the large weights from the gain matrix, and also allows  

a scaling factor 𝛼𝛼 to be introduced to further improve the condition of the matrix. This formulation  

is shown below, which simplifies to (13) in the case of no equality constraints: 

Equation 14    𝝀𝝀𝑻𝑻𝒄𝒄(𝒙𝒙) = 𝟎𝟎 

Equation 15    𝑪𝑪 = 𝝏𝝏𝝏𝝏(𝒙𝒙)
𝝏𝝏𝝏𝝏

 

Equation 16    �
𝜶𝜶𝜶𝜶 𝑪𝑪𝑻𝑻

𝑪𝑪 𝟎𝟎
� �
𝜟𝜟𝜟𝜟

−𝝀𝝀
� = �

𝜶𝜶 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

(𝑿𝑿𝒌𝒌)

−𝒄𝒄(𝒙𝒙)
� 

Where α is any scaling factor. Hachtel’s augmented matrix approach presented by Gjelsvik, Aam and 

Holten [204] is similar in its approach, though it introduces additional constraints for the residuals  

with their own Lagrange multipliers 𝜇𝜇, as shown in the below reformulation of the WLS problem: 

Equation 17    𝝁𝝁𝑻𝑻[𝒓𝒓 − 𝒛𝒛 + 𝒉𝒉(𝒙𝒙)] = 𝟎𝟎 

Equation 18    

⎣
⎢
⎢
⎢
⎡𝜶𝜶

−𝟏𝟏𝑹𝑹 𝑯𝑯 𝟎𝟎

𝑯𝑯𝑻𝑻 𝟎𝟎 𝑪𝑪𝑻𝑻

𝟎𝟎 𝑪𝑪𝑻𝑻 𝟎𝟎 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝝁𝝁

𝜟𝜟𝜟𝜟

𝝀𝝀 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝒁𝒁 − 𝒉𝒉(𝑿𝑿𝒌𝒌)

𝟎𝟎

−𝒄𝒄(𝒙𝒙𝒌𝒌) ⎦
⎥
⎥
⎥
⎤

 

The matrix solution in (18) further augments the use of constraints and scaling factors, and indeed entirely 

avoids the generation of the gain matrix that can be ill-conditioned. This is therefore a stable method for 

mitigating an ill-conditioned gain matrix. 
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While under normal conditions, these constrained cases are more of a computational burden than the 

simpler WLS approach, they are less burdensome and more stable in the presence of the factors listed  

in Table 21. Therefore, a study of the system under test is in order to determine if these approaches  

are warranted. 

Alvaro and Tinney [205] further expand the augmented matrix concept to larger blocked matrices that 

separate injection measurements from the measurement set to mitigate their impact on matrix condition. 

In the case where condition remains an issue, further augmentation may be necessary. 

Nusrat [46] performs an analysis on the various WLS estimators. The determination made by the author 

Nusrat is that Hachtel’s method is the most appropriate for the challenges of DSE, as it features a fast 

convergence time and superior matrix condition. 

8.2 Other Approaches 

The WLS estimator solves a minimization problem and so it qualifies as an optimization of the objective 

function. However, it is constructed in such a way as to provide a straightforward solution using an 

iterative method for solving nonlinear equations. Other formulations and solvers for the state estimation 

problem are described in this section. 

8.2.1 Robust and Reweighted Estimators 

State estimation techniques designed for robustness against bad data were discussed in section 7.4.1.2. 

These techniques involve reformulating the objective function away from the squared-residuals  

approach in (10). The new objective functions are based on statistics theory and feature different  

methods of incorporating negative residual feedback into the optimization problem. Instead of squaring 

the residuals, these new functions include other quadratic functions, square roots, absolute value, among 

others. This is described by Abur and Gómez-Expósito [2] and Pires, Costa and Milli [177]. Robust state 

estimators (Huber or M-estimators) often make use of reweighting the residuals to reduce the impact of 

suspect measurements [177]. The absolute value formulation (WLAV) can be solved efficiently using 

linear programming as well, as shown by Irving, Owen and Stirling [173]. 
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Singh, et al. [164] analyzes the use of WLAV and a generalized Hubor or M-estimator on DSE,  

finding that robust estimators require redundancy to enable bad data mitigation, and in the presence  

of redundancy could flag pseudo-measurements as bad data points. The authors therefore recommend 

against using robust estimators for WLS. 

8.2.2 Semidefinite Programming 

The semi-definite programming (SDP) approach to state estimation was first presented by Zhu and 

Giannakis [206], and was subsequently reviewed and expanded to an approximate case by Weng, et al. 

[207]. It has most recently been applied in a DOE GMLC and SuNLaMP project under Argonne National 

Lab (Abhyankar) and Illinois Institute of Technology (Flueck). The state estimation aspect of the project 

investigates DSE in the context of a tool suite for joint transmission and distribution operation [208],  

with publications forthcoming. 

In SDP, the state space of the state estimator is mapped to a higher dimension. This equates to taking 

nonlinear terms in the network equations (for instance, the product ViVj) and representing it as a new 

singular variable 𝑥𝑥. This same process is used for the direct non-iterative approach to state estimation 

presented by Fardanesh, et al. [85], which is designed for high-accuracy measurements such as PMUs.  

This change of variables transforms the nonlinear measurement model into a linear one and can be  

solved using eigenvalue decomposition of the new state matrix. However, a requirement of SDP is that 

this matrix must have rank-one, as this designates a unique solution to the problem. If rank is more than 

one, there exists more than one possible solution. 

Weng, et al. [207] indicates that SDP is a more accurate state estimator than WLS, but that it requires 

more computation time than its simpler predecessor. SDP also has the advantage of avoiding nonlinear 

iterative techniques that could potentially not converge or reach a local solution instead of a global one. 

The drawback that SDP may feature multiple global solutions is therefore the tradeoff in this respect.  
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8.2.3 Other Optimization Techniques 

A method for solving state estimation for distribution systems using hybrid particle swarm optimization 

(HPSO) was presented by Naka, et al. [209] and extended to three-phase systems with transformer  

tap estimation by Nanchian, Majumdar and Pal [210]. This method is an alteration of particle swarm 

optimization (PSO) where the starting point of the state has less of an impact and convergence is  

achieved more quickly. Each state constitutes a particle and is given a “velocity” as it approaches  

the true electrical state. HPSO can take much longer to converge than WLS but achieves benefits  

such as more accurate estimation of losses and modeling of transformer taps as discrete variables. 

Similarly, Nanchian, Majumdar and Pal [195] present an ordinal optimization (OO) technique for  

three-phase DSE, also to include transformer taps as discrete variables. OO is based on the idea that  

it is easier to solve order comparisons (which variable is larger) than to solve for exact variable  

values. OO investigates samples of measurements using the WLS objective function, searching for  

the optimal solution. OO improves both upon the slow convergence time of HPSO and its accuracy  

for loss estimation, though it remains slower than the simpler WLS formulation. 

8.2.4 Linear Estimators 

A linear state estimator is presented by Haughton and Heydt [211] that is designed for distribution 

systems. In the linear estimator, the measurement functions are linearized around their expected operating 

point. Once linearized, the WLS estimator can be implemented in a direct, non-iterative method that is 

effectively a linear approximation of true WLS. The paper includes three-phase unbalanced formulation. 

Results are comparable to traditional WLS in the test cases, with less computation time—though accuracy 

for wider application is not shown. 

8.2.5 Forward-Backward Sweep 

Forward-backward sweep (FBS) is a method of solving power flow problems by separately and iteratively 

solving for voltages and currents on the system using simple circuit equations. The solver is specific  

to radial networks, as meshed components disrupt the trivial node voltage and current equations. This 

algorithm has been demonstrated for three-phase DSE by Thukaram, Jerome and Surapong [147]. It  

is a simple formulation and therefore computationally cheap but is not suitable with meshing in the 

network topology. FBS converges very fast, especially for networks with little redundancy. When 

redundancy in measurement occurs, a weighted average or WLS approach is taken for those nodes. 
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Power System State Estimation by Abur and Gómez-Expósito [2] gives the following guidance  

on choosing methods for network parameter estimation: 

• Analysis including residuals is necessary to identify suspect branches to define which 
parameters to estimate, but the task of estimation is more accurate when using an  
augmented state vector. 

• Similarly, using historical data in multiple snapshots improves redundancy, and therefore 
accuracy, in the presence of time-invariant parameters. Time-varying parameters may  
similarly be estimated with snapshots using a Kalman filter approach with a snapshot horizon. 

• Time-invariant network parameters are best estimated offline. 

Notes on network parameter error estimation: 

This is true for the same reasons as for bad data detection and identification: without redundancy,  

there are no measurement residuals and therefore no basis on which to identify and correct a parameter 

error. While pseudo-measurements from forecasts could theoretically be used for redundancy if they  

are based on previous system states (under the assumption network parameters do not change), they  

are not effective for parameter estimation due to the following additional note: 

This note is intuitive but also very important. A parameter that already has a certain level of confidence 

greater than the nearby measurements should not be estimated, as the estimated value cannot improve  

the parameter value. This is also a reason why forecasted pseudo-measurements should not be used for 

parameter estimation. Note that pseudo-measurements that represent the parameters themselves are  

often incorporated into the estimation algorithm and are useful for this purpose. 

Note 

In order to enable network parameter error estimation, there must be redundancy in actual 
measurements neighboring to the estimated parameter. Each redundant measurement permits 
estimation of one parameter. 

Note 

The estimated value of a network parameter will have an accuracy no greater than the accuracy of the 
local measurements used to estimate the value. 
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and are more manageable when using the branch state formulation. Because of the direct relations 

between current state variables and current and power flow measurements common on distribution 

systems, it can converge faster than when using bus voltages. Branch current state variables also allow 

easier decoupling into individual phases, which allows better treatment of single-phase laterals in 

distribution networks. 

Note that when using branch currents, the relations between bus voltages is obtainable but not their value. 

Therefore, a reference voltage must be set to make use of these relations, preferably at the feeder head. 

Certain investigations have even discussed using the power flows (real and reactive) as the state vector, 

such as Shabaninia, et al. [74] and Gómez-Expósito, et al. [57]. 

When a system is able to be solved with one state variable formulation, any of the formulations will work 

as well, and with the same accuracy, as shown by Pau, Pegoraro, and Sulis [218]. The use of different 

state variables has an effect on the measurement functions ℎ(𝑥𝑥) and the measurement Jacobian H, as the 

measurements will be mapped differently to the underlying state in different ways. One important 

consideration when deciding on state variables is therefore the nature of the measurements. Approaches to 

state variable formulation are summarized in Table 22. 

Table 22. Approaches to State Variable Formulation 

State 
Vector Coordinate Advantages Drawbacks 

Bus (Node) 
Voltage 

Polar 
• Direct estimation of voltage 

magnitude and phase 
• Suitable for meshed networks 

• Many non-linear measurement 
functions 

• High computational burden 

Rectangular 

• Linearization of many 
measurement functions 

• High computational speed  
• Suitable for meshed networks 

• Difficult treatment of current 
magnitude measurements 

Branch 
(Line) 

Current 

Polar 

• Easy handling of current 
magnitude measurements 

• Easier handling of single-phase 
laterals branching from feeder 

• Many non-linear measurement 
functions 

• High computational burden 
• Only practical for radial/weakly 

meshed grids 

Rectangular 

• Linearization of many 
measurement functions 

• Sparse system matrices 
• High computational speed 

• Only practical for radial/weakly 
meshed grids 

Power Rectangular 
• Practical for underdetermined 

systems 
• Linear line flow measurements 

• Computational burden for calculating 
relevant states 
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8.3.2 Distributed Algorithms 

One method of handling the computational burden of large distribution systems with many nodes is  

to break the system into zones that are solved in parallel. State estimation, when compared to power flow 

or other network visibility applications, has the ability to break down the system into parts, so long as 

each portion of the system maintains observability. In the case of isolated observable islands, a parallel 

approach must be pursued. Three primary methods for formulating distributed state estimation are: 

• Parallel estimation: each zone converges simultaneously on a global solution. 
• Sequential estimation: each zone converges and sequentially informs the neighboring zones. 
• Two-level estimation: zones are solved independently, and then incorporated into a  

global solution. 

Distributed algorithms can feature improved computational efficiency and convergence speed for  

large systems—but for smaller systems the increased complexity could be unwarranted. An analysis 

should therefore be undertaken to determine if distributed methods will improve computation speed.  

