
Great Lakes Wind Feasibility Study Public Webinar #3 August 10, 2021

Sherryll Huber NYSERDA Project Manager

Meeting Procedures

Participation for Members of the Public:

- > Members of the public are muted upon entry.
- > Questions and comments may be submitted in writing through the Q&A feature at any time during the event.
 - > Chat is disabled
 - > Today's materials along with a recording of the webinar Will be posted to NYSERDA's Great Lakes Wind website.
- > If technical problems arise, please contact karen.fusco@nyserda.ny.gov

 \times

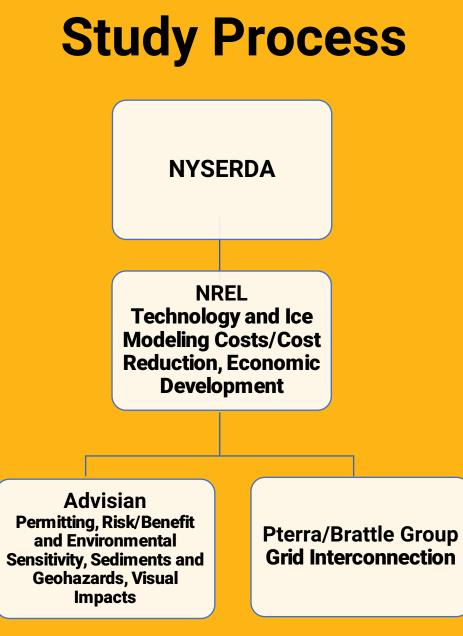
Agenda

- > Overview of Feasibility Study
- > Lake Resource Characterization, Port Infrastructure National Renewable Energy Laboratory (NREL)
- > Technology, Cost Analysis, Economic Development National Renewable Energy Laboratory (NREL)
- > Permitting, Risk/Benefit Analysis, Visualization Study Advisian
- > Interconnection to Electric Grid Pterra/Brattle Group
- > Stakeholder Input from Public Feedback Session
- > Next Steps and Study Timeline
- > Q&A

Today's Objectives

- > To provide a brief overview of the Study
- > To provide a mid-Study update on research to date
- > To provide an overview of input received during the Public Feedback Session
- > To provide an overview of the remaining timeline for Study completion
- > To provide an overview of next steps after Study completion

Public Service Commission Order

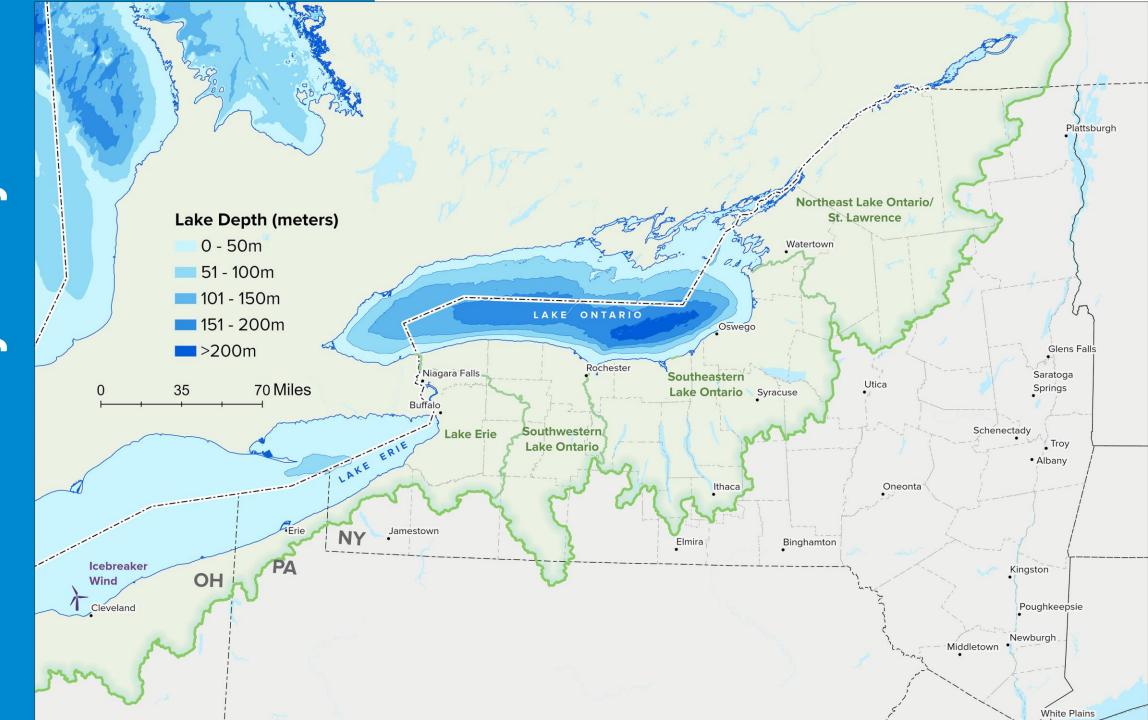

Published 10/15/2020

Directs NYSERDA to:

