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Global Sources of Mercury
to the Atmosphere (in metric tons per year)

Source Seigneur et | Bergan et al. Mason &
al. 2004 1999 Sheu 2002
Direct Anthropogenic 2143 2160 2400
Recycled Anthropogenic 2134 2000 2090

Total Anthropogenic 4277 4160 4490

Total 6411 6060 6600
(% of Anthropogenic Origin) (67%) (69%) (68%)

from C. Driscoll
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U.S. Anthropogenic Emissions of Mercury
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Total Hg emissions
(kg/year)
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grams/fyear/grid
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Atmospheric Mercury Species

s Elemental Mercury (Hg®)
Predominant species, Long range transport
Globally distributed, 0.5 to 2 years residence time

s Gaseous divalent mercury (RGM, Hg?*)
Oxidized mercury: Hg(ll) : HgCl,, other species?

Highly water soluble -> short atmospheric life time
(0.5-2 days)

Local and Regional effects

= Particulate Mercury (Hg,)
Species largely unknown — probably Hg(lI)
Local and Regional Effects (0.5-2 days)



Estimated Speciation Profile for U.S.
Atmospheric Mercury Emissions (1999)
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Simplified Mercury Cycle from C. Driscoll
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Hg sampling sites in NYS
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| +Stoekton

Potsdam and Stockton funded by NYSERDA,
Sterling by US EPA



Sterling, NY

Between Oswego and Rochester on a blutt overlooking the
lake



Manual Air Sampling

TGM: Adsorption into Gold traps

RGM: Annular Denuder coated by KCI




Monthly Average TGM Concentrations, ng/m’
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Daily TGM Concentrations, ng/m?>

TGM Concentration
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Daily RGM Concentrations, pg/m?>

RGM Concentration
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Computation of Trajectories - HYSPLIT4

Bacl{ward trajectow ending at 10 UTC 13 May' 00
EDAS Meteorological Data

O NOAA Model

O Predicts history of

air movement
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Potential Source Contribution Function
(PSCF)
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JP-PSCEF result for TGM measurements taken in Potsdam,
Stockton, and Stetling in NY

Joint result for TV
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Figure 6. Source areas identified by three modeling results meluding MS-PSCE, nulti-site RTWC, and

muli-ste SQTBA.




Tekran Automated

Speciation System —
highly time resolved

concentrations




Hg concentrations obtained with a
Tekran Speciation System
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Hg and SO, Time Series for July

DateTime vs Hg (ng/im3)
—— DateTime vs 502 (ppm)
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Hg Deposition Processes

m Wet deposition — Hg associated with rain, dew,
snow, fog (mostly RGM)

m Particle dry deposition — Hg associated with
atmospheric particles (mostly RGM)
m Air-surface exchange (water and vegetation)
= RGM deposition only

® Ho(0) deposition and emission



Deposition Processes
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Mercury Deposition

® Predominant source of mercury in most
watersheds is atmospheric deposition (Lindqvisit

et al. 1991; Mason 1994).

B Deposition of mercury has increased two to three-
fold over the past two centuries, with some
locations exhibiting greater than a twenty fold

increase (Meili 2003; Nriaguand Becker 2003).

From C. Driscoll



Historical deposition of mercury to sediments in West Pond and
Little Echo Pond in the Adirondack region (LLorey and Driscoll,
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Regional and Global Contributions to Total Hg
Deposition to the Catskill, NY Receptor Site
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Seigneur et al. 2002 for NYSERDA



Precipitation depth (mm

Event-based wet
deposition Potsdam,
NY, Sept. 2003 — Apr.
Az

(A) Precipitation
Depth (mm)

(B) Hg concentration in

precipitation (ng L)

Sponsored by NYSERDA and US
EPA




PSCF result for wet deposition
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Dry Deposition

Difficult to measure

Function of surface type, Hg species, particle size,

meteorological conditions

Modeled as product of particle concentration and
deposition velocity, Flux = V; X Hg(p)

Generally thought to be equal to or greater than wet
deposition

Area that needs additional research



Air-Water Exchange
of Hg’

= KoL (C4-C,/H)

2
3

TGM concentration (ng m™~)

K : mass transfer coeff.
C,— dissolved

concentration
5 . E [Unfiltersd total He
Ca — air concentration T i = Fillt;e; t.t:.»t-al Ii{g )
¢  DGM

1=

H — Henry’s Law constant

f=

— RGM - deposition only
— Hg(0) - deposition and
evasion

 p -1y
DGM concentration (pg L)
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Hg Mass Balance for Lake Ontario
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Conclusions

m There are significant anthropogenic emissions of
Hg — biggest source in US is utility coal

combustion

m The form of Hg in the atmosphere controls its
fate and transport

B There is evidence that North America sources
contribute significantly to ambient Hg
concentrations and deposition in NYS