For real-time implementations powered by frequent measurement updates on large distribution  

systems, distributed methods can be the only way to maintain an up-to-date state estimate.  

Each of these methods has been explored in the following works: 

• De Alvaro Garcia and Grenard [219] compare parallel and sequential DSE, including  
accuracy and processing time in different configurations. 

• Nusrat, Irving and Taylor [220] discuss parallel and sequential DSE algorithms and  
investigates the differential evolution algorithm (DEA) for parallel processing. 

• Nusrat, et al. [221] present an overlapping zone approach (OZA), which runs parallel DSE 
• Nusrat [46] compares two parallel methods, DEA and OZA, and presents an application 

combining the two methods. 
• Pau, et al. [69] and Gómez-Expósito and Jaen [222] present two-level DSE algorithms. 

8.3.3 Three-Phase Algorithms 

Section 7.1.3.4 discussed the consideration of a three-phase network model. If an unbalanced system  

is modeled as a balanced single-phase system, errors in the output may result. Expansion of an  

algorithm designed for single phase to three phases is possible and has been shown with all of the  

most common state estimation algorithms, each of which are summarized in this section. three-phase 

algorithms naturally feature increased computational burden than single phase ones.  
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8.3.4 Load Models 

Customer loads are diverse in their nature, as they are composed of appliances and electronics that 

consume power in different ways. A common way to categorize customer loads is to view them in  

terms of being “constant power,” “constant current,” or “constant impedance.” These three types of  

loads differ in the relations between power consumed and voltage at the connection, as shown in  

Table 23. Note that in this table, Z refers to device impedance, not a measurement vector.  

Table 23. Load Characteristics and Voltage Sensitivity 

Load Characteristic Relation to Voltage Voltage Sensitivity Equation 

Constant Power Constant 𝑷𝑷 + 𝑸𝑸 = 𝑷𝑷 + 𝑸𝑸 

Constant Current Linear 𝑷𝑷 + 𝑸𝑸 = 𝑰𝑰 ∗ 𝑽𝑽 

Constant Impedance Quadratic 𝑷𝑷 + 𝑸𝑸 = 𝑽𝑽𝟐𝟐
𝒁𝒁�  

The simplest and most common method of incorporating loads into state estimation is to use the constant 

power method. However, depending on the diversity in customer loads, it may be appropriate to introduce 

more advanced load models. This is especially true for distribution systems, as lower voltage networks 

have less customer load aggregation which leads to stronger variations from node to node. 

One of the more robust methods of incorporating different types of customer loads into any sort of  

power analysis is the ZIP model, which is well-presented in Kersting’s distribution modeling textbook 

[141]. In the ZIP model, each load is calculated as a mixture of the three load characteristics in Table 

23—the combination of which is based on customer load data, studies, and statistics. The WLS method 

may be used to make the determination of the correct load combinations. 

Application of load modeling in DSE can occur in one of two ways: 

• By introduction of customer load models into the network equations to govern injections. 
• By solving state estimation with the constant power model, correcting the customer loads  

based on the resulting voltage, and iteratively repeating this process. 
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Research into applying different load models, including the ZIP model, to state estimation is  

described below: 

• Majumdar and Pal [223] and Nanchian, Majumdar and Pal [210] apply the ZIP model  
to DSE network equations using DSE algorithms. 

• Bila [224] explores the application of the ZIP load model to dynamic state estimation. 
• Thukaram, et al. [147] incorporates different load characteristics into the FBS  

network equations. 
• Karimi, et al. [115] iteratively updates the customer loads based on categorized  

load characteristics. 

8.3.5 Current Magnitude Measurements 

It is necessary to mention that inclusion of current magnitude ampere measurements can introduce 

computational issues into the state estimator. Because direction of current is generally not a part of  

a current magnitude measurement, this piece of information has to either be assumed (in the case  

of unidirectional radial feeders) or omitted. To omit current direction, the magnitude is squared.  

This property of current magnitude measurements is thoroughly described in chapter 9 of Power  

System State Estimation by Abur and Gómez-Expósito [2]. This chapter and its associated  

references discuss methods of incorporating current magnitude measurements into the problem. 

The chapter also raises the discussion of a system being “uniquely observable.” For a system to be 

uniquely observable, it must be observable in the sense discussed in section 7.2.1, with the additional 

caveat that the direction of power flow must be known as well. Without knowledge of flow direction,  

the solution may not be unique. This brings up the possibility of a system that is observable, but not 

uniquely observable. In addition, there may then be measurements that are “uniqueness-critical”—the  

loss of which causes loss of uniqueness observability. 

Villa Jaen and Gómez-Expósito [225] discuss the use of current magnitude measurements in a generalized 

state estimator, including issues involving topology estimation techniques. 

Mapping from current magnitude to bus voltage states in the measurement functions increases problem 

complexity, which translates to convergence time. The use of branch currents as state variables  

facilitates the incorporation of current magnitude measurements into the state estimation problem, as  

the measurement function is no longer nonlinear. There are several literary examples of DSE research 

making use of branch state variables: Deng, et al. [116], Wang, et al. [49], Baran, et al. [63], Mutanen,  

et al. [132], Therrien, et al. [194], Muscas, et al. [100], Pau, et al. [218], and Lightner, et al. [131]. 
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Using branch variables as the state vector has become one of the most common approaches to feasible 

DSE. When using branch variables, a similar issue to current magnitude measurements occurs when using 

voltage magnitude measurements. This issue has been described by Baran, Jung, and McDermott [226].  

8.4 Distribution State Estimation Studies 

Having covered the various aspects of a state estimator, including a discussion of the layers and 

components to a complete estimator as well as descriptions of the methods that have been used, a 

thorough review of investigations into DSE is presented next. The roadblocks to implementation of  

state estimation on distribution are largely based on the readiness of the subject utility to build the  

layers as described in section 7. The following summary matrix presents the most up-to-date theoretical 

contributions into DSE research—applying transmission state estimation concepts and developing  

new concepts specific to distribution systems. Applications of these concepts on real systems is  

discussed in a later section.  

A brief note is necessary on the voltage of distribution systems. Distribution is a broad term that can 

include anything from sub-transmission to 120 V customer voltage. As a rule, higher voltage systems 

have better monitoring and telemetry, and are more meshed. High voltage (HV) systems can therefore  

be treated more like transmission systems. Medium voltage (MV) systems are the most common systems 

on which DSE is studied, having some real-time measurements and topology monitoring available. They 

are generally radial or weakly meshed. Low voltage (LV) systems are very rarely monitored except for  

at the distribution transformer and at any customer smart meters connected to the system. 

Table 25 presents a large body of existing research into DSE algorithms. The acronyms used in this  

table are listed below for reference. 
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Table 24. List of Acronyms and Abbreviations for DSE Studies 

AMI Advanced metering infrastructure 
ANN Automated neural network 

CWLS Constrained weighted-least-squares 
DER Distributed energy resource 
DKF Discrete Kalman filter 
DMS Distribution management system 
FBS Forward-backward sweep 

HPSO Hybrid particle swarm optimization 
IEEE Institute of Electrical and Electronics Engineers 

IRWLS Iteratively-reweighted-least-squares 
NYS New York State 
OO Ordinal optimization 

PMU Phasor measurement unit 
RBTS Roy Billinton test system 

Rec Rectangular state variable formulation 
(As opposed to standard polar formulation) 

RTDS Real-time distribution simulator 
TRX Quasi-symmetric reduced impedance matrix 

UKGDS UK Generic Distribution System 
WLAV Weighted-least-absolute-values 
WLS Weighted-least-squares 
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Table 25. DSE Studies 
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[108] 
[109] 1997 FBS Bus  3 *   *   * NYS 934 Probabilistic load allocation for DSE 

[147] 2000 FBS Bus  3 *      * Custom 18 FBS algorithm overview 
[9] 2003 CWLS Bus  3  * * *   * Real 394 Iterative load estimation methods, load constraint 

[49] 2004 WLS Branch  3  * * *  * * IEEE 123 Meter type versus estimator error 
[63] 2009 WLS Branch  3  * * *  * * IEEE 34 Inclusion of AMI data 

[111] 2009 WLS Bus  1 *   *   * UKGDS 95 Gaussian mixture model load forecast 
[164] 2009 3 Methods Bus  1 * *  * *  * UKGDS 95 Comparing WLS, WLAV, Huber 
[220] 2011 WLS Bus * 1 *   *   * UKGDS 16 Distributed algorithms 
[132] 2011 CWLS Branch  3 * *  *  * * IEEE 37 RTDS demo, implementation compared with DMS 
[68] 2011 IRWLS Bus  1 *   *  * * UKGDS 75 IRWLS, batch smart meter data 

[112] 2012 WLS Bus  1  *  *   * UKGDS 95 ANN load forecast and error modeling 
[217] 2012 CWLS Rec Bus  1 *   *    IEEE 4 Reduced impedance matrix TRX 
[74] 2012 Optimization Power  3 * *     * None DER operation optimization approach 
[61] 2012 Hachtel’s Bus  3 *   * *  * Custom 38 Unsynchronized PMUs 

[213] 2012 DKF Rec Bus  1 *    *   IEEE 13 Assessment of DKF algorithm with PMUs 
[7] 2013 Hachtel’s Bus  1 * *    * * Spanish 99 Iterative load allocation and DSE, load profiles 

[115] 2013 WLS Bus  1 * *  *   * Malaya 34 Minimal measurements 
[211] 2013 Linear Rec Bus  3 *   * * * * RBTS 20 Linear DSE formulation, load forecast 
[227] 2013 Huber Bus  1 * *     * Custom 33 Machine learning for load forecast 
[194] 2013 Hachtel’s Branch  3 * * * *   * IEEE 8500 Tap-changer modeling included 
[228] 2013 WLS (Rec) Branch  3   * * *  * UKGDS 95 DSE Options: PMUs, meshing, rectangular state 
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Table 25 Continued 
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[81] 2014 WLS Rec Bus * 3   * * *   IEEE 123 PMU synchronization error 
[100] 2014 WLS Rec Branch  1 * * * * *  * Custom 95 Measurement correlation 
[80] 2014 WLS Bus  1 * * * * *  * IEEE 33 Applying PMUs to DSE 
[46] 2015 5 Methods Bus * 1 * * * *  * * UKGDS 711 Central & distributed methods, meter placement 

[229] 2015 CWLS Bus  3 *  * *   * IEEE 8500 Reduced impedance matrix TRX 
[230] 2015 WLS Bus  3 * * * *   * IEEE 34 Impact of input perturbations 
[221] 2015 Hachtel’s Bus * 1 *   *   * UKGDS 711 Overlapping zones, hot initialization 
[210] 2015 HPSO Bus  3 * *  *   * IEEE 123 HPSO for DSE with tap changers 
[57] 2015 WLS Power  1 * * * *  * * Custom 100 Two-time scales, limited measurements 

[114] 2015 WLS Bus  1 *   *  * * Real 46 Non-linear load estimation 
[58] 2015 WLS Bus  3 *   *  * * IEEE 123 Considering unsynchronized meters 

[218] 2015 WLS 4 Methods  3 * * * *   * IEEE 123 Comparing state variable formulations 
[69] 2016 WLS Rec Bus  3 *   *  * * RTDS 5 Cloud-based smart metering, RTDS 

[195] 2017 OO Bus  3 * *  *   * IEEE 123 OO for DSE with tap changers 
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9 Documented Implementations 
In addition to the research that has been conducted on different DSE algorithms and approaches, an effort 

has been made on several occasions to demonstrate feasibility of DSE on real systems. Most of the earlier 

implementations simply take a utility network model and realistic set of measurements to investigate 

potential algorithms and evaluate results. Since 2010, however, an effort has been made to demonstrate 

the feasibility of DSE in real time on updated networks. This section describes the current published  

work in both categories. 

In the evaluation of the studies in this section, a “redundancy index” is used, which is calculated based  

on the following equation: 

Equation 19     𝑹𝑹𝑹𝑹 = 𝑴𝑴
𝑵𝑵

 

Where 𝑀𝑀 is the number of measurements and 𝑁𝑁 is the number of states. 𝑅𝑅𝑅𝑅 = 1 refers to a non-redundant 

system with the same number of measurements and states. The redundancy index values in the section  

are approximate. 