- > Conduct a feasibility study for wind energy generation in the Great Lakes
- > Commence work with 180 days of Order within a \$1 million budget

Viewpoint at Lake Ontario

Public Webinars and Stakeholder Feedback New York State Public Service Commission


No Action

Further Study

Pilot Projects

Solicit Great Lakes Wind Projects

-akes Wind ility Study Great La Feasibil

Great Lakes Wind Feasibility Study

Transforming ENERGY

Rebecca Green, Ph.D. Senior Project Lead

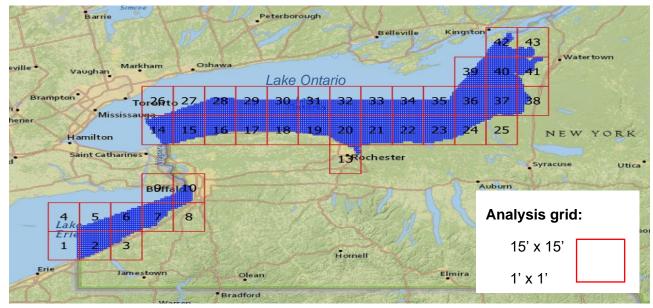
Walter Musial, M.S. Wind Lead

. Matt Hall, Ph.D. Research Engineer

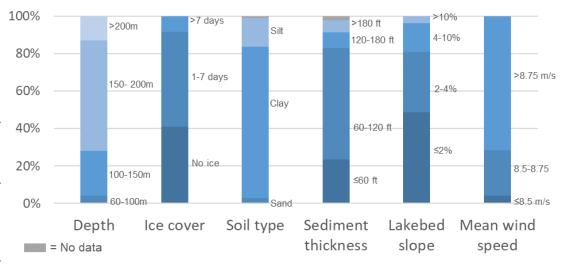
Jeremy Stefek, M.S. Engineering Analyst

Mike Optis, Ph.D. N Senior Atmospheric V Scientist

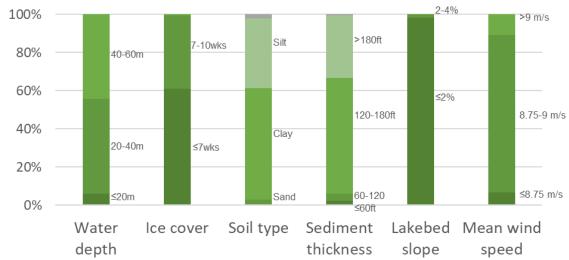
Matt Shields, Ph.D. Wind Cost Engineer



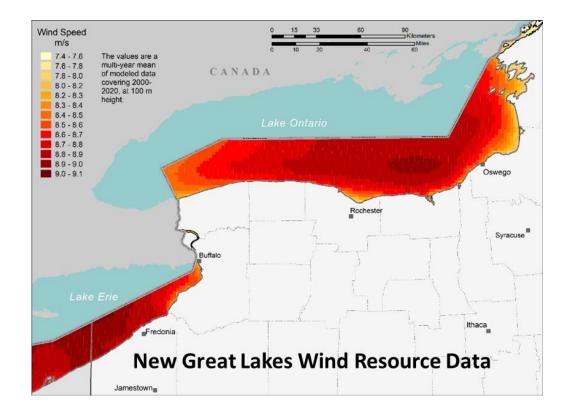
Stein Housner, M.S. Wind Engineer

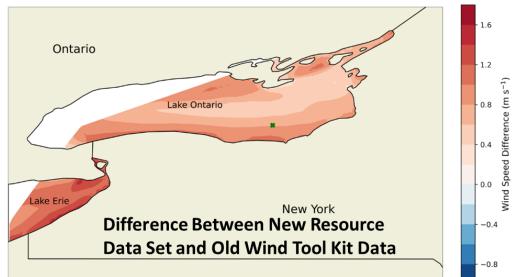

Patrick Duffy, M.S. Wind Cost Engineer

Physical Characteristics


Lake	Total Area	Area beyond 5 miles from shore	Area beyond 10 miles from shore
Erie	590 mi ²	270 mi ² (~2 GW)	70 mi ² (~0.5 GW)
Ontario	3,500 mi ²	2,350 mi² (~18 GW)	1,450 mi² (~11 GW)

