

LED Street Lighting Academy Planning for Success with LED Street Lighting

November 12, 2019

Introduction

About the Lighting Research Center

Lighting

Research Center

👁 Rensselaer

Advancing the effective use of light for society and the environment

30,000 sq. ft. research center and laboratory Established in 1988 by the New York State Energy Research and Development Authority (NYSERDA)

40-60 concurrent projects in field and lab

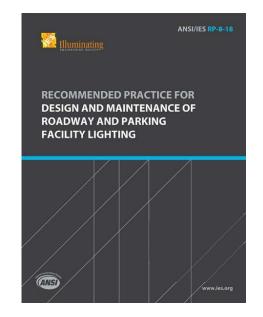
Focus Areas: Energy, Technology Development, Human Health, Lighting Benefits, Transportation and Safety, Product Testing, Plant Health, Design ~30 full-time faculty and staff

15 graduate students

Outline for Today's Webinar

- Lighting performance criteria
- Introducing lighting calculations
- Validating with field measurements
- Controlling light pollution
- NYPA's Smart Street Lighting NY program
- Questions and answers

Lighting Performance Criteria

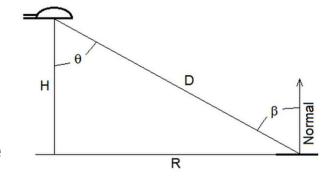

Sources of Lighting Criteria

- Illuminating Engineering Society (IES) Recommended Practice (RP) for Design and Maintenance of Roadway and Parking Facility Lighting (IES RP-8-2018)
- American Association of State Highway and Transportation Officials (AASHTO) Roadway Lighting Design Guide
- Both recommend light levels, uniformity and glare

Lighting Research Center

Rensselaer

• Most recommendations are for continuous, "designed" lighting (not partial or utility-pole-mounted lighting)


Light Level - Illuminance

- Illuminance is the amount of light falling on a surface area
 - Footcandles: lumens per square foot
 - Lux: lumens per square meter
 - 1 fc = 10.76 lux, or 1 fc ≈ 10 lux

Research Center

Rensselaer

- Relatively easy to calculate and measure
- Many streets have been designed to meet illuminance criteria
 Lighting

Illuminance on the Horizontal Plane = Intensity \times cos θ / D^2

Light Level – Illuminance (cont'd.)

- Illuminance is used to specify light levels for pedestrian areas (sidewalks, crosswalks)
 - High pedestrian use (>100 peds/hour): 10 lux (pedestrians only) or 20 lux (pedestrians and vehicles) average illuminance on walkways
 - Medium pedestrian use (11-100 peds/hour): 5 lux average illuminance on walkways
 - Low pedestrian use (≤10 peds/hour): 2-4 lux average illuminance depending upon location

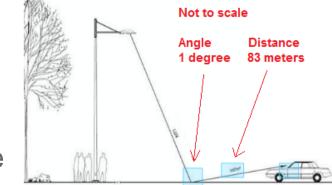
Lighting

Research Center

Rensselaer

8

Light Level – Luminance


- Because we do not "see" illuminance but rather the brightness of light reflected from a surface, or luminance (in cd/m²), lighting recommendations now focus on luminance
 - Of the pavement surface 83 m ahead
 - From the viewpoint of a driver

Lighting

Research Center

Rensselaer

- Must make assumptions for pavement type
- Very difficult to measure in the field

Example Luminance Recommendations

- Major roads (>3500 vehicles/day):
 - 0.9 cd/m² average luminance
- Local roads (<1500 vehicles/day):
 - 0.5 cd/m² average luminance
- Average luminance values recommended by IES can be approximated in terms of average illuminance for different pavement types:
 - Asphalt: $1 \text{ cd/m}^2 \approx 15 \text{ lux}$
 - Concrete: 1 cd/m² ≈ 10 lux

Uniformity of Street Lighting

- IES recommends average/minimum luminance ratios to prevent dark areas within lighted streets
- Major roads: Average/minimum ratio should be no greater than 3:1 (high pedestrian user) or 3.5:1 (low ped use)
- Local roads: Average/minimum ratio should be no greater than 6:1

Lighting

Research Center

Rensselaer

Glare from Street Lighting

- Glare from bright lights scatters light in our eyes similar to looking through a "veil"
- IES recommendations for glare control use a concept called "veiling luminance"
- Can be calculated but not measured