A brief discussion of existing DSE software solutions has also been presented. 

9.1 Offline Algorithm Demonstrations 

Research studies applying various algorithms to utility distribution systems to obtain realistic results  

are presented in Table 27. Some of these examples manufacture their own data sources in a realistic 

setting, while others (generally those using SCADA measurements) use actual measured utility data.  

The acronyms used in this table are listed below for reference (this table augments the previous Table 24). 

Table 26. List of Acronyms and Abbreviations for Documented DSE Online/Real-Time 
Implementations 

EDF EDF Energy United Kingdom 
EG Elektro Gorenjska 

GPC Guizhou Power Corporation 
LV Low voltage (<2 kV) 
MV Medium voltage (~2 kV to 35 kV) 

OZA Overlapping zone approach 
RI Redundancy index 

RG&E Rochester Gas & Electric 
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Table 27. Documented DSE Offline Implementations 
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[30] 2000 WLS Bus  1  * *   * 1 
• RG&E MV circuit 
• 8 buses 

15 min 
– 1 hr 

3 
weeks 

• Feasibility based on historical 
data 

• Load estimation 

[116] 2002 FBS Branch  1   *   * 1 
• Chinese MV 

circuit 
• 116 buses 

Not 
given 

Not 
given 

• Iterative load estimation 

[157] 2005 WLS Bus * 1  * *   * 1 

• Serbian MV 
circuit 

• 6 feeders 
• 135 load points 

Not 
given 

3 days • Topology simplification 
• Observable islands 
• Measurement verification 
• Load calibration 

[110] 2008 WLS Bus  1 *     * 1 

• EDF MV circuit 
• 2 feeders 
• 14 buses 

1 min 1 day • Load modelling strategy and 
performance 

• Substation-only 
measurements 

[219] 2011 WLS Bus * 1 *     * 1 
• French MV circuit 
• 2 substations 
• 6 feeders 

1-3 
min 

Not 
given 

• Parallel and series zonal 
approaches 

[67] 2012 Hachtel’s Bus  3   *   * 1 
• 3 North American 

circuits 
• 11 feeders 

Not 
given 

Not 
Given 

• Feasibility study for DMS 

[73] 2012 WLS Rec 
Bus  1 *     * 1 

• Serbian MV 
circuit 

• 40 buses 

Not 
given 

1 day • Optimal load/generation 
reallocation 

• Incorporation of weather data 
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Table 27 Continued 
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[59] 2013 FBS Not 
Given  3   *  * * ≥1 

• Danish LV circuit 
• 1 feeder 
• 13 buses 

10 min 1 day • LV demonstration 
• Measurement combinations 
• Missing data 

[231] 2013 WLS Bus * 1      * 1 

• GPC MV circuit 
• 6 substations 

1 hour 1 week • Quality of historical data 
• Load flow correction 
• Topology simplification 
• Observable islands 
• Measurement verification 
• Load calibration 

[161] 2014 WLS & 
Hubor Bus  1 *  *  * * ≥1 

• Greek MV circuit 
• 1 substation  
• 2 feeders 

1 hr 1 week • Topology detection 
• Error estimation 
• Meter placement 
• Objective function 

comparison 
• Measurement analysis 
• Observable islands 

[46] 2015 Hachtel’s Bus * 1 *  *  * * 1 

• 2 EG MV circuits 
• 83 buses 
 

5-15 
min 

1 week • Comparison of algorithms, 
distributed methods 

• Measurement placement 
• Distributed OZA 
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These offline implementations are generally intended to be a more realistic test of the associated  

DSE algorithms than a generalized test feeder. Maintaining a measurement set that might feature  

actual utility data, these algorithms can be evaluated prior to any implementation. 

Several of the later works are quite useful in making determinations about DSE implementations.  

Nusrat [46] provides a good background and comparison of algorithms and proposes both a centralized 

and distributed algorithm together with a measurement placement strategy. Han, et al. [59] evaluate  

the impact of using different combinations of measurement sets: for instance, relying solely on substation 

data versus having access to customer measurements. Ranković and Sarić [73] investigates a future 

scenario where significant DER generation is available for optimal re-dispatch, and couples this with  

a state estimation prototype. 

9.2 Online Utility Pilot Systems 

The second category of implementations consists of those which demonstrate real-time, online operation 

of DSE in various forms. These studies partner with utilities to tie into their measurement systems so that 

the state estimator might monitor the network in real time. Table 29 presents these systems. The acronyms 

used in this table are listed below for reference (this table augments the previous Table 24 and Table 28). 

Table 28. List of Acronyms and Abbreviations for Documented DSE Online/Real-Time 
Implementations 

DKF Discrete Kalman filter 
EPFL École Polytechnique Fédérale de Lausanne 

HV High Voltage (> 35 kV) 
SMUD Sacramento Municipal Utility District 
VVO Volt-VAR Optimization 
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Table 29. Documented DSE Online/Real-Time Implementations 
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[232] 2010 WLS Bus * 3 * *  *  * ≥8 

• St. Thomas HV/MV 
circuit 

• Generating plant 
• 5 substations 

4/sec 2 days • Substation PMU calibration 
• High redundancy 
• Transmission with some 

distribution 

[131] 2010 WLS Rec 
Branch  3 *  *  *  1 

• Southern California 
Edison MV circuit 

• 1 feeder 

Not 
given 

Not 
given 

• Outage management capability 
• Fault location 
• No final report 

[131] 2010 WLS Rec 
Branch  3 *    *  1 

• Southern Company 
MV circuit 

Not 
given 

Not 
given 

• AMI integration 
• Customer phase identification 
• No final report 

[132] 2011 CWLS Branch  3 *  *  *  1 
• Finnish MV circuit 
• 10 buses 

1 hr 1 week • Issues detecting bad data from 
pseudo data 

• Comparison to DMS 

[233] 2012 WLS Bus  1   *   * 1 

• Salzburg Netz 
GmbH Lungau MV 
circuit 

• 2 substations 
• 18 MV generators 
• 29 LV generators 

5-15 
min 

Ongoing • Commissioning of DSE for VVO 
• Smart inverters 
• Potential expansion to rest of 

Austria 

[113] 2013 WLS Bus  3 *  *   * ≥1 

• BC Hydro, several 
substations 

• Results from one 
feeder 

10-20 
/day 

1 day, 
Ongoing 

• Load flow powering DSE load 
curves 

• Measurement & pseudo-
measurement tuning 

[133] 2014 Not 
given    *    *  1 

• Northern Powergrid 
circuit 

• 4 network areas 

15 min Ongoing • DSE for optimal operation & 
control 

• AMI integration 
• Network model synchronization 
• Tuning & calibration 
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Table 29 Continued 
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[215] 2015 DKF Rec 
Bus  3    *   1.8 

• EPFL Campus MV 
circuit 

• 6 buses 

50/se
c 

5 min • WLS vs Kalman algorithm 
• System latency 
• Phasor data concentrator, 

synchronization 

[234] 2015 WLS Bus  3    * * * 1 
• SMUD MV circuit 
• 1 feeder 
 

60/se
c 

Not 
given 

• High-speed real-time DSE 
• Load allocation 
• Measurement verification 

[117] 2016 Not 
given      *   * 1 

• Spanish MV circuit 
• 1 feeder 

1 
hour 

6 
months 

• Iterative load allocation and DSE 
• Effect of load curves 

[235] 2016 WLS Branch  3   *  *  1 

• 3 utility demos: 
Ostkraft, Unareti, Gas 
Natural Fenosa 

10 
min 

Ongoing • Joint MV & LV operation 
• Initial state forecasting 
• Load & generation forecasting 
• Data management 

[216] 2017 
4 

metho
ds 

Rec 
Bus  3    *   1.8 

• EPFL Campus MV 
circuit 

• 6 buses 

50/se
c 

Not 
given 

• Extension of [215] 
• Comparison of method 

performance: DKF, WLS, WLAV, 
& Linear 

• Fault detection 

[236] 2017 Not 
given 

Not 
given * 3  * *  * * ≥2 

• Malaga Smart City 
MONICA (Spain) 

• 2 MV feeders & their 
LV feeders 

5-15 
min 

Ongoing • Redundant DSE 
• Smart city operational support 
• Smart inverters 
• 2-level LV/MV estimation 
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The projects documented in Table 29 are useful as examples for distribution utilities looking  

to implement a state estimator. There are some general trends of which to take note: 

• Almost all of these examples have no redundant measurements outside the substation,  
relying on pseudo-measurements for observability along the feeder. 

• The vast majority of pilot systems implement three-phase solutions, indicating that  
imbalance is a common issue on distribution systems. 

• There are a number of examples of branch state variables, indicating that the authors  
determined this alternate formulation was more suitable for their distribution system. 

• Many of the pilots used AMI with telemetry that was designed for real-time estimation. Of 
those that did not have adequate telemetry often used AMI to generate pseudo-measurements. 

There are four implementations that feature measurement redundancy, though this level monitoring is  

the exception rather than the rule: Meliopoulos, et al. [232] presents a sub-transmission state estimator 

with distribution networks that is relatable to DSE, and Carillo [236] utilizes a designated “smart city” 

that included big investments to upgrade the measurement and telemetry infrastructure. Pignat, et al. 

[215] and Zanni [216] use the same system of 6 buses, each bus featuring a PMU. The non-redundant 

state estimators should therefore be viewed as a more realistic option for utilities seeking cost-effective 

DSE in the near future. 

Other useful lessons learned from these implementations: 

• Atanackovic, et al. [113] faced difficulty in tuning the measurement weights for state 
estimation, finding that no one tuning method gave reliable improvements in accuracy. 

• Hollingworth, et al. [133] cited difficulty in synchronizing the network model and topology  
as well as calibrating state estimation error, recommending that data maintenance processes  
be automated and that the state estimator be implemented early on so that the output can be 
evaluated and corrected. 

• Gonzalez, et al. [117] records accuracy improvements when load allocation and state  
estimation are used together to iteratively update load forecasts. 

• The Ideal Grid for All project [235] and its DSE background paper by Dansk Energi [34]  
lay out a robust architecture for DSE, including strategies for handling different types of 
measurements and database strategies for handling the large volumes of measurement and  
load forecast data. It was funded by the European Union and implemented on multiple 
distribution systems. 

• Pignati, et al. [215] and Zanni [216] demonstrate PMU-only Kalman filter state estimation  
on a small MV network. The studies evaluate how previous states might be used to lessen  
the computation time and evaluate the computation time against other algorithms. Robust 
communication networks including phasor data aggregation and consideration of delays  
are demonstrated as well. The application of state estimation for fault detection is considered  
by Zanni [216].  
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9.3 Existing DSE Software Solutions 

There currently exist several software solutions for performing state estimation on distribution systems. 

These commercial solutions are an add-on to existing distribution planning, analysis, and operation 

software, and are designed to perform the algorithms presented in section 8 with considerations for 

distribution networks. A brief description of some of the most relevant commercially available solutions 

is presented in this section. This discussion is not intended to be an evaluation or review of commercial 

software, but rather a description of the types of software on the market and their intended use. 

DSE software can be a streamlined way to handle the processing of distribution system data. This 

software has been designed to bring transmission state estimation to the distribution level, and  

includes many concepts described in this report. 

However, like the focus of this report, the state estimation algorithms are just one of many  

considerations for DSE implementation. The software might act as a hub, but it must be supported  

with a strong measurement infrastructure, communications system, and up-to-date network model 

information. Compatibility across all utility platforms is vital. 

Additionally, the software must be supervised so that issues such as measurement calibration and  

non-convergence can be addressed without detriment to operations. The bad data detection must  

be supervised so that the correct diagnosis and corrections are applied, and good measurements are  

not erroneously removed. 

Note 

DSE software should be viewed as a tool with which DSE implementation can be facilitated – the 
“state estimation engine” which does central computation based on available data. Considerations 
such as measurement infrastructure, communication, network model, and information compatibility 
are equally as important as the state estimation engine. 
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9.3.1 Planning and Analysis Software 

CYME is a planning and analysis software that is owned by Eaton Corporation [237]. It is very 

commonly used among distribution utilities, particularly for hosting GIS network models and running 

load flow analysis under different scenarios for planning and expansion purposes, among many other 

functions. CYME features an optional module for distribution state estimation, with the purpose of 

cleansing the dataset and achieving a more accurate network profile to support the other analysis 

functions. While CYME is typically an offline power analysis tool, it can be used to study historical 

periods (e.g., day-after estimation) and incorporate delayed measurements from AMI. The tool can  

be used to diagnose network parameter issues and errors in the network model and features a number  

of quality indices described in section 7.3.1.1 that evaluate the accuracy of the state estimate. 