Lake Ontario: Area > 10 miles offshore




Lake Erie: Area > 5 miles offshore

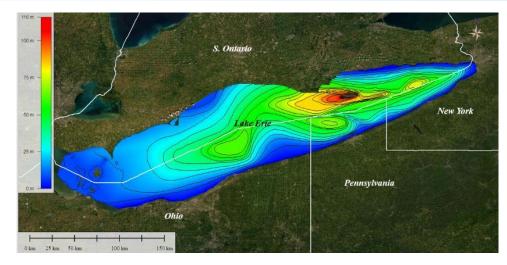
New Wind Resource

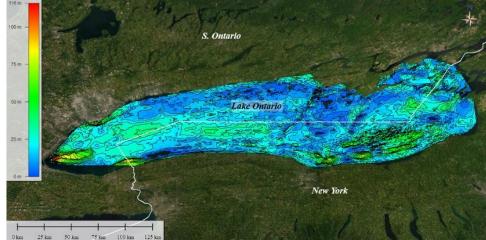
- > NREL is updating the Great Lakes resource data, replacing <u>WIND Toolkit</u> from 2015
- > New data uses recent advances in the Weather Research and Forecasting (WRF) numerical weather prediction model
- > Updated data cover 21-year period instead of 7 years, and indicate higher wind speeds compared to the WIND Toolkit (lower figure)
- > The eastern part of Lake Ontario has the highest annual average wind speeds at 8.5-9.0 m/s
- > Increases in wind speed over Lake Erie range from 0.8-1.6 m/s, and about 0.2-1.0 m/s in Lake Ontario
- Data for the Great Lakes are publicly available (See: <u>NREL 2021</u>)

Depth to Bedrock – Close to Surface

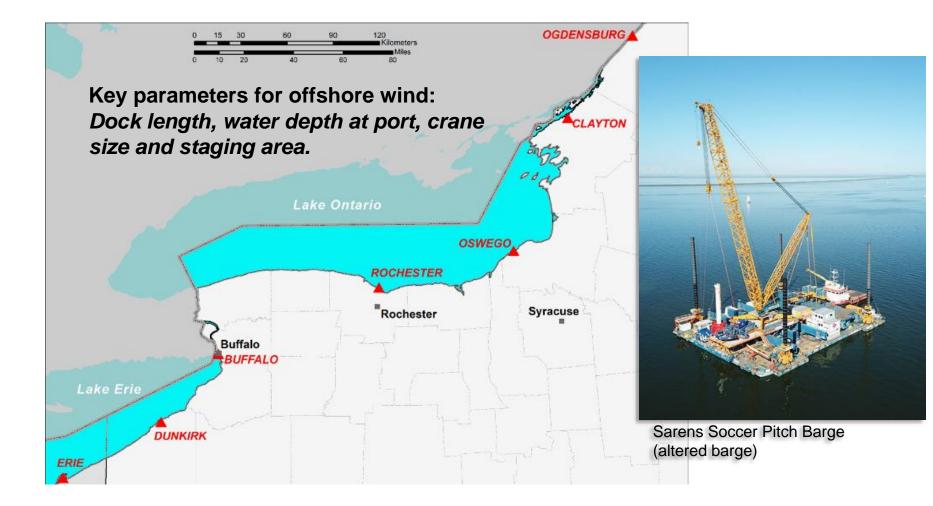
Lake Erie Depth to Bedrock (NY Waters)

- > Less than 250 ft (76.2 m)
- > Average ~100 ft (30.5 m)


Morgan, N. A., B. J. Todd, and C.F. M. Lewis. 2020. *Interpreted seismic reflection profiles, sediment thickness and bedrock topography in Lake Erie, Ontario, Canada and Michigan, Ohio, Pennsylvania and New York, U.S.A.* Open File 8733, Geological Survey of Canada, 26. https://doi.org/10.4095/326715.


Lake Ontario Depth to Bedrock (NY Waters)

- > Less than 295 ft (90 m)
- > Average ~74.8 ft (22.8 m)


Hutchinson, D. R., C.F. M. Lewis, and G. E. Hund. 1993. "Regional Stratigraphic Framework of Surficial Sediments and Bedrock Beneath Lake Ontario." *Geographie physique et Quaternaire* 47 (3): 337-352. http://doi.org/10.7202/032962ar.

National Geophysical Data Center. 1999. "Bathymetry of Lake Ontario." *Data set.* Edited by NOAA. National Geophysical Data Center. https://doi.org/10.7289/V56H4FBH.

Ports and Infrastructure

Vessel Limits Define Turbine Size

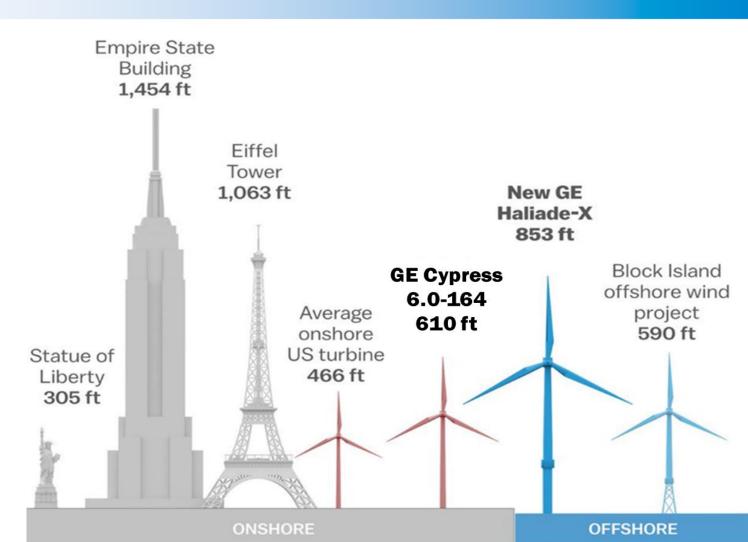
- The locks on the St.
 Lawrence Seaway limit the size of vessel that can be brought into the Great Lakes.
- Traditional Wind Turbine Installation vessels are not feasible due to width limitations.
- Barges are being considered to install the turbines.