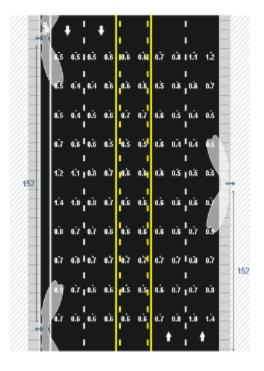
New Designs versus Retrofit Situations

- IES criteria for street lighting apply to new, continuous lighting with pole spacing optimized to meet the required performance for the type of street
- In retrofits (including utility pole-mounted installations) the objective is to match or improve existing lighting conditions, usually based on average illuminance
- If and when it's important, consider aesthetic appearance (e.g., historic downtowns) and glare control – decorative luminaires are likely to have lower (and more visible) mounting heights

Lighting

earch Center Sensselaer

Lighting Calculations


Street Lighting Calculations

- Software tools are available for street lighting calculations
 - Visual Roadway Tool (Acuity Lighting)
 - Street Lighting Tool (Super-Efficient Equipment and Appliance Deployment Initiative)
- Both use photometric data provided by manufacturers in a standard format to calculate based on street geometry

Lighting

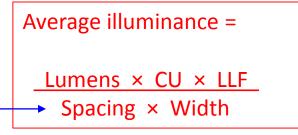
Search Center

Rensselaer

Estimating Average Maintained Illuminance

- Light loss factor (LLF): Lumen and dirt depreciation (typical: 0.7-0.8)
- Streetlight data sheets often publish coefficient of utilization (CU)
 - CU: Proportion of lamp/LED lumens that fall on a street (street-side, SS) of a given width (in multiples of streetlight mounting height)
 - 2-lane road: 1 mounting height wide (30 ft / 9 m)
 - 4-lane road: 2 mounting heights wide (60 ft / 18 m)
- Pole spacing and road width (in ft or m)

Lighting

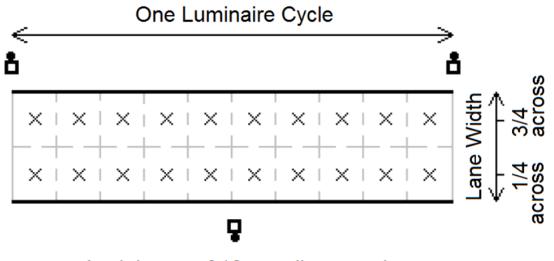

Research Center

Rensselaer

If ft, average is in footcandles; if m, in lux

Field Measurement and Validation

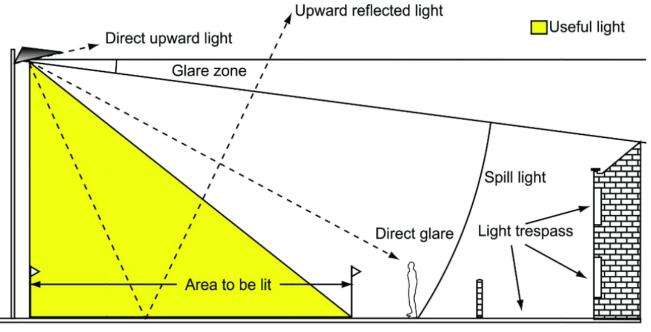
Why Make Field Measurements?


- Validate luminaire
 performance/photometrics
 - Are they providing the expected light output and distribution?
- Confirm that lighting conditions (e.g., light levels, uniformity) meet recommended practices or specifications

How are Measurements Made?

A minimum of 10 equally spaced measurement points per luminaire cycle (more if points would be more than 5 m apart)

Controlling Light Pollution



What is Light Pollution?

Light trespass

• Glare

Light pollution is often caused by the way light is emitted from lighting equipment. Choosing proper equipment and carefully mounting and aiming it can make a significant difference.

Environmental Lighting Zones (LZs)

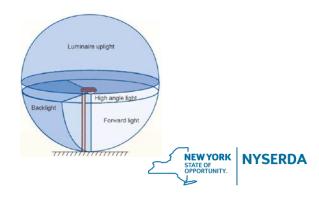
- LZ0: Pristine, natural environment (avoid street lighting)
- LZ1: Low ambient / rural
- LZ2: Moderate ambient / limited nighttime use
- LZ3: Moderately high ambient / suburban
- LZ4: High ambient / urban

Lighting

Research Center

Rensselaer

Environmental Lighting Zones (LZs)


- Lower lighting zones are expected to have lower light levels
- Recommended maximum illuminances are often lower than recommended practices for street lighting
- Can safety needs be met with reflective markings, signs, delineators?
- BUG zone allowances are stricter for lower numbered lighting zones

ighting

earch Center

Rensselaer

Designation	Recommended Maximum Illuminance Level (Ee)
LZ 1	1.0 lux
LZ 2	3.0 lux
LZ 3	8.0 lux
LZ 4	15.0 lux