Grid360 by Nexant [238] is another analysis tool that can be used both for offline planning and  

analysis and in-the-loop operation. The web-based tool suite includes features scenario playback,  

load flow, and other useful tools. The distribution state estimation tool allows customization options  

and GIS visualization, such that the use of observable islands and the bad data detection and convergence 

thresholds can be edited. It also features topology estimation so that the incorrect switch statuses can  

be detected and corrected. Grid360 uses CIM protocols to communicate network model and measurement 

data, and so can be integrated into systems for on-line network model hosting and operation. The result  

of the state estimate can be used to improve the accuracy of other analysis tools.  

9.3.2 Distribution Management Systems 

While the aforementioned planning and analysis tools can integrate with control center operations  

for real-time feedback, a DMS can be used as a more comprehensive in-the-loop controls and operation 

platform and can feature state estimation as well. Many companies that offer DMS and ADMS platforms 

such as ABB [239], GE [240], Schneider [241], and Siemens [242] advertise state estimators as one of  

the building blocks to their systems. DMS platforms are integrated with utility SCADA systems and 

control operations, and host network models. This makes them ideal for in-the-loop state estimation  

to process the available measurement information. 
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In the ideal integrated system presented by DMS vendors, the state estimator is the first step in operations, 

taking SCADA, AMI, and other measurement data and calculating the most-likely state of the system. 

From this first process, the rest of the DMS functions can run real-time optimization functions. 

Siemens has applied for a patent covering their method for estimating loads for pseudo-measurements, 

including screening of certain types of bad data using these estimates and incorporating the result  

into DSE [243]. 

ABB has obtained a patent for their two-level state estimator. This is not specific to distribution  

systems but could be applied to a coordinated transmission-distribution control system [244]. 
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10 Gap Analysis 
The body of work surround DSE is wide, as has been shown in the previous sections outlining the entire 

DSE implementation process. However, very few operational state estimators been developed to benefit 

day-to-day operations in distribution utilities. This section is devoted to identifying the gaps that exist in 

the literature in which further work would benefit utilities seeking to implement DSE. This is not an 

exhaustive list of areas for future work, as such a report governing all research opportunities in the area 

would be impractical. It instead focuses on the gaps that most directly affect DSE implementation. 

The gaps discussed in this section are categorized as gaps in methods and gaps in demonstrations. 

10.1 Gaps in Methods 

Identified gaps in methodology are presented in this section. These are items not currently  

covered by research publications in which SGS believes further research is warranted to benefit  

potential implementations. 

10.1.1 Quantifying the Measurement Infrastructure 

For a utility to make meaningful decisions on improving its measurement infrastructure, it must have  

a quantification of its measurements the observability of its network. Nearly all distribution systems  

are unobservable in terms of actual measurements, so simply marking the system as “unobservable” or 

“lightly monitored” carries little meaning. When implementing state estimators on distribution systems,  

it is important to note that that the capabilities of a state estimator are directly correlated with the 

capabilities of the measurement infrastructure. 

Note  

The capabilities of a state estimator are directly correlated with the capabilities of the measurement 
infrastructure from which it gets information. Pseudo-measurements are insufficient in most 
circumstances to enable accurate real-time visibility and bad data detecting capabilities.  
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All decisions regarding algorithms and performance are irrelevant when a system is unobservable,  

and most distribution systems are unobservable. Introduction of pseudo-measurements to obtain 

observability enables the state estimator to converge on a solution—it does not empower the state 

estimator to become an accurate real-time visualization tool with bad data detecting and network 

estimating capabilities. There are methods to improve pseudo-measurement forecasting and  

calibration, and even to use pseudo-measurements to correct unrealistic data inputs. While they  

can provide several benefits to DSE systems, they do not take the place of actual real-time data  

in terms of measurement redundancy. 

When a system is observable, authors will frequently assign a value to the redundancy on a system:  

a network with twice as many measurements as state variables will have a redundancy of 2. This  

gives rise to what can be called the “redundancy index,” which has been previously defined in (19). 

This redundancy index is useful when comparing the measurement capabilities of systems and has  

been used in Table 27 and Table 29 to this end. However, unobservable systems with added  

pseudo-measurements are referred to simply as “non-redundant,” with 𝑅𝑅𝑅𝑅 = 1 – having no other 

quantitative differentiating factor. Utilities might refer to their systems as “10%” monitored, SGS  

believes greater standardization of observability metrics is necessary to compare the measurement 

infrastructure of different systems and investment plans. 

This index could be as simple as a redundancy index that omits pseudo-measurements from the numerator 

and therefore can be less than one: 

Equation 20     𝑶𝑶𝑶𝑶 = 𝑴𝑴 (𝒏𝒏𝒏𝒏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)
𝑵𝑵

 

Where 𝑀𝑀 is the number of measurements and 𝑁𝑁 is the number of states. In this context, a feeder with  

10% of its buses featuring real and reactive load meters will have 𝑂𝑂𝑂𝑂 = 0.1. The utility may then  

evaluate a plan to improve its index to 𝑂𝑂𝑂𝑂 = 0.2 by placing additional meters, referring to  

section 7.1.1.1 for guidance on placement. 
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Consideration for other factors such as measurement accuracy and temporal resolution can also  

be included in measurement quantification. For instance, the addition of a PMU to a system brings  

more to the measurement infrastructure than a few additional measurement points: it also features  

high accuracy, high frequency, and a phase angle reference. Alternately, the impact of AMI can be 

augmented by improvements to the telemetry and communication systems that allow the measurements  

to be used in real time. 

Given that there is generally better equipment and telemetry at the head of the feeder, and measurements 

as less frequent the farther they are from the substation, there is a geographic dependence to measurement 

infrastructure. The infrastructure analysis could therefore include a geographic component to evaluate 

network areas with greater need for measurements. Going further, it would be useful to see such an 

evaluation overlaid on top of a network model—a heat map of measurement infrastructure index to  

plan out system upgrades. 

Further work in this area could include development of better measurement evaluation indices to  

quantify measurement prevalence, accuracy, and temporal resolution on a feeder, circuit, or network. 

Demonstration of a geographic component presented with the network model would also be beneficial. 

The goal of this work should be to provide a sound basis on which to evaluate measurement upgrades  

and infrastructure capability. 

10.1.2 Pseudo-Measurements for Bad Data Detection 

As discussed in section 7.4.1, pseudo-measurements do not provide the same benefit to detecting  

bad input data (as well as network model errors) as actual measurements do. Even when the inclusion  

of pseudo-measurements creates redundancy, these data points do not have any bearing on the real-time 

operation of the system and therefore would not be able to work with conditions outside the forecasted 

“normal operation.” 

Bad data detection is one of the most cited reasons for implementing state estimation, so research  

into overcoming the shortcomings of pseudo-measurements would be useful in pursuing these goals. 
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Mutanen, et al. [132] describe an attempt to use pseudo-measurements to evaluate normalized residuals 

and detect bad data from the result. However, the authors found that when pseudo-measurements were 

used for this purpose, certain unexpected changes in system operation could cause good measurements  

to be identified as bad. For instance, as was the case in the paper by Mutanen, et al. [132], uncommon 

warm weather caused a change in customer heating load patterns, and the normalized residual test 

provided a false positive. 

Another potential scenario could be the charging of electric vehicles: these units consume a large amount 

of power compared to traditional customer loads. If the customer electric vehicle charging patterns were 

to change, abnormal loading conditions might cause good system measurements to be detected as bad. 

Despite the aforementioned shortcomings, there is potential for pseudo-measurements to be incorporated 

into the bad data detection analysis. However, any such analysis would have to include consideration  

for abnormal loading conditions and any other factor that might result in a false positive.  

10.1.3 Pseudo-Measurement Tuning 

The weight associated with pseudo-measurements is generally obtained based on the supposed accuracy 

of the load forecasting method used. Likewise, all pseudo-measurements are likely to have a similar 

weight, which will be significantly greater (around a factor of 10 or more) than actual measurement 

weights. In the presence of residuals, Zhong and Abur [102] present methods to determine the weights  

of measurements based on error variances – however applications are not generally applicable to  

pseudo-measurements. Similarly, IRWLS methods that adaptively re-weight measurements do not 

perform well with pseudo-measurements. 

Especially in low-redundancy systems, discerning which pseudo-measurements are closer to the true  

state and adjusting their weights accordingly is a nontrivial process, as there are few residuals to indicate 

accuracy. Atanackovic, et al. [113] discuss the issues faced with tuning measurement weights in a  

DSE implementation, as they did not have a formal process that produced well-performing weights. 

In many cases, pseudo-measurement weights are adjusted in order to achieve a converging state  

estimator. However, a converging solution does not necessarily indicate an accurate one. Significantly 

altering the inputs to appease the DSE solver may introduce unnecessary error, and the system might  

need infrastructure and calibration improvements to be useable. 
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Treatment of pseudo-measurement weights to improve DSE results is an area with little research  

coverage that should be explored in the future. 

10.1.4 Discerning Between Bad Data and Inaccurate Network Model 

When a system has sufficient redundancy to permit both bad data detection and network model 

estimation, some determination must be made to diagnose the error in the system as being from 

measurement values or the network model. Further, if the network model is the source of error, it  

must be determined if the incorrect elements are line parameters, topology variables, or transformer  

tap ratios. This is because the methods for handling each type of error are different. Especially with 

parameter and topology errors, the suspected element is re-evaluated. If the re-evaluation is based  

on flawed information, the estimation will be incorrect. 

Methods for detection, identification, and calibration of input errors assume that the type of error is 

known, and that bad data has been removed prior to network model estimation. Power System State 

Estimation by Abur and Gómez-Expósito [2] describes common trends associated with each type of  

input error, but does not include a robust process with which these errors can be categorized. Incorrect 

parameters can appear as a small bias in surrounding data points, while switch status errors result in  

large residuals on either side of the switch. However, multiple bad data in the area of the suspicious 

network element could mislead the state estimator application. Trial-and-error applications. 

Exhaustive hypothesis testing could be one solution to this issue. However, with the enormity of  

many distribution systems and the number of potential input variable errors, this problem very  

quickly becomes computationally prohibitive. 

A thorough description of robust methods to discern between different types of input errors would  

be beneficial to the development of DSE. This is particularly important as distribution systems have  

more error in their network models and less monitoring of topology variables than transmission. 

10.1.5 Low Voltage/Secondary System Estimation 

The vast majority of DSE research is evaluated based on MV network models comprising distribution 

substations, feeders, and associated laterals. This is expected, as the MV portion of the distribution 

network is a valuable asset that is indicative of the performance of the system as a whole. Additionally, 

MV networks typically have some monitoring so that load allocation and state estimation functions  

can be performed. 
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LV networks can pose significant challenges to the distribution system and are largely unmonitored,  

but many utilities could benefit from visualization of these assets as well. Very few DSE investigations 

consider the LV network, and only two DSE implementations from section 9 include LV as part of the 

estimated system: Han, et al. [59] and Baran, et al. [236]. 

In many ways, LV systems can present entirely new problems to the DSE approach. Not only do LV 

networks have even fewer (and less accurate) measurements than MV systems, but the corresponding 

network models are less accurate as well. Many distribution utilities do not include secondary networks  

or customer connections in their GIS network models, and therefore have little basis for state estimation. 

However, secondary network conditions are more closely related to customer power quality, and service 

interruptions are commonly associated with issues on the secondary. 

LV network state estimation strategies should be a focus in future research in DSE for two main reasons: 

• Many urban distribution utilities have large secondary networks whose operation would benefit 
from greater visibility. 

• Incorporation of AMI and other customer-side measurements requires accurate modeling  
of the associated LV network. 

Especially in urban areas, LV networks may be highly meshed, distinguishing them from MV networks. 

Methods such as FBS and using branch currents as state variables may not work on these secondary  

grids, so further research into under-monitored LV systems should be conducted. 