Sources:

(Assessment of Vessel Requirements for the U.S. Off., 2013)

(Learn About the Seaway | Great Lakes St. Lawrence Seaway Development Corporation, n.d.)

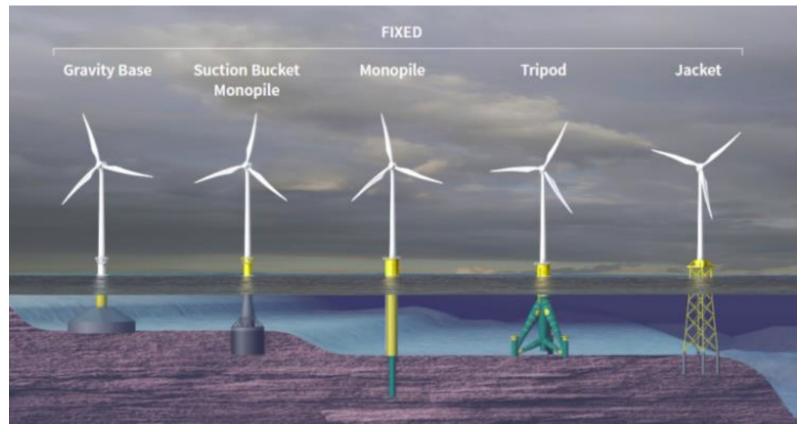
Turbine Selection


> Representative turbine: <u>GE Cypress 6.0-164</u>

- > Specific Power 284 W/m²
- > Rotor Diameter 164 m
- > Turbine rating 6.0 MW
- > Hub heights available up to 112 m
- > Selection of a land-based model due to transportation constraints in the Great Lakes and commercial availability aligned with timeframe of Great Lakes projects
- > Supply chain for 6.0 MW scale land-based turbines may be more sustainable
- > Class I or II machines are considered viable due to high mean wind speeds in the Great Lakes – many other options exist.

Comparison of Turbine Sizes

- Great Lakes wind turbines will be smaller than the 12 to 15-MW Class ocean-based wind turbines
- > Comparable to Block Island Wind Turbines
- > FAA limitations may restrict maximum height to 610 ft
- > One GE Cypress 6.0-164 wind turbine can produce over 20 GWh per year – enough to power about 2,800 NY homes.

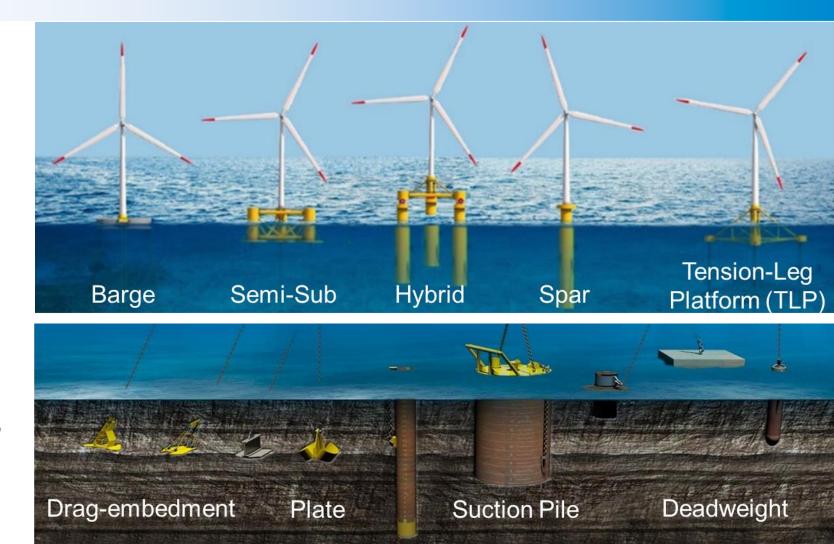

Fixed-Bottom Substructure Types: Lake Erie

> Considerations for support structure feasibility

- Installation method
- Seabed compatibility
- Ice structure interaction
- Local manufacturability
- Cost
- Technology readiness

> Key Drivers for Lake Erie

- Low profile at waterline
- Shallow lakebed penetration due to bedrock
- Port adaptability


e.g. LEED Co is using Mono-Buckets in Lake Erie

Floating Substructure Types: Lake Ontario

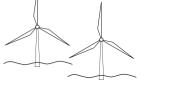
- Floating substructures have not yet been deployed in ice-covered waters
- > Considerations for support structure feasibility
 - Installation method
 - Seabed compatibility
 - Ice structure interaction
 - Local manufacturability
 - Cost
 - Technology readiness

> Key Drivers for Lake Ontario

- Low profiles at waterline
- Port adaptability

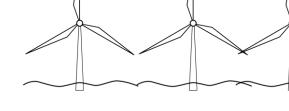
Cost Modeling and Cost Reduction Pathways

Scenario development


- Fixed and floating scenarios
- Capacities and technologies based on commercial operation date

