

Characterization of Laboratory-Generated Secondary Organic Aerosols Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer

Olga Hogrefe¹, Brian P. Frank², Yongquan Li¹, Yele Sun¹, Qi Zhang¹, Min-Suk Bae¹, James J. Schwab¹ and Kenneth L. Demerjian¹

1 - Atmospheric Sciences Research Center, U-Albany, State University of New York; 2 - NYS Department of Environmental Conservation

Introduction

UNIVERSITY AT ALBANY

- · Three intensive urban and rural field campaigns were conducted (EPA/NYSERDA PMTACS-NY Supersite program): Queens College (Summer 2001, Winter 2004) and Whiteface Mountain (Summer 2002);
- 45-50% of PM mass can be attributed to carbon-containing species (2001-
- · Q-AMS data collected during the field campaigns, showed that a significant PM carbon contributions comes from secondary organic production under summertime conditions at urban and rural sites.
- · Objectives of this project:
- to find optimal parameters for generation, conditioning and characterization of secondary organic aerosols (SOA) generated from known atmospheric Volatile Organic Compounds (VOCs) of known composition in the controlled slow-flow
- to study physical and chemical properties of the generated SOA,
- to develop characteristic high resolution mass spectra for compound-specific secondary PM products.
- · Information obtained in this study will be further used to
- provide basic knowledge of the production of organic PM from both anthropogenic and biogenic precursors,
- provide better estimates of the attribution of anthropogenic and biogenic sources to ambient aerosol measurements.

Generation of Polydisperse Secondary Organic Aerosols (SOA) at the ASRC Aerosol Research Facility

- · SOA generation method: reaction of OH radicals with VOCs;
- · VOC source: heated permeation tubes

Volatile Organic Compounds for SOA Generation

voc	Formula	MW	Structure
Toluene	C ₇ H ₈	92	
m-Xylene	C ₈ H ₁₀	106	-6
Lemonene	C ₁₀ H ₁₆	136	>
α-Pinene	C ₁₀ H ₁₆	136	- ⟨¥

ASRC OH Radical Generation System

• OH radicals produced via UV photolysis of water vapor: $H_2O \xrightarrow{h\nu}OH + H$

- · Nitrogen flow: 3.2 I/min;
- Pre-reactor conditions: RH 35-45%. Temperature 21-22°C:
- · Generated [OH] is estimated to be appr. 108 molecules/cm3

Measurements of Secondary Organic Aerosols and Gaseous Precursors

Aerosol and Gas Instrumentation

- Aerodyne HR-ToF-AMS
- TSI Scanning Mobility Particle Sizers with Nano DMA (NanoSMPS) and Long DMA (LDMA SMPS).
- TSI Condensation Particle Counter (CPC).
- · R&P Differential TEOM Mass Monitor
- Thermo Environmental Instruments gas analyzers: ozone, NO-NO₂-NOx and Methane/Non-Methane Hydrocarbon (NMHC)

Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

For current experiment

- · HR-ToF-AMS was sampling at the slow-flow chamber inlet.
- HR-ToF-AMS was switching between the two ion optical modes: V and W.
- · W-mode data were used for High Resolution mass spectrometric analysis of laboratory-generated SOA.
- AMS heater temperature was maintained at ~600oC
- · Data were saved every minute.
- · Mass spectra of experiment blanks ([VOC]>0, all flows are on, UV lamp is off) were recorded and subtracted from the corresponding mass spectra of SOA prior to the High Resolution analysis.
- · A multiple-peak Gaussian curve fit algorithm similar to that reported in DeCarlo et al., (2006) was used to deconvolve a unit mass peak into separate contributions for specific elemental compositions based on small differences in mass defect.
- Criteria for "major" m/z selection: signal intensity ≥ 2% of total 'Organics' signal.

Reference: DeCarlo, P.F., et al., A Field-Deployable High-Resolution Time-of-Flight Aerosol Mass Spectrometer, Analytical chemistry, 10.1021/ac061249n, 2006.

"Chamber Blank" Tests

- Extensive "Chamber blank" tests were conducted:
- Flows (OH generation system and slow-flow chamber) on,
- Chamber dilution air: passed through a set of filters and charcoal scrubbers, - IVOC1 = 0.
- UV lamp switched on;
- Small particles were detected in the chamber after the UV lamp was switched on;
- Mass median diameter 25-35 nm, Mass concentration 0.02-0.05 μg/m³ (total chamber
- •This "chamber blank" did not affect results of the current experiments

Selected Time Series of SOA and Precursor Gas Concentrations and Selected SOA Size Distributions

Particle size distribution measured at

VOC: Toluene, OH generator flow: 3.2 l/min. Pre-reactor RH: 35-45% Total chamber flow: 18.2 l/min

Chamber RH: ~9%.

Assumed particle density: 1 g/cm3

High Resolution Mass Spectrometric Analysis of OOC Aerosols

Signal intensities at each m/z value consist of fragments containing carbon and hydrogen only (gray) added to the

- Four volatile organic compounds (VOCs) commonly found in ambient air were used to generate secondary organic aerosols via reaction with OH radicals in controlled laboratory conditions;
- Sampling of generated SOA was done from a slow-flow chamber:
- Physical and chemical characterizations of generated aerosols were performed;
- High m/z resolution mass spectra for generated SOA were recorded using the HR-ToF-AMS;
- Major m/z peaks for the SOA were identified:
- Results of the High Resolution mass spectrometric analysis of four SOA showed that - general appearance of mass spectra of SOA formed from m-Xylene, Limonene and α-Pinene is similar,
- major m/z peaks are essentially the same (with few exceptions) for all four SOA,
- there are no major peaks at m/z>55 in the chamber SOA mass spectra (the signal at 12<m/z<55. accounts for 75-80% of the total signal)
- the fraction of oxygenated organic fragments increases for higher m/z,
- OM:OC ratio is very similar for all four SOA (1.4-1.5). C:O ratio is varies for precursor compound groups (3.5 for Toluene/m-Xylene; and 4.8 for Limonene/α-Pinene).

This work was supported by the New York State Energy Research and Development Authority (NYSERDA), contract # 8643