In terms of incorporating AMI, when there is a gap in knowledge between the end of the network model 

and the customer meter connection, there can be an un-modeled voltage drop due to the high resistance 

(and low voltage) on customer connection cables. This is compounded when the model of the secondary 

network is not accurate, and the full advantages of implementing AMI are lost. This is further evidence 

that state estimation on the secondary is necessary for a fully functioning visibility system. 

While state estimation on LV systems might be a long-term process as these systems have fewer 

measurements than MV systems, it is a worthwhile exploit, and a chief concern among utilities  

that primarily operate in urban areas. 
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10.1.6 State Estimation under Contingency 

The most important function of a distribution utility is to keep the lights on. Likewise, incentives  

behind installing state estimators on these systems include increased reliability. However, as with  

all other distribution operations, the state estimator must also plan for contingency. Under contingency, 

assumptions change and there is a new network model. DSE must be designed such that the network 

model can be updated in real-time as the network is reconfigured, and observability must be reconsidered 

as sections of line go down. Additionally, the communications infrastructure may rely on power line 

carrier (PLC), in which case communications with measurements will also be interrupted. 

State estimation can be a useful tool for evaluating pre- and post-contingency conditions and can  

help with scenario analysis and reconfiguration studies when the system is being brought back online. 

However, there is no broad base of literature considering these distribution challenges in the context  

of state estimation. Given that DSE meant to improve reliability and operation of distribution utilities, 

 this would be a worthwhile area of study. 

10.2 Gaps in Demonstrations 

In addition to the methodological gaps described in the previous section, many DSE concepts presented 

by the literature have not yet been demonstrated on distribution systems. Utilities are risk-averse, so 

having results from proven demonstrations of the capabilities and associated DSE functions would 

provide guidance for implementation and investment decisions. It is possible that these areas have  

been investigated by certain implementation projects, but any results from these investigations have  

not been made public. Section 9 describes the DSE projects that have been demonstrated on real  

systems, showcasing several DSE algorithms and concepts. The following is a list of topics that  

have been discussed in this report but have not been demonstrated by projects in section 9, where  

further research into practical application would be beneficial. Each includes a reference to the  

associated section of the report: 

• Network model estimation, including augmented state vector approach (section 7.4.2) 
• Network topology real-time update and maintenance (section 7.1.3.3) 
• State estimation under contingency (section 10.1.6) 
• Measurement calibration and tuning (section 7.1.1.7) 
• Distribution system locational power markets with DERs (section 7.4.3) 
• Meshed LV secondary grid DSE with very few measurement points (section 10.1.5) 
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11 DSE Software Toolkit: Overview and Guide 
11.1 Distribution State Estimation Toolkit Overview 

Smarter Grid Solutions has developed a toolkit to guide interested users in exploring the concepts  

and capabilities of DSE. This document servers as the user guide to this toolkit. The toolkit application 

applies DSE to a test system in a highly-configurable manner. The purpose of this guide is to provide 

instruction and technical context to the discussion surrounding implementation of DSE. By following  

the steps laid out in this guide, the user will be able to operate a simulated three-phase DSE instance  

and explore the associated possibilities of the tool. 

Table 30. DSE Software Toolkit Features 

Features of this DSE Toolkit 
Simple interface to run three-phase DSE on an example network. 
Ready-made plots of state estimates versus true values.  
User-configurable measurement placement. 
Freedom to investigate observability and accuracy considerations in 
sandbox environment. 
Introduction and detection of bad measurement data. 
Open-source code enables further customization and extension. 
Octave and Matlab environments allow user to manipulate the output 
variables themselves. 

11.1.1 Nodes on the Open-Sourced Software Required for this Toolkit 

All software required to run this toolkit are open-sourced, meaning they are free to download and use  

as long as this is done within range the original developers’ intentions, as described in their license files. 

Using open-source software allows this toolkit to reach a broad range of users, eliminating any paywall to 

reaping the benefits of the DSE investigation. The software included with this toolkit is described below. 
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Table 31. Open-Sourced Software Required to Run DSE Software Toolkit 

Software  Purpose Description and Purpose for Toolkit 

Octave 
[245] 

Sandbox Scientific 
Coding Environment 

Octave is a scientific programming language and environment hosted by GNU. The 
language syntax is identical to Matlab, as it runs based on the same .m files. There 
are several functions and packages that are specific to either Octave or Matlab. 

This toolkit makes use of Octave as the environment in which state estimation is 
realized. All code developed is compatible with both Octave and Matlab. 

OpenDSS 
[246] 

Distribution System 
Simulator 

OpenDSS is a distribution system simulator hosted by EPRI that runs a multitude of 
functions on power networks, including unbalanced three-phase power flow. 

This toolkit makes use of OpenDSS to hold the test system model and run an initial 
power flow to achieve true underlying system values. 

Python 
[247] 

All-Purpose 
Programming 

Language 

Python is one of the most popular programming languages of engineers and 
developers. It can be applied to many different problems. 

This toolkit makes use of Python as part of the interface between Octave and 
OpenDSS. 

11.1.2 Details on the DSE Application 

The state estimation problem can be approached with a number of different approaches. The following 

table describes the approach taken by this DSE application, and the surrounding network parameters. 

Note  

All Octave code developed for this toolkit has been tested in and will work just as well when  
run using Matlab.  
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Table 32. DSE Application Details 

Parameter Description 

Default Network Model 

A three-phase, 13-bus system based on the IEEE 13-bus test distribution system that 
is included as an example within the OpenDSS download. The IEEE 13-bus system 
has been simplified to remove capacitors and transformers. 
The system has 13 buses, 35 nodes (bus phases), 12 lines, one switch, and several 
single- and double-phase laterals. Loads are present at most buses. There are 70 
unknown state variables. Buses 650, 632, and 684 all have zero-power injections at all 
phases. 

State Variables Bus voltages and voltage angles. From these values, the entire power system may be 
calculated.  

State Estimation 
Algorithm 

Hachtel’s augmented matrix method for WLS. This is a robust method for modelling 
zero-injection buses without negatively affecting the condition of the inverted matrix. 

State Estimation 
Parameters 

The convergence threshold has been set to 1x10-5. 
The maximum number of iterations has been set to 50. 
The threshold for detecting an outlying normalized residual is seven standard 
deviations away from the mean normalized residual. 
The base power is 1 MVA. 
All of these parameters are editable for interested users in the .mat file 
“advanced_parameters.mat.” 

Possible 
Measurements 

• Voltage magnitude 
• Voltage angle 
• Current magnitude 
• One-phase real and reactive power flows and injections (loads) 
• Three-phase sum of real and reactive power flows and injections (loads) 
• Virtual measurements: zero-injection buses and voltage angle reference 

Bad Data Detection 
Algorithm 

Largest normalized residual. When the largest normalized residual is above a certain 
threshold, the corresponding measurement is removed, and the state estimation 
process is repeated. 
The threshold for detecting an outlying normalized residual is seven standard 
deviations away from the mean normalized residual, as mentioned under 
“parameters.”  

The simple 13-bus network used for the example in this toolkit is shown in Figure 10. This network  

is based on the framework for the IEEE 13-bus network. This network is three-phase unbalanced to  

model distribution system behavior in the State. It includes single- and double-phase laterals and a  

switch, though does not model transformers or any other controllable or reactive element.  
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Figure 10. Simple 13-Bus Test Network Used for Toolkit 

11.2 Toolkit Installation 

The files necessary to install and run this toolkit are all located in the same location as this guide,  

on the NYSERDA portal: 

https://www.nyserda.ny.gov/About/Publications/Research-and-Development-Technical-
Reports/Electric-Power-Transmission-and-Distribution-Reports 

The necessary files are all located within a zipped folder entitled DSE_Toolkit.zip. The installer  

files located within this folder are all for 64-bit Windows systems. If this is not the operating system,  

a URL has been given to find the appropriate installer. 

1. Download DSE_Toolkit.zip 
2. Extract it to an easily accessible folder (not a remote or network drive) 
3. Run the installers for each of the open-sourced software, as outlined in the following section 

https://www.nyserda.ny.gov/About/Publications/Research-and-Development-Technical-Reports/Electric-Power-Transmission-and-Distribution-Reports
https://www.nyserda.ny.gov/About/Publications/Research-and-Development-Technical-Reports/Electric-Power-Transmission-and-Distribution-Reports
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11.2.1 Installing Octave 

Octave is the environment with which the user will interface to run the toolkit. To install: 

1. Navigate to the GNU webpage to obtain the installer file: 
https://www.gnu.org/software/octave/download.html 

2. Open the installer file and follow the prompts to install the software. 

11.2.2 Installing OpenDSS 

OpenDSS doesn’t need to be open for the toolkit to run. However, the network model (including 

customer loads) are all hosted within the OpenDSS framework and should be edited in the program.  

To install: 

1. Navigate to the Sourceforge webpage to obtain the installer file:  
https://sourceforge.net/projects/electricdss/ 

2. Open the installer file and follow the prompts to install the software. 

o If the user is on Windows 10, there will be a message box saying Windows 10 is  
not fully supported. This is acceptable, and the Toolkit should work. At worst,  
the application might crash occasionally and need to be restarted. 

11.2.3 Installing Python 

Python is used in communications between Octave and OpenDSS. To install: 

1. Navigate to the Python webpage to obtain the installer file.  
https://www.python.org/downloads/windows/ 

2. Open the installer file and follow the prompts to install the software. 

o The user will likely need to have the pywin32 package installed to communicate  
with OpenDSS. However, the DSE Toolkit will install this package automatically  
upon its first run. 

11.3 Running a Basic Example 

These instructions will guide the user through the simplest implementation of DSE using this toolkit. 

1. Open the Octave GUI. 

Note  

The DSE Toolkit has been tested only on Windows systems. Compatibility with other platforms is not 
guaranteed in the as-is state of the toolkit, though the source code may to be edited to accommodate 
these platforms. 

https://www.gnu.org/software/octave/download.html
https://sourceforge.net/projects/electricdss/
https://www.python.org/downloads/windows/
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2. Tell Octave where the toolkit files have been placed with the command:  
FolderPath = ‘FOLDER PATH HERE’; 

o (The folder path string should be in single quotes) 

3. Tell Octave where to find the functions needed to run the toolkit with the command: 
addpath(genpath([FolderPath ‘\Octave_Code’])); 

4. Run the toolkit with the command:  
[possible_measurements, meas_select, measurements,  
estVcpx, estIcpx, estS, trueV, trueI, trueS, baseV, baseS, Network_Model] = 
run_basic_DSE_toolkit(FolderPath); 

At this stage, before the final command is registered, the Octave console should look similar  

to the following screenshot: 

Figure 11. Example Screenshot of Initial Octave Console 

5. The console will display the following information: 

o If the pywin32 package is missing from the Python installation, the application  
will download and install the package (this will happen only once per computer). 

o The results of the OpenDSS load flow simulation with metrics such as buses, nodes, 
maximum and minimum voltage, total power, and total losses. 
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o When using the default case 13-bus network (which is based on the IEEE 13-bus test 
system), a message will display that two buses have been combined. This is because  
there is zero-impedance between the two buses (the result of a closed switch), and as  
a result the number of unknown state variables reduces from 70 to 64. 

6. The toolkit will ask the user if the previous measurement configuration should be loaded.  
There will be no previous configuration if this is the first instance. 

o Reply with no. 

7. The toolkit will then tell the user how many unknown state variables there are in the system  
(64 for the default case) and ask the user to select measurements, either randomly or by hand. 

o Select By Hand. 

8. Place voltage magnitude measurement at every node by pressing Select All and OK 

o The measurement selection window for voltage magnitude should look like the  
following image: 

Figure 12. Example Screenshot of Voltage Magnitude Measurement Selection 

o Set the standard deviation of the voltage magnitude measurements as 0.1%. 

9. Do the same for voltage angle measurements: press Select All and OK 

o Set the standard deviation of the voltage angle measurements as 0.1%. 
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10. No additional measurements are necessary to ensure observability. Simply press OK without 
selecting any measurements for the following: 

o Current magnitude measurements 
o One-phase power flow measurements 
o One-phase power injection measurements 
o Three-phase power measurements 

11. No additional configuration is necessary. Simply respond NO to the following prompts: 

o Edit zero-injection bus constraints? 
o Add any additional random measurements? 
o Introduce bad data? 