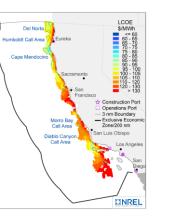
Model customization

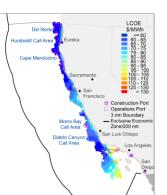
- Updating generic assumptions in ORCA and ORBIT for the Great Lakes
- Ports, vessels, grid, turbine rating, capacity factors, ice protection

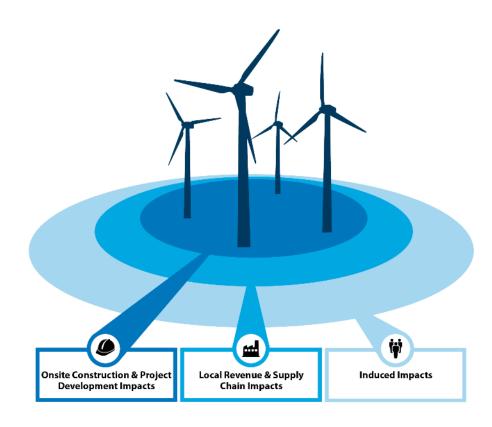

Cost and sensitivity study

- ORBIT: Installation timelines and costs
- ORCA: LCOE heat maps, cost projections, detailed cost breakdowns


Near-term COD


Long-term COD




INREL

Jobs and Economic Development

- > Estimating the job and economic impacts using NREL's Jobs and Economic Development Impact (JEDI) model
 - > Results will include the impacts of development, manufacturing, installation, and operations for the state of New York
- > Assessing the workforce and economic development potential from port utilization to support wind development in Lake Erie and Ontario
- > Identifying existing workforce programs at vocational schools, community colleges, and universities which could train and educate a Great Lakes wind workforce

Thank you

For more information, please contact:

Walt Musial walter.musial@nrel.gov

Rebecca Green rebecca.green@nrel.gov

Great Lakes Wind Feasibility Study

Advisian

Sarah Courbis, Ph.D. Project Manager Sarah.Courbis@advisian.com

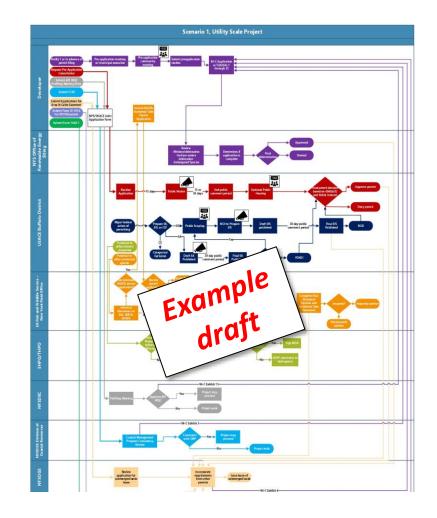
Katy White, M.Sc. Fish/Fisheries SME Kathryn.White@advisian.com

John Brand, Ph.D. Geosciences SME John.Brand@intecsea.com

Andrew Krieger, M.Sc. Regulatory and Policy SME Andrew.Krieger@advisian.com

Great Lakes Wind Feasibility Study

- > The Advisian Team is working on three aspects of the NYSERDA Great Lakes Wind Feasibility Study
 - I. State and Federal Permitting Study
 - II. Geophysical and Geohazards Study
 - III. Relative Risk, Minimization/Mitigation, and Benefits Study


Great Lakes Wind Feasibility Study: Risks/Benefits

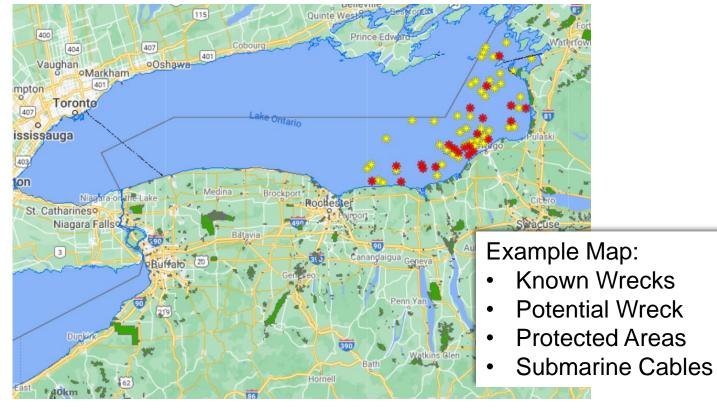
- > Unique Aspects of GL Wind
 - Submerged Lands Act
 - Near international boundary w/Canada
 - Very few prior freshwater wind farms
- > 14 Major Federal and State Permits, Consultations, or Authorizations
 - Wide range of issues addressed
 - Permits required for construction, turbines, cable installation
 - Required permits/approvals vary based on wind farm size (e.g., SEQRA vs. 94c) and lead NEPA agency (i.e., there are multiple paths)
- > Case studies including freshwater wind farms in Europe