Smart Street Lighting NY

November 12, 2019

Smart Street Lighting NY

- Governor announced NYPA to implement Program in January 2018
- Goal of 500,000 LED street light conversions by 2025
- Significant annual energy and maintenance cost savings to NYS local governments
- Improved quality of light, resident comfort and safety for communities across the state
- Full turnkey street light service

New services available under Smart Street Lighting NY:

- Street Lighting Maintenance Service
- SMART Cities Grant Program

Smart Street Lighting NY Program Status

Street Light Category	Status
Total street lights in New York State	1.4 Million
NYC street lights converted to LED	400,000
Smart Street Lighting NY Goal	500,000
NYPA's street light projects in design/construction	137,000
NYPA's street lighting projects in development	201,000
NYPA's penetration in Smart Street Lighting NY goal	67% in <2 years

Full Turnkey Project Implementation

O&M SERVICES

NEW YORK STATE OF OPPORTUNITY. NY Power Authority STATE OF OPPORTUNITY. NYSERDA

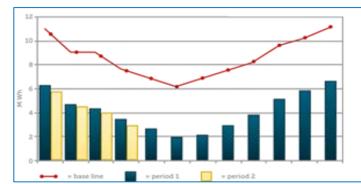
Street Lighting Maintenance Service

O&M SERVICES

- Remove maintenance uncertainty postownership
- On-going street light advisor
- Key services:
 - Remote monitoring and troubleshooting
 - Emergency response
 - 24/7 service
 - Detailed progress reports
 - Access to digital platform of street light system

Street Light O&M With Asset Management


Visual map-based street navigation

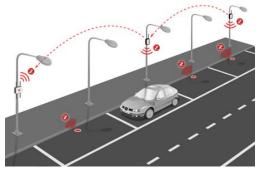

Customized lighting and dimming

					0	/ERVI	EW P	ORE	NER	GY S	AVIN	S CA	END	AR										
Edit Dimming Calendar	Edit Dimmir	ng Rules	Ed	it Dir	nmir	ng Sh	apes																	
DIMMING SHAPES		Name			We	ekda	y to \	Veek	end											Co	lor (
Weekday to Weekend		Comme	nt .																					
Weekend to Weekend	1																							
Weekend to Weekday		100%				2			_															
Default		90% - 80% -									1											2		
Weekday to Weekday		70% - 60% -																				1		
Christmas		50% - 40% -													0			-	1					
		30% -									1													
		20% - 10% -				winter					Summer													
		0%	1300 -	14:00 -	- 00:51	16:00 - V	17:00 -	- 00:81	- 00:61	- 00:02	21:00 -	-	23:00 -	- 00:00	- 00:10	- 0020	- 0080	- 00:50	- 00:50	- 00:30	- 00:20	- 00:80	- 00:60	-
		e.	1	1	8	÷,	e	÷.	1	19	ci.	14		d	G	ó	0	0	8	0	0	0	8	

Fault detection & automated notification

Real-time energy measurement

SMART Cities Grant


- \$7.5M grant available
- Grants to buy down the cost of hardware and software for SMART city solutions
- Must use NYPA's full turnkey service for the street light LED conversion
- Grant will be offered on a first come first serve basis

Grant Allocation			
Number of Street Lights	Base Grant Amount (No customer match)	Matching Amount (up to 50% match)	Total Amount (Base + Matching)
0 to 500	Up to \$20,000	Up to \$40,000	Up to \$60,000
501 to 1,000	Up to \$40,000	Up to \$80,000	Up to \$120,000
1,001 to 5,000	Up to \$75,000	Up to \$150,000	Up to \$225,000
>5,000	Up to \$100,000	Up to \$200,000	Up to \$300,000

NYSERDA

SMART Cities – Sample Technologies

Transportation

Connectivity

Public Safety

NY Power

Authority

NEW YORK NYSERDA

STATE OF OPPORTUNITY.

Questions

Contact:

Jessica Waldorf Jessica.Waldorf@nypa.gov 518.633.6763

Kevin Luteran Kevin.Luteran@nypa.gov 518.633.6742

Coming Next – December 10th @ 10:00 a.m.

Understanding Impacts on the Public

- Does the color temperature of street lighting matter for visibility? For health?
- What are adaptive control strategies and what are their benefits? How can they be implemented?

Thank You!

Questions & Answers