12. The state estimation process now begins. 

o The application will list the number of each type of measurement—which for this  
example will be 32 voltage magnitude and 32 voltage angle measurements. 

o State estimation should conclude in a single iteration given that the measurements map  
one-to-one with the unknown state variables. 

o There should be no bad data detected. 
o The average percent error in node voltage should be less than 0.1%. 

13. The application asks the user if a list of measurements should be listed for reference.  
Responding yes will list all 32-voltage magnitude and 32 voltage angle measurements. 

14. The application asks the user if the results should be plotted. Responding yes will cause the 
application to ask the user about plotting estimated values against true values in three phases: 

o Voltage magnitude, voltage angle, current magnitude, current angle, real and reactive  
power flow, real and reactive power injection, and system losses. 

15. The DSE application has now concluded. At this point, the user should re-start the application 
and play with different parameters, such as measurement configuration, zero-injection buses,  
bad data introduction, etc. 

11.3.1 Toolkit Output 

In addition to plotting the variables versus the true underlying values, as outline in the previous example, 

all important variables will be output to the console for further manipulation. As a result of running the 

example, the following variables will be added to the console workspace: 

Note  

With a voltage magnitude and angle measurement at every bus, the user has effectively placed a 
phasor-measurement unit (PMU) at every bus in the distribution feeder. This is not a realistic scenario, 
as most distribution systems have no PMUs at all. However, it is the most straightforward way to 
demonstrate observability of the system. 
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Table 33. Console Output after Running the DSE Toolkit 

Variable Description 
possible_measurements A list of all the possible measurement points on the system. 

meas_select 
The selection of measurements and associated standard deviations used to run 
the DSE application. The values in this vector correspond to the respective 
entries in “possible_measurements.”  

measurements The measurement values used to run state estimation. The values in this vector 
correspond to the respective entries in “possible_measurements.” 

estV, estVAng, estIcpx, estS The estimated voltage, and voltage angle, complex current, and power (real and 
reactive, flows and injections). 

trueV, trueI, trueS The true underlying voltage, current and apparent power generated from the 
load flow. 

baseV The base voltage for each bus. 

Network_Model 

A compressed representation of the network model used by the toolkit. A key to 
the variables within this data structure is given below: 
 

Network Model 
Characteristic Extraction Command 

Number of buses Network_Model{1} 
Bus names Network_Model{2} 
Number of nodes 
(bus phases) Network_Model{3} 

Node names Network_Model{4} 
Number of lines Network_Model{5} 
Line information Network_Model{6} 
Number of connections 
(line phases) Network_Model{7} 

Map of connections Network_Model{8} 
Numerical map of 
connections Network_Model{9} 

Number of terminals 
(all power points) Network_Model{10} 

Terminal names Network_Model{11} 
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12 DSE Software Toolkit: Further Guidance and 
Advanced Functionality 

12.1 Helpful Toolkit Information 

12.1.1 Measurement Selection 

• To generate measurements, the DSE Toolkit takes the underlying true values from the 
OpenDSS load flow and adds random error corresponding to the user specification.  
Depending on how many measurements are “placed” by the user and how accurate  
they are, the state estimator’s result will have a different level of accuracy. 

• The application supports the following measurement options: 

o Voltage magnitude 
o Voltage angle (requires a corresponding voltage magnitude measurement) 
o Current magnitude 
o One-phase power flow 
o One-phase power injection 
o Three-phase power flow and injection 

• The program will save the previously generated measurement configuration. Once the  
previous configuration has been re-loaded, the user may further configure it by hand or  
with random measurements. 

o Saved configurations persist even if Octave is closed or the computer is restarted. 

• Configuring measurements: 

o When configuring measurements by hand: 
 Hold ‘ctrl’ to make multiple selections 
 Hold ‘select’ to select a range of measurements. 
 To deselect all measurements: select a single measurement, then hold ‘ctrl’ and select  

that same measurement again. All measurement fields should then be blank. 
o When configuring measurements randomly or adding additional random measurements to  

a hand-selection, measurements will be randomly populated into currently non-existing 
measurement slots for a given category. 

• For each measurement set added to the system, the user will be asked to give the standard 
deviation of the measurement. This represents the accuracy of the measurement device, and  
a normal distribution. 

o A standard deviation of 1% means that there is a 68% chance of the measurement  
being within 1% of the true underlying value. 

o The user cannot select a standard deviation of zero. This would cause a divide-by-zero 
error—any measurements given a standard deviation of zero are removed from the system. 

o By convention the standard deviation should be positive. However, a negative standard 
deviation will have the same result. 
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• Power measurements can take the form of either: 

o Flow measurements (e.g., “BusA-BusB”) which measure power flow between buses  
on a line. 

o Injection measurements (e.g., “BusA.inj”) which measure the power injection  
to the bus from outside the network. 
 Power sources, such as a transmission connection, are a positive injection.  

They are “adding power” to the network. 
 Loads, such as a customer connection, are a negative injection. They are “removing 

power” from the network. 

• If injection measurements are selected, the application asks the user if these constitute  
pseudo-measurements (load forecasts). Designating them as pseudo-measurements does  
not alter how the application handles them, apart from the following: 

o The user is given the option to adjust the weights of pseudo-measurements. The  
application only supports either all or none of the 1-phase injection measurements  
being pseudo-measurements and will change the weight of all to the same value.  
 The weight is a metric which tells the application how accurate the measurement 

probably is. In the case of pseudo-measurements, the accuracy itself is uncertain,  
and therefore the weight is subjective. 

12.1.2 Equality Constraints 

• If no voltage magnitude or no angle measurements are placed, there is no basis with  
which to compare any of the state variables. 

o If no voltage magnitude measurements are selected, the application will ask the user if  
a voltage reference should be added to the source bus. This voltage reference takes the form 
of three equality constraints representing voltage magnitudes of 1 per unit on each phase. 

o If no angle measurements are selected, the application will ask the user if an angle reference 
should be added to the source bus. This angle reference takes the form of three equality 
constraints representing balanced angles at the source bus: 0°, -120°, and 120°. 

o If either voltage magnitude or angle measurements are added at a later time, these  
reference constraints are removed. Ensure the measurements cover all three phases. 

• The user is given the option to add zero-injection bus constraints to any bus not containing  
an injection measurement. 

o Zero-injection buses are buses that exist as a connection between other network elements, 
and do not feature transmission connections, distribution transformers, or customer 
connections that could constitute a source or a load. 

o Zero-injection buses are modelled as equality constraints that are solved in parallel  
with the WLS state estimation problem. 

o Zero-injection buses can also be modelled as injection measurements. However, this gives 
the state estimator room to diverge from the zero-injection. Additionally, if a high weight is 
associated with these injection measurements to enforce them, this can negatively affect the 
condition of the inverted matrix—introducing error to the result. 
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o For the default 13-bus model, the buses with zero injection are: 650, 632, and 684.  
The problem may still converge if other buses are selected for zero injection, though  
there will be error introduced. 

12.1.3 Bad Data 

• The user is given the option to add bad data to the measurements. When this option is selected, 
the user chooses which class of measurements to add bad data to, and how many bad data  
points to add. 

o The bad data is introduced to random measurements within the class. For instance, if the user 
elects to introduce 2 bad data points to voltage magnitude, additional error will be introduced 
to 2 pre-existing voltage magnitude measurements at random. 

o The error introduced as “bad data” takes the form of an additional 20% to 60% error either 
added or subtracted from the value of a given measurement. The exact amount of error,  
and whether the error is positive or negative, is random. 

• After state estimation has run, the system looks for bad data inputs. This is done by analyzing 
the difference between the converged system state and the measurement values that went into  
it. If there is a large discrepancy between one or many measurements and the resultant state,  
bad data has been detected. 

o The discrepancy between a measurement and the system state is called a “residual.” These 
residuals are normalized for their value and standard deviation. 

o Determining if a normalized residual is large enough to be considered “bad” involves  
the use of a threshold. The threshold has been set at seven standard deviations away  
from the mean residual value. This threshold can be customized, see section 12.2.2. 

o After bad data is detected, the application identifies the measurement with the largest 
residual as the erroneous measurement. This measurement is removed from  
consideration, and state estimation restarts with the remaining measurements. 

12.1.4 Observability Guidelines 

• If the chosen measurement configuration is unobservable, the program will display  
which states it was unable to calculate, and then exit. 

o In this case, the user should re-start the program, load the previous measurement 
configuration, and try adding measurements, zero-injection buses, or angle references  
to create observability. 

Note  

If a measurement is critical to the observability of a system—or it is part of a “critical pair” with 
another measurement—it cannot be identified as bad data. This is because the measurement is 
influential to the system state and will have a low residual—even if it is erroneous. 
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• Two data points (measurements) about each node are required in order to achieve observability. 

o The application must be able to solve for voltage magnitude and angle at each node in  
order to get the state estimate, so the user must provide at least as many known values. 
Furthermore, these values must be distributed such that there are two known values 
pertaining to each bus. 

o These data points can take the form of the following: 
 Voltage magnitude and/or angle measurements at the node 
 Power injection measurements at the node 
 Neighboring current magnitude or power flow measurements 

• In order to calculate bus angles, measurement points must provide complex information.  
This includes angle measurements but could also take the form of a real and reactive power 
measurement pair. 

o Current and voltage magnitude measurements do not contain complex information. 

• Three-phase (summed) power measurements are a useful tool, but they do not contain 
individual-phase information and therefore will help achieve redundancy but not observability. 

• The DSE Toolkit does not give an option to break a system into observable islands. 

o This decision is based on a paper by Monticelli [118] determining that adding  
pseudo-measurements to achieve non-redundant observability does not impact  
the state estimate of the already-observable parts of the network. 

o Therefore, a network that might in practice be broken into multiple observable islands  
can instead be modelled as a fully observable network, with pseudo-measurements  
filling the gaps for unobservable states. The result is then same as if the system were  
broken into observable islands. 

12.1.5 State Estimation: Iterations and Convergence 

• While the state estimation process runs, the console will output the progress after each iteration. 
There is a maximum number of iterations (default 50) in which the application moves towards 
the optimal solution. After many iterations, the state estimator gives up and prints that the 
problem has not converged. 

• Convergence occurs when the largest difference between any state variable and its previous 
value is less than the tolerance value. This ensures the problem has narrowed in on a  
solution and will not change significantly with more iterations.  

• Non-convergence generally occurs when the problem is nonconvex—meaning there is  
either multiple or possibly zero viable solutions. There are a number of possible reasons  
that a problem may not converge: 

o Low measurement accuracy. 
o Too much bad data. 
o Not enough redundancy in measurements. 
o Over-reliance on current magnitude measurements. 
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 Current magnitude measurements do not have information on direction of flow  
and introduce more opportunities for error when solving for bus voltages. 

 Certain measurements or too many of them may present the estimator multiple solutions. 
 This issue can be rectified by using current magnitude and angles as the state variables 

themselves. This requires a reformulation of the state estimation engine, but in some 
distribution scenarios may be preferable to voltage state variables. 

• When a problem does not converge, the application will print this information and ask the  
user if the application should search for bad data. 

o If the user elects to search for bad data, and bad data is found, the state estimation 
application will remove the erroneous measurement and repeat. 

o In some cases, despite the problem not converging, the estimated values are very close to 
 the true values. This indicates that the problem was oscillating between two solutions,  
both of which were close to the true state. 

• The user is encouraged to restart the application and has the option of modifying the 
measurement selection and accuracy, or even trying the same configuration again—as  
the measurement error is randomized with every run. 

12.1.6 Note on Three-Phase Power Systems Analysis 

This toolkit only supports three-phase distribution networks. This is because many distribution systems  

in the State and the United States are not designed to be balanced, and therefore cannot be simplified  

to a one-phase model. The imbalance stems from customer loads drawing from one phase instead of  

all three, and certain feeder laterals pulling off of only one or two phases. In Europe, distribution 

networks are often designed with balance in mind. 

Interested users should review materials on three-phase networks in order to understand the fundamental 

differences between one- and three-phase systems. However, for the purposes of operating this toolkit, 

only a rudimental knowledge is necessary: 

• Most buses consist of three phases. Each of these bus-phases is called a “node” in this 
application. Each node can only have one voltage value, but the three nodes per bus can  
have different voltages. 

o In the ideal balanced case, the three nodes at a bus should have the same voltage  
magnitude, and voltage angles that are 120° out of phase with each other. 