Permit or Regulatory Requirement	Covered Activities
National Environmental Policy Act Review	Major federal action such as granting a federal permit
Clean Water Act Section 404/Rivers and Harbors Act	Excavation or placement of dredged or fill in waters
Section 10 Permit	of the U.S.
Clean Water Act Section 401 Certification	Federal action that discharges to navigable waters of the U.S.
National Historic Preservation Act Section 106 Consultation	Impacts to historical or cultural resources
U.S. Coast Guard Private Aid to Navigation Permit	Obstructions or hazards to navigation
Federal Aviation Administration Obstruction Evaluation	Hazards to air navigation
National Oceanic and Atmospheric Administration National Marine Sanctuaries Section 304(d) Consultation	To be determined upon sanctuary designation
New York State 94-C Regulations	Major renewable energy project siting and permitting
New York State Environmental Quality Review Act Review	Discretionary state agency activities not covered by 94-C
Coastal Zone Management Act Consistency Review	Federal activities within New York State's coastal zone
New York State Dredge and Fill Permit	Excavation or placement of dredged or fill in New York State waters
New York State Grants of Lands Underwater	Structures located on state submerged lands
New York State Coastal Erosion Hazard Areas (CEHA) Permit	Activities in designated CEHA areas
New York State Incidental Take Permit	Take of New York State listed species

Great Lakes Wind Feasibility Study: Permitting

- > Developed cross-functional process flow charts for the overall permitting process
 - Two scenarios developed
 - Shows activities of the developer and all federal and state regulators
 - Handoffs between agencies and actors (i.e., integration points)
 - Opportunities for public comment and public announcements
 - Visualizes triggers, decisions points, and information flows between processes

Great Lakes Wind Feasibility Study: Risks/Benefits

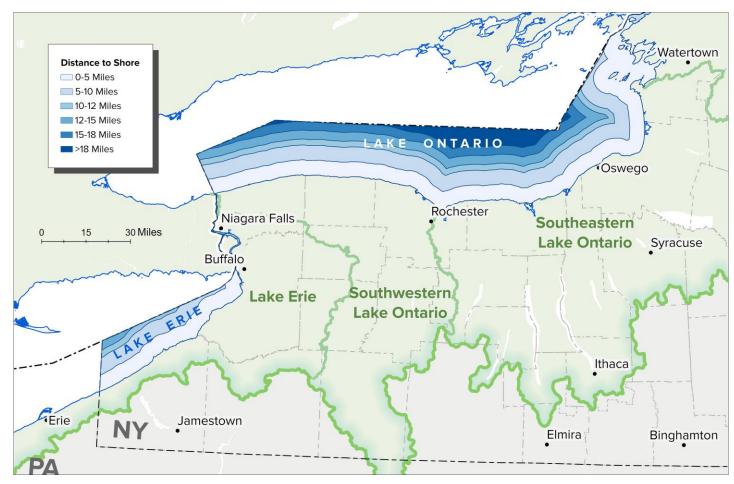

In progress - Relative Risks, Minimization/Mitigation, Benefits Study

Construction Stressors	Post-Construction Stressors
Noise/Particle Motion without Pile-Driving	Noise/Particle Motion
Noise/Particle Motion with Pile-Driving	Scour
Increased Vessel Traffic	EMF, Vibration, Heat
Bottom Disturbance	Permanent Structure
Habitat Alteration	Collision/Attraction/Displacement
Collision/Attraction/Displacement	

Contacted A	Agencies, Academics, Officials
US Fish and	Wildlife Service
NY Departn	nent of Environmental Conservation
Ontario Mir Parks	nistries of Environment, Conservation, and
US Geologio	cal Survey
Audubon	
Black Swam	p Bird Observatory
BirdCast	
The Nature	Conservancy
American B	ird Conservancy
University o	of Maryland
University o	of Delaware
University o	of Michigan
Point Blue (Conservation
Black Swam	p Bird Observatory

Great Lakes Wind Feasibility Study: Risks/Benefits

In progress - Relative Risks, Minimization/Mitigation, Benefits Study



Receptor Groups	
Shorebirds	
Waterfowl	
Migrating birds	
Bats	
Wetlands	
Dunes	
Fishing Areas	
Areas of Concern	
Important Environmental Area	S
Wrecks	
Shipping	

Visibility and Related Impacts

Ongoing and Future Analysis

- Based on the composite data and parameters provided by NYSERDA and NREL
- > Visual impact along the coastline will be determined by using a baseline wind turbine/substation design and common, GIS-based line-of-sight and over-the-horizon geometric analyses
- > Establish zones of visibility for the nominal size/height of the structures selected

Thank you

Advisian

Sarah Courbis, Ph.D. Project Manager Sarah.Courbis@advisian.com

Katy White, M.Sc. Fish/Fisheries SME Kathryn.White@advisian.com

John Brand, Ph.D. Geosciences SME John.Brand@intecsea.com

Andrew Krieger, M.Sc. Regulatory and Policy SME Andrew.Krieger@advisian.com

Interconnection Feasibility

Brattle Group Hannes Pfeifenberger

Pterra Consulting *Ric Austria*

Each pin represents a potential POI showing the substation name.

