# Mercury in the Atmosphere

Thomas M. Holsen – Clarkson University

#### Outline

- Sources of Atmospheric Hg
  - Anthropogenic vs natural
  - Anthropogenic sources
- Forms of Hg in the atmosphere
- Hg concentrations in NYS
- Hg deposition processes

Acknowledgements – C Driscoll, M Cohen, NY DEC, YJ Han, S Lai, J Pagano, M Milligan

# Global Sources of Mercury to the Atmosphere (in metric tons per year)

| Source                               | Seigneur et<br>al. 2004 | Bergan et al.<br>1999 | Mason &<br>Sheu 2002 |
|--------------------------------------|-------------------------|-----------------------|----------------------|
| Direct Anthropogenic                 | 2143                    | 2160                  | 2400                 |
| Recycled Anthropogenic               | 2134                    | 2000                  | 2090                 |
| Total Anthropogenic                  | 4277                    | 4160                  | 4490                 |
| Natural                              | 2134                    | 1900                  | 2110                 |
| Total<br>(% of Anthropogenic