• Lines between buses will usually have as many phases as the buses they are connected to.  
Each of these line-phases is called a “connection” in this application. The same balance 
principles apply for connections as for nodes. 

• In most cases, a measurement device on the system will measure all three phases of a  
bus or line. When in doubt, apply measurements to all available phases. 

o To achieve observability, sufficient measurements must be placed on all phases. 
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• When evaluating results, it is usually a good approximation to consider only a single  
phase. Considering all three phases will indicate the level of phase imbalance. 

12.1.7 Useful Octave Commands 

• To interrupt and close the application while it is running: 

o Press “ctrl + c” 

• To clear the terminal of all previous commands: 

o Enter clc 

• To delete all variables in the current workspace: 

o Enter clear 
o Enter clear [variable name] to delete a specific variable 

• To close all plot windows at once: 

o Enter close all 

• To call a previous command: 

o Press “up” on the keyboard 

• To call a previous command with that starts with a series of letters: 

o Type the series of letters and press “up” on the keyboard. 
o For example, instead of re-typing the FolderPath and addpath commands at the start  

of each Octave session, one can simply type “F” or “a” and press “up” on the keyboard. 

• To display the value of any variables from the workspace, type its name in the console.  
Putting a semicolon at the end of a line suppresses output to the console, so do not include  
a semicolon when asking Octave to display variables to the console. 

12.2 Advanced Toolkit Instructions and Scenarios 

In this section, instructions will be given to investigate some of the more advanced options and scenarios 

enabled by this toolkit. These scenarios should serve as a jumping off point for users to explore more  

of the functionality of the DSE Toolkit than the basic example from section 11.3 provides. 

12.2.1 Modelling Load Forecast Pseudo-Measurements 

Pseudo-measurements are auxiliary sources of information that are used in state estimation to fill gaps  

in real measurements and establish observability. In the majority of cases, pseudo-measurements take  

the form of customer load forecasts. This information can be pulled from network planning studies, 

extrapolated from transmission data, or generated in-house by utility forecast engines. 
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Pseudo-measurements make a solvable problem out of an unobservable one. Regardless of the method 

used to create them, the data itself carries a large amount of error because it is not tied to the true  

real-time operation of the system. This is modeled by using a low weight corresponding to these 

measurements – the weight being inversely related to the standard deviation (expected error) of the 

measurements. Using a low weight tells the application that these pseudo-measurements may not  

be very accurate, and the internal state can be different from what they would indicate. 

To model load forecast pseudo-measurements as part of the measurement infrastructure: 

1. Load forecasts fall under the category of “single phase power injection measurements.”  
When selecting measurements, select injection measurements corresponding to the desired  
load forecasts. This could be all of them (except the source bus). 

2. When setting the standard deviation of these injection measurements, use a relatively  
high standard deviation. This could be as high as 20% or even 50%. This does two things: 

o Introduces a high amount of error into the measurements per a normal distribution 
 In the absence of a forecasting mechanism or historical data, introducing error  

to the measurements suffices to represent pseudo-measurements not based on  
real-time data. 

o Assigns a low weight to these measurements so the application knows to diverge  
from their values if necessary. 

12.2.1.1 Tuning Pseudo-Measurement Weights 

During actual DSE operation (as in this toolkit), there may be instances where the application does  

not converge because the pseudo-measurements are farther away from current operating conditions  

than was expected. In many situations, network operators have no additional information and have  

to determine how to get an answer from the program anyway. 

Unlike real measurements, pseudo-measurements do not have any technical specifications from which to 

determine their accuracy. The rough accuracy of the forecasting method may be estimated, but operators 

will not know when they are close to modeling underlying conditions and when they are not. Therefore, 

the choice of pseudo-measurement weight is somewhat arbitrary. 

When running the toolkit with pseudo-measurements, the user will be given the option to change  

their weights at the start as well as after the application runs. If interested, the user is encouraged to 

experiment with tuning the pseudo-measurement weights—especially if the problem does not converge. 

Note that setting a weight that is many orders of magnitude different from the average weight of the  

rest of the system could disrupt the state estimator. 
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12.2.2 Editing Advanced Parameters 

• There are three configurable parameters that are not presented during the course of the 
application. It is not necessary to edit them, as their default values are sufficient for most 
applications. However, they may be edited by users looking for further customization: 

o tolerance (default value = 1x10-5) 
 The tolerance parameter specifies the criteria for determining convergence. After  

every iteration, the application compares the current state estimate with that of the 
previous iteration. If the largest difference between any state variable and its previous 
value is less than the tolerance value, the problem is considered converged and solved. 

 Lowering the tolerance value may improve accuracy, though it may also increase the 
number of required iterations (and time) before convergence. 

o max_iterations (default value = 50) 
 The max_iterations parameter dictates the number of iterations that must be  

attempted before the application determines the problem will not converge. 
 Increasing max_iterations will increase computation time for non-converging  

problems, though it may enable a solution to problems that take more iterations  
to converge. 

o BD_threshold (default value = 7) 
 The BD_threshold parameter is a measure of how strict the application is in determining 

if there is an outlier in the input dataset. It corresponds to how many standard deviations 
a normalized residual must be away from the mean before it is considered an outlier 
(Note: this is not the same as the number of standard deviations away from the 
measurement’s expected value). 

 Increasing BD_threshold reduces the likelihood of good data being detected as  
bad, though it increases the likelihood of bad data going undetected. Vice versa for 
decreasing BD_threshold. 

o baseS (default value = 1 MVA) 
 This is the base power with which the system is converted to per unit. 1 MVA is a 

common standard base for distribution systems. This value can be edited if the test  
model is changed to a much larger or smaller case. Changing this number will not  
affect the accuracy of the estimator, though it will change the scale to which per unit 
current and power are applied. 

 To calculate the per unit current on each line, divide baseS by the base voltage  
operating on the line. 

Note  

If a pseudo-measurement is critical to the observability of a system, tuning its weight does not impact 
the resulting state estimate. This is because despite its error, the system has no information with which 
to second-guess the pseudo-measurement’s value adjusts the estimated state to fit the data. 
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• These parameters are located in the file advanced_parameters.mat, which is located in the 
home folder DSE_Toolkit. To edit them, open the file in a text editor and edit the numeric 
values. The following screenshot shows the layout of this file. Note: there needs to be two 
empty lines under each variable value, including the last one. 

 

Table 34. Screenshot Showing advanced_parameters.mat 

12.2.3 Editing the Customer Loads and Network Model (in OpenDSS) 

To edit the customer loads or the network model, the user must open the .dss network model file.  

This should be done in OpenDSS, but any text editor will work. There are three important parts to  

the .dss network model. Note that “!” at the start of a line designates a comment. 

• Line Codes: Specify the impedance matrices for the various types of lines in the system.  
These codes are taken from the OpenDSS IEEE 13-bus Example. 

• Line Definitions: Define the network architecture in terms of lines and their ending buses. 

o Buses are not explicitly defined – rather they exist by fact of having a connected line  
in the Line Definitions section. 
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• Load Definitions: Define the any loads that are located on buses 

o To add lines and buses, create a “New Line” in the Line Definitions section. This can  
be done by copy-pasting an existing line. 

o To add loads, create a “New Load” in the Load Definitions section. This can be done  
by copy-pasting an existing load. To modify existing loads, simply change their kW  
or kvar value. 

o Note that if the network model is altered, the saved measurement configuration in the  
DSE Toolkit will no longer apply to the new model. Attempting to load the previous 
measurement configuration will result in an error. 

• Instructions: 

o The switch between buses 671 and 692 is closed by default. To open it, change the  
command in this section to “Open Line.671692.” Keep in mind that this isolates buses  
692 and 675 from the source and effectively removes them from the system. 

12.2.3.1 Running a Model within OpenDSS 

The user is able to test any model within OpenDSS itself. The simplest way to do this is to highlight  

the lines the user would like to run and pressing ‘ctrl+D’ on the keyboard (alternatively, navigate  

to Do -> Select Lines).  

• To run the entire model, press “ctrl+A” to highlight all lines in the document and run them  
with “ctrl+D.”  

• To display results, type any of the following lines, highlight them, and run them with  
‘ctrl+D’: 

o show voltages 
o show currents 
o show powers 
o Examples of these commands are also given at the bottom of the “Simple13.dss’  

network model file. 
o Results can also be exported to .csv by navigating to “Export” on the top menu. 

12.2.4 Fully Custom Measurement Selection 

The measurement selection process presented by the application has limitations, in that each  

chosen measurement of a certain type must have the same standard deviation. To have full control  

over the measurement selection process, this section instructs users on manipulating the necessary  

vector in Octave. 
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• First, load the previous measurement configuration to get a template. It is necessary that  
the DSE Toolkit application has been run at least once: 

load('previous_meas_select.mat'); 

• To view the list of possible measurements and the current measurement configuration: 

possible_measurements 

meas_select 

o The meas_select vector corresponds to the same indices as the 
possible_measurements vector. There are zeros where a measurement is not present, 
and a value where there is a measurement (the value corresponds to the standard deviation). 

• Edit the meas_select vector. This can be done in a number of different ways. If the user is in 
a Matlab environment, the meas_select vector can be edited as in a spreadsheet. 

o Remove all measurements: 

meas_select(:) = 0; 

o Verify that an index corresponds to a certain measurement: 

possible_measurements(index) 

o Set a measurement at a desired index. For this example, the standard deviation for the 
measurement is 1%: 

meas_select(index) = 0.01; 

o Set a range of measurements with 1% accuracy 

meas_select(index1:index2) = 0.01; 

• Save the new measurement configuration 

save('previous_meas_select.mat','meas_select','ang_ref','zinj_list','pseudo'); 

• To save a specific measurement configuration from being overwritten by the DSE Toolkit 
application, navigate to the folder “DSE_Toolkit\OpenDSS_Models” and change the name of 
“previous_meas_select.mat” to any other name. 

o To re-instate this configuration and run it with the toolkit, change the name back to 
“previous_meas_select.mat”. You may need to delete the other saved file. 
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13 Project Takeaways: Challenges and Best 
Practices 

The most important step towards implementing DSE is to understand state estimation as a tool.  

State estimation is only as powerful as the information that it is given. In understanding the goals  

of network visibility and the infrastructure available to the utility, it can be determined if upgrading  

the system to support DSE is a good fit. At its most basic, here is a summary of what must be considered 

to implement DSE: 

Table 35. DSE Minimum Requirements 

What items are necessary to support DSE? 
1 An up-to-date network model 

2 

At least two pieces of operating data about each system node 
• Examples of this could be (among others): 

o Real & reactive customer load 
o Voltage magnitude & angle 

• This can take the form of load forecasts – understanding the compromise in system 
accuracy and inability to detect bad data 

3 A communication infrastructure to support real-time measurements and model updates 

4 A state estimation engine 

It should be noted that having a state estimation engine is just as important to DSE as having any one of 

the first three items. Without upgrading all four items in a convergent manner, the effectiveness of DSE 

implementation will suffer. To demonstrate this, the relation between input quality and potential outputs 

are summarized in Figure 13. 
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Figure 13. Input Quality versus Possible Outputs to a Distribution State Estimator 

The four outputs shown in Figure 13 are results that could benefit the operation of any utility. However, 

the effectiveness with which DSE can realize these results is a direct result of the quality of the three 

inputs shown at the top of the figure. It is vital that utilities understand the relation between what goes 

into the state estimator versus what the state estimator can provide. 

The most challenging step towards implementing DSE is not installing the state estimation engine at  

the center of Figure 13, but in providing good data inputs from the peripheral supporting processes. At  

its minimum, on a traditional distribution system with few monitoring points, DSE results are little better 

than a forecasted load flow. However, with key distribution system operational improvements over the 

base case, the benefits shown in Figure 13 can be realized. 
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13.1 DSE Challenges 

State estimation is a well-established practice in most transmission systems—however it has almost  

no established usage in distribution systems. This discrepancy is attributed to a variety of differences 

between transmission and distribution systems that make bridging this gap challenging. At the root  

of the challenges facing DSE is the fact that while transmission networks are highly monitored and 

controlled on a real-time basis, distribution networks have traditionally been managed in an infrequent, 

passive manner with limited system visibility, knowledge of the network, and control opportunities.  

In fact, the algorithms behind state estimation are very similar in both transmission and distribution 

systems—the primary difference is the quality and types of data used to power them. 