Belleville

Transmission line routes with voltage ratings ranging from 115 to 345 kV are shown as red lines.

Legend

Thousand Islands

Geneva

_yme_Tap

Black R

West Adams

POL

🦆 Transmission Line

Ft. Drum

en Street

30 mi

East Watertown

Potential Points of Interconnection (POI) For Lake Ontario

Peterborough

Lake Ontario Wine Creek Lighthouse South Oswego Volney Paloma Somerset J Mallory Gilbert Mills Station 424Ginna Curtis Brockport Spenceport Swann Road Shelby J Station 204Station 216 Station 42 Sorrell Hill Telegraph Road Station 418 Lockport Robinson Road Fairport-HogansburgPannell Macedon Sleight Road Proposed Dysinger 345 kV Switchyard Oakfield Rochester Sta. 80 Approx. Loc of New Rochester Syracuse Roll-Road Dewitt State Street Erie St

Gardenville 1 Elm StreetStole-Road Stole Road Stole Road

Davis Road

Legend PO 🐉 Transmission Line

West Falls

10 mi

Coble Hil

Davis Road

Gowanda

Potential Points of Interconnection (POI) for Lake Erie Westfield

Westfield

North East South Ripley

Mayville • Hartfield Chautauqua

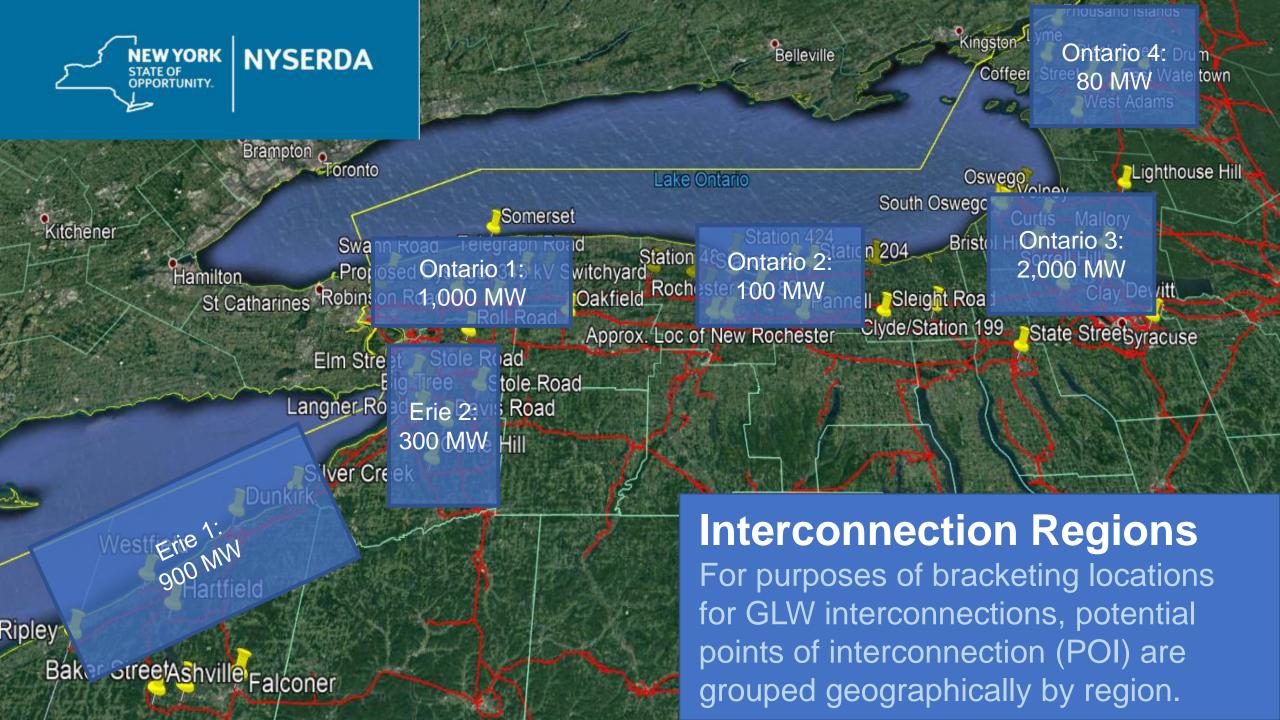
Ashville

Each POI is characterized by size of GLW it can support on a solo capacity headroom basis, consistent with the DPS straw proposal for headroom calculations.

For the initial selection process, POIs are identified based on a maximum straight-line distance of 30 miles from the lakeshore. Further filtering is applied to exclude POIs that are electrically close and potentially have the same or similar headroom.

