planyc

A STRONGER, MORE RESILIENT NEW YORK

Bridging climate science and utility systems: Resiliency planning in NYC

NYSERDA EMEP Conference November 7, 2013

The City of New York Mayor Michael R. Bloomberg

Sandy impacted the people, services, infrastructure and economy across the entire city

	People and public safety	43 people died in storm-related incidents 200+ homes and businesses were destroyed by fire
	Buildings	Nearly 20,000 buildings remained damaged 2 weeks after the storm (red or yellow tagged by DOB, experiencing power outage) Nearly 7,000 people occupied city shelters at peak occupancy
	Energy	800,000+ customers lost power overall because of Sandy, ~650,000+ customers without power at the peak of the storm
	Transportation	11 million travelers across all modes of transportation per day were impacted by closures
	and See	95% of copper infrastructure destroyed 4 months after storm, services have not fully returned to NYC
	Waterfront and coastal protection	\$400 million+ to repair beaches, boardwalks, waterfront structures Over 2 million cubic yards of sand lost from New York beaches, including 1.5 million cubic yards on the Rockaway peninsula alone
RUCH STREET	Public services	 >1,100 patients were evacuated from local hospitals 1.1 million children were affected when all schools closed for a week
	Business and economic impact	Direct and indirect losses amounted to \$19 billion in damages 94,000 businesses were inundated, lost power, or both 890,000 employees worked at impacted businesses

Preparing New York City for future climate risks A Stronger, More Resilient New York

On June 11, 2013, the City launched *A Stronger, More Resilient New York*.

- Analysis and recommendations built on best available science
- Comprehensive assessment of all critical infrastructure and services
- 257 initiatives, including 59 milestones to be met in 2013

Understanding climate risks for infrastructure planning

Utility networks: Interconnecting paths to the customer and critical nodes

Draft – confidential

Power assets in the floodplain

Floodplain mapping

FEMA has recently released new maps in a process that began before Sandy.

FEMA June 2013 Preliminary Work Maps (PWMs)

Surge inundation **probabilities** and **floodplain extents** generated from modeling of probable storms

100-Year Floodplain: A Zone (FEMA 2013 PWMs)

Floodplain mapping

Using the NPCC projections, the City, with the CUNY Institute for Sustainable Cities, developed maps showing how these floodplains will expand by the 2050s.

FEMA PWMs, with 2020s and 2050s Floodplain Growth

100	100-YEAR FLOODPLAIN*					
	2013 PWMs	2050s Projected	Change (%)			
Residents	398,000	801,000	101%			
Jobs	271,000	430,000	59%			
Buildings	68,000	114,000	68%			
Floor Area (SF)	534M	855M	60%			

* 90th percentile SLR projection

100-Year Floodplain (Projected 2020s) 100-Year Floodplain (Projected 2050s)

Vulnerability increases with projected sea level rise

SLR Out of flood zone

0.2% flood zone 1% flood zone

90th percentile

Electric assets by current and future flood zone status

Modeling electric system risks from storm surge

Model brings together three components

different storms with an

attached probability

Allows for a probabilistic, customer-centric understanding of substation flood protection priorities Draft – confidential

Annual expected outages due to storm surge will increase dramatically by 2050

¹ Population growth figures based on projections from Department of City Planning through 2030; past that assume 0.4% growth rate per year based on 2012-2030 avg ² Economic growth based on long-term historical average of 2.2% a year

Baseline Growth

50th pct

SOURCE: Mayor's Office of Long-Term Planning and Sustainability

Annual share of affected customers increases to 7 percent by 2050

Unaffected Affected

- 50th percentile SLR
 - 2020s: 6 inches
 - 2050s: 17-18 inches

Changes in surge risk depend on sea level rise assumptions

Baseline Growth

All pct

Five assets drive 80 percent of customer losses

Applying climate science to resiliency planning in NYC

Four practical lessons:

- Mayoral task forces jump-start stakeholder cooperation: Stakeholders and regulators developed shared understanding of climate risks and appropriate decision-making frameworks
- Gap between climate science and regulatory policy 2 can be bridged:

City led efforts toward practical application of climate projections to utility systems through modeling

- 3 City can bring ratepayer perspective to the discussion: Quantification of risk took into account impacts on the economy and critical infrastructure

Progress achieved through sustained cooperation:

City continues to work closely with Con Edison engineers to develop understanding of system risks – partnership of regular meetings and feedback

Draft – confidential

The Risks of Climate Change

At the Administration's request, the NYC Panel on Climate Change (NPCC)updated its 2009 analysis of how climate change might impact New York, including the risk for chronic hazards.

CHRONIC HAZARDS	Baseline (1971-2000)	2020:	5	2050:	5
		Middle Range (25 th -75 th percentile)	High End (90 th percentile)	Middle Range (25 th -75 th percentile)	High End (90 th percentile)
Average Temperature	54ºF	+2.0°F to 2.8°F	+3.2ºF	+4.1°F to 5.7°F	+6.6⁰F
Precipitation	50.1 in.	+1% to 8%	+10%	+4% to 11%	+13%
Sea Level Rise ¹	0	+4 to 8 in.	+11 in.	+11 to 24 in.	+31 in.

Source: NPCC; for more details, see Climate Risk Information 2013

¹ Baseline period for sea level rise projections is 2000-2004.

Sea levels are likely to rise 1-2 ft. and could rise more than 2 $\frac{1}{2}$ ft.

These sea level rise projections have been incorporated into NOAA'S coastal flood risk mapping tool and USACE's recently released storm surge calculator.

The Risks of Climate Change

The NPCC also updated its 2009 analysis for extreme events.

EXTREM	E EVENTS	Baseline (1971-2000)	2050 Middle Range (25 th -75 th percentile)	ls High End 90 th percentile)
	Dave per vear $> 00^{\circ}$ E	18	39 to 52	57
Heat Waves and Cold Events	Heat waves per year	2	5 to 7	7
Intense Precipitation	Days per year with rainfall > 2 in.	3	4	5
Coastal Floods at	Future annual frequency of today's 100-year flood	1.0%	1.7% to 3.2%	5.0%
the Battery'	Flood heights from a 100-year flood (feet above NAVD88)	15.0	15.9 to 17.0	17.6

¹ Baseline period for sea level rise projections is 2000-2004.

Source: NPCC; for more details, see Climate Risk Information 2013

Understanding risks to our critical infrastructure