A summary of the implementation challenges of DSE and challenges to maintaining an accurate  

and effective result is provided in Table 36. This is a summarized table based on Table 19. 

Table 36. Summary of Challenges for DSE 

Implementation Challenges Accuracy and Effectiveness Challenges 
Observability Uncertainty in Network Parameters  
Communication Infrastructure Uncertainty in Topology 
Complexity of Network Uncertainty in Load and Forecast 
Line Parameters 

The state estimate can only be as accurate as the data provided. Sources of error can come from any or  

all of the inputs and will compound with each other. Beyond the error that can be introduced through  

the above factors, the capabilities of DSE in realizing bad data detection and network model correction 

are limited by the measurement infrastructure. For a state estimator to be able to determine which inputs 

or parameters are introducing error, it must be able to create a full and accurate system state without these 

pieces of information. In other words, measurements must be redundant. If an erroneous measurement is 

part of the critical dataset, it cannot be detected. Take the following as a conceptual example: 

The challenges to DSE adoption do not lie in the methods. The challenges lie in the data. 
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An extensive measurement infrastructure is a vital part of a good state estimator. Most practical 

implementations of DSE rely on load forecasts as pseudo-measurements to create the necessary 

observability. Accurate load forecasts based on machine learning and weather patterns (for  

renewable sources) can greatly improve the accuracy of a state estimator. 

However, when bad data detection and network model correction are desired outputs from DSE,  

these pseudo-measurements do not contribute to measurement redundancy. Even the most accurate  

load forecasts are less likely to be correct than a measurement placed in the network. 

13.2 DSE Best Practices 

The purpose of identifying these limitations is to help readers understand what should be expected from  

a DSE implementation. While DSE is a crucial stepping stone towards many of the grid modernization 

goals outlined by state and national initiatives, there are numerous challenges that could both impede 

implementation and decrease effectiveness of the result. In order for DSE to truly benefit the future of 

distribution systems, utilities must target their investments towards upgrades that work directly towards 

DSE outcomes. 

Redundancy for Bad Data Detection: Conceptual Example 

Picture a table with four legs. If one of those legs is too short (this is the bad measurement), it will not 
reach the ground. It is easy to identify the leg that is an outlier because its removal will be of no 
consequence: the table does not need that redundant leg to stay upright (meaning it is redundant). 
 
Now picture a table with three legs. This table needs all three legs in order to stay upright. If one leg is 
too short, the table surface will tilt so that all three legs still touch the ground. It is no longer easy to 
identify the leg that is in error without additional information, such as the angle of the table surface. 
Furthermore, even if the erroneous leg could be identified, it could not be removed else the table 
would collapse. The leg is non-redundant, or critical. 
 
Apply this concept to state estimation, and one can see that a measurement that is critical to solving 
the power network cannot be detected as erroneous. Bad data and network model correction is 
therefore only possible with the presence of measurement redundancy. 
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13.2.1 On Line Network Model: The Common Information Model (CIM) 

Many distribution utilities upgrade their network model only a few times a year for planning purposes. 

However, maintaining a state estimator in-the-loop requires that the network model be the following: 

• Central: The network model is core to many distribution operation applications. A central 
network model must aggregate updates and other information coming in, ready to deliver  
the most accurate version for any application or analysis as needed. It must also maintain  
a library of all measurement points and their locations. 

• Real-Time: Distribution network topology is constantly changing, and this must be reflected  
in real-time updates to the network model. The model must be able to process topology  
updates (such as switch status changes) as well as reconfigurations, outages, and regular 
expansion updates.  

• Compatible: Planning, outage, and on-line operations applications might run on different 
proprietary software platforms which keep different network model formats and variables.  
In addition, any interface with external entities such as a transmission system operator might 
require a specific data format. 

In the context of these requirements, utilities can find the implementation of real-time DSE to be  

difficult. Modernizing the network model to be an automated up-to-date system compatible will all 

network applications and external connections is an implementation challenge in itself. An automated  

and standardized approach is vital for success, else countless hours of manpower will be required on  

a regular basis to babysit the network model. 

The most recognized approach to address the issue of network model incompatibility is the publication  

of a set of standards referred to as the CIM: IEC 61970 and IEC 61968 [134]. CIM is a standardized 

method of representing network model information. What CIM offers is a standardized, flexible, and 

communicable method to store network model information, which facilitates integration with internal  

and external applications as well as upkeep of the model. Many planning applications and DMSs already 

support integration with CIM, and several utilities have either considered or have already adopted it as 

their approach to network modelling.  

13.2.2 Leveraging AMI for Load Forecasting 

DSE is not possible without multiple data points at every node in the system. Some utilities may have 

widespread AMI systems with adequate communications infrastructure to centralize all the measurement 

data in real-time. Due to the magnitude of that approach, however, it may be out of reach in the near term 

for most distribution utilities. In the absence of measurements at every bus in the system, DSE is only 

possible (and observable) with load forecasts at distribution transformers and/or customer connections. 
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The bulk of the information coming from these forecasts means that any improvement on their accuracy 

will have a dramatic improvement on the accuracy of the state estimator as a whole. While system-wide 

AMI adoption with real-time data acquisition might be a tall order, utilities can make the best use of their 

AMI systems by leveraging them to power their load forecasts. Tools such as machine learning can make 

use of 15-minute load and voltage data from AMI to generate and condition accurate predictions based  

on any number of factors. Incorporating weather forecasts will can not only train these forecast models  

to adjust DER deployments but can predict the HVAC usage of its customers. 

Load and DER forecasting are entirely separate problems from state estimation, but the fruits of 

forecasting algorithms are vital to the success of DSE. While utilities should understand that load 

forecasts can only take DSE so far in terms of measurement redundancy and bad data detection,  

their importance should not be undervalued. 

Once forecasts have been created, DSE can be used as a tool to revise their output. For instance,  

DSE will calculate system losses, which can be wrapped back into the load forecasting and allocation 

methods to further improve them. This has been done in distribution demonstration projects to  

benefit DSE implementation and accuracy. Reference Gonzalez, et al. [117] for an example of this  

type of demonstration.  

AMI is the single most important tool when it comes to predicting customer and DER behavior.  

The state-of-the-art review provides a detailed breakdown of forecasting methods and how they  

can be incorporated with DSE, including a number of research sources for further reading. 

13.2.3 Optimizing and Targeting Measurement Upgrades 

With measurements being at the core of a state estimator, their placement is of utmost importance.  

The financial burden of widespread measurement placement means optimizing the types of measurements 

placed, their accuracy, and where on the network they will reside. This becomes a discussion of the value 

of an accurate estimate of system voltages and flows to the distribution utility. 

As described in the previous section, DSE is only possible when there exist multiple data points at  

every node in the system. AMI is a powerful tool for obtaining this information, though with the 

enormous associated cost with placing a smart meter at every customer connection it might not be  

a consideration when the only goal is to enable state estimation. AMI installation is best viewed as  

an enabling technology for a number of advanced distribution analysis applications. 
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The DSE Toolkit available with this project provides an example system in which users can explore 

system observability and measurement placement. Once a state estimator has been modelled as in the 

toolkit, a utility will be able to run assessments on how each measurement considered for placement  

will beneficially impact the accuracy of the system state. For instance, installing PMUs would provide  

a great boost in accuracy for the state variables in the surrounding network nodes. With limited resources, 

a distribution might only budget for a few of these devices. Reference the state-of-the-art review for 

detailed discussion and further academic references regarding the optimal placement of limited numbers 

of PMUs for best performance. 
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14 Concluding Remarks 
Distribution state estimation is a powerful tool—one that has been identified as an essential step on the 

road to modernized and dynamically managed distribution networks. Distribution utilities in the State  

and elsewhere are upgrading the visibility, communication, and control capabilities of their systems, and 

investigating DSE as an application to further these goals. For every system, a DSE implementation will 

take a different shape, but many utilities will have similar questions. At its most basic, here is a summary 

of what must be considered to implement DSE: 

Table 35 Revisited 

What items are necessary to support DSE? 
1 An up-to-date network model 

2 

At least two pieces of operating data about each system node 
• Examples of this could be (among others): 

o Real & reactive customer load 
o Voltage magnitude & angle 

• This can take the form of load forecasts—understanding the compromise in system 
accuracy and inability to detect bad data 

3 A communication infrastructure to support real-time measurements and model updates 

4 A state estimation engine 

Many utilities might satisfy some or all of these above criteria, in which case DSE is an application  

within their reach. Especially in the State, utilities have begun to roll out their AMI programs, vastly 

improving the number of measurement points. AMI can go a long way towards item two in the list above, 

providing real and reactive loads at each monitored customer connection and often voltage information  

as well. However, systems with AMI still need to satisfy items one and three: network model that reaches 

the customer connection, and infrastructure to transmit AMI measurements to the control center in real 

time. Without these items, AMI cannot be used as a measurement and can only benefit load forecasts. 

The above discussion regarding the usefulness of AMI is just one of many that must happen at the utility 

level for a DSE implementation to be successful. With compromised quality in any one of the four items, 

the resulting effectiveness will suffer. The reality is that prior to AMI rollout, most distribution systems  
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are largely unmonitored outside the substation. However, with a concerted effort to evaluate and upgrade 

all four items to the necessary level for desired DSE effectiveness, utilities will be able to leverage DSE 

to greatly improve the depth of their distribution visibility. The resources provided by this project are 

provided to better facilitate these discussions and evaluations. 

14.1 Future Work 

This project draws heavily upon the academic research on DSE, so likewise there exists a wealth  

of information for interested parties to study further. The state-of-the-art review is a summary of  

current research on the subject and works as a jumping off point to find resources on a number of  

topics. However, this project only starts to fill the gap between academic research and widespread 

adoption. The following two items are topics that could be investigated further to extend this project: 

14.1.1 Guided Graphical Observability Analysis 

In selecting measurements, the user is given guidelines for how many measurements to select and is told 

which states the system was unable to calculate. However, this could be improved by presenting a graphic 

interface with the network model shown, telling the user exactly where additional measurements must be 

placed to achieve observability. In this way, users could better understand the impact that their 

measurement choices make on observability.  

14.1.2 Using AMI to Generate Advanced Forecasts 

There is ample academic research on generating load forecasts in a variety of methods, including machine 

learning. A useful extension to this project would be to implement some of these methods to imitate the 

use of AMI to generate pseudo-measurements for the DSE Toolkit. With this analysis, a user could 

investigate different forecasting methods for their impact on DSE accuracy and compare them to 

traditional methods not powered by AMI. 

14.1.3 Using Line Flow Current as a State Variable 

The state variables used in the DSE Toolkit are bus voltages and angles—a standard approach for general 

state estimation. However, in some distribution systems, current measurements are more common than 

voltage measurements. Additionally, line flow constraints can often be the critical pain points of a 

distribution network.  
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Changing the state variables from voltages to currents requires alterations to the state estimation process, 

but it can also reduce estimation error in the line currents and improve convergence speed when current 

magnitude measurements are prevalent.  

14.1.4 Time-Series Simulation 

The DSE analysis presented in the Toolkit considers a single snapshot in time. While this is useful for 

exploring most of the important state estimation concepts, it could be augmented with a time-series 

analysis that simulates an entire day, week, or year. This way, customer load profiles can be incorporated, 

and even used to generate pseudo-measurements. Additionally, the application would be able to study the 

challenges of synchronizing measurement updates and incorporated measurements which have different 

pulling frequencies. 

14.1.5 Monetary DSE Analysis 

The decisions regarding which distribution assets are worth upgrades are unique for each utility—but at 

the bottom line is always a return on investment. The DSE Toolkit presents a sandbox in which DSE 

concepts can be explored free from financial considerations. This could be extended to include an analysis 

of the cost to achieve a given DSE implementation, including cost per measurement point, and a rough 

analysis of cost versus system accuracy. This would give an example of what considerations must be 

prioritized on a monetary basis. 



 

142 

15 Contact 
For questions and inquiries regarding this report, the DSE Toolkit, or for further discussion on the topic of 

distribution state estimation, contact: 

 Kevin Morrissey 
 kmorrissey@smartergridsolutions.com 
 Research & Development Engineer 

Smarter Grid Solutions 

Alternatively, send a general inquiry to info@smartergridsolutions.com. 

mailto:kmorrissey@smartergridsolutions.com
mailto:info@smartergridsolutions.com
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