Google Earth

e Landsat / Copernicus


Lakewood Baker Street

Falconer

Jamestown

Silver Creek

Dunkir

Status Update

Selected power flow models: NYISO FERC 715 cases for 2025 and 2030, new model developed to represent 2030 with 70% renewable energy

Identified initial set of Points of Interconnection (POIs) using defined criteria

Calculated capacity headroom for each POI

Grouped POIs by geographic region. Identified capacity headroom on a regional basis

PENDING: Capacity headroom for total combined interconnections from both Lake Ontario and Lake Erie

Thank you

Ric Austria ricaustria @pterra.us Hannes Pfeifenberger hannes.pfeifenberger@brattle.com

Public Input From Public Feedback Session Great Lakes Wind Feasibility Study

Topic Types from June 9, 2021

- > Role of Wind in Energy Transition
- > Policy and Planning
- > Potential Future Siting Considerations
- > Environmental Impacts
- > Socioeconomic Impacts

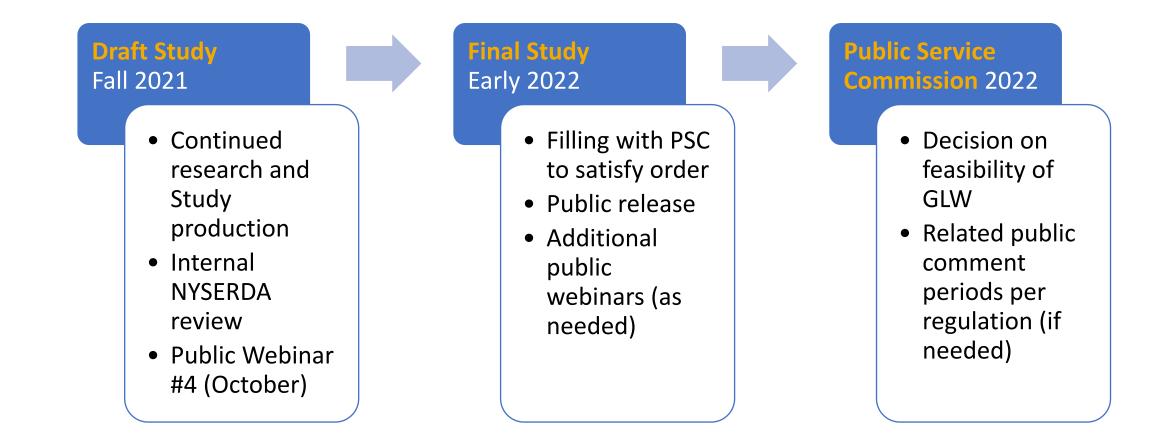
Registration	151 registrants
Numbers	110 attendees
Commontors	25 verbal
Commenters	62 written

Great Lakes
Wind
Feasibility
Study

Public Input From Public Feedback Session and Written Comments

June 2021

Role of Wind in Energy Transition	 Include context on the necessity of renewable energy transition in mitigating future climate impacts, including to the Great Lakes Provide context on the role of Great Lakes Wind in achieving overall CLCPA commitments, including assessment of need for upstate wind capacity Compare wind energy with other potential renewable energy sources
Policy and Planning	 Be transparent on data sources and methodologies in the Study to ensure the public understands the science and facts that will be utilized in any future decision-making Provide information on professionals internal and external to state government working on the Study Conduct additional public outreach Consider support for and opposition to Great Lakes Wind in the region Consider lessons learned from Block Island Wind Farm
Potential Future Siting Considerations	 Establish a standard for "responsible" siting of wind in the Great Lakes Articulate rationale for any differences in approach between ocean wind and Great Lakes wind Respond to concerns about Public Trust Doctrine and Rivers and Harbors Act of 1899 Consider the utilization of different wind technologies (e.g. suction, floating)


Great Lakes Wind Feasibility Study

Public Input From Public Feedback Session and Written Comments

June 2021

Environmental Impacts	 Assess wind impacts on wildlife, soil sediment, local ecosystems, sensitive habitat, drinking water, and public health Assess the likelihood of contamination from wind turbines or manufacturing Include plan for decommissioning turbines in an environmentally sensitive way Assess cultural resources
Socioeconomic Impacts	 Analyze impacts on lakeshore tourism (e.g., businesses running sportfishing and boating recreational activities) and fisheres Analyze jobs impacts, including assessment of impacted industries, wages and career growth potential, increased regional investment, domestic supply chains, and export opportunities Analyze ratepayer impacts from transition to wind energy Analyze the potential for Community Benefits Agreement Evaluate programs necessary for training and expanding the domestic workforce with an emphasis on ensuring opportunities for dislocated workers, as well as access and career pathways for both disproportionately impacted communities and BIPOC communities

Next Steps Great Lakes Wind Feasibility Study Remaining Timeline

Next Steps Great Lakes Wind Feasibility Study Engagement

> Multiple opportunities to stay engaged!

- > Webinar #4: October 2021 Presentation of the draft Study by NYSERDA and the Study researchers
- > Sign-up for email updates and get the latest on study progress at the NYSERDA Great Lakes Wind website <u>nyserda.ny.gov/Great-Lakes-Wind-</u> <u>Feasibility-Study</u>
- > Email the Great Lakes Wind Team at greatlakeswind@nyserda.ny.gov

Thank you

For more information, please contact:

NYSERDA Great Lakes Wind Team greatlakeswind@nyserda.ny.gov

Visit the project website at: nyserda.ny.gov/Great-Lakes-Wind-Feasibility-Study nyserda.ny.gov

Follow NYSERDA