Mercury in New York State Fish

Howard Simonin and Jeff Loukmas

Bureau of Habitat NYS Dept. of Environmental Conservation

DEC Monitoring Efforts

- Began monitoring Hg in fish before 1970
- Statewide Toxic Substances
 Monitoring Program (1976 –
 1993)
- Specific projects
 - higher Hg in acidic waters
- Continuing targeted monitoring across NYS

Impacts on Fish and Wildlife

- Fish
 - not able to excrete mercury; accumulates in muscle & fat
 - highest mercury in older piscivorous fish
 - possible reproductive impacts
- Loons
- Mink & Otter

Methylmercury

- Bioaccumulates up food chains
- Concentrations less than 1 ppt in the water can lead to concentrations greater than 1 ppm in fish and loons

Factors Affecting Bioaccumulation

Water Quality Variables

-Methylation depends on presence of sulfur reducing bacteria, anaerobic conditions, acidic conditions, dissolved organic carbon

Hydrologic Variables

- Reservoir, percent wetlands, watershed size

Biological Variables

- Fish species and age
- Length of food chain affects fish Hg conc
- Productivity of lake affects fish Hg conc

Statewide Strategic Monitoring of Mercury in Fish

- 4-year project: 2003-2006
- 131 lakes surveyed
- 4 target species
 - YP, LMB, SMB, WEYE
- Primarily new lakes, temporal and spatial trends, test model
- Summarize historical database

Standard size determinations

Standard Size Smallmouth Bass Hg Conc. vs. pH

Have mercury levels changed?

- Selected 20 lakes with data from 10 20 years ago
- Mostly YP from Adirondack Lakes

 Repeated the historical sampling effort to determine trends

Trend analysis – Cranberry Lake Smallmouth Bass

Change in Mercury Concentration

	<u>Lake</u>	Size/Species	Change
•	Lake Adirondack	9 inch YP	+ 0.08 ppm
•	Cranberry Lake	15 in. SMB	- 0.48 ppm
•	Ferris Lake	9 in.YP	- 0.67 ppm
•	Big Moose	9 in.YP	- 0.20 ppm
•	Kings Flow	9 in. YP	- 0.22 ppm

Policy Implications Health Advisories

- Prior to these studies there were 24 lakes with mercury advisories
- Pased on review of data from 17 NYC reservoirs and 96 statewide lakes (2001 – 2004), DOH issued 49 additional advisories

Adirondacks and Catskills

- High rates of deposition
- Acid conditions are likely contributing to higher Hg concentrations
- In 2005 DOH issued region-based advisory for Parks

9 inch YP

Out of Parks: 0.18 ppm Inside Parks: 0.54 ppm

15 inch SMB

Out of Parks: 0.51 ppm Inside Parks: 1.05 ppm

What's next?

- Analyze ~600 additional fish from 25 lakes
- Test simple predictive model
- Examine landscape characteristics that may influence mercury accumulation
- Examine mercury in other biota (e.g., macroinvertebrates, songbirds, loons, etc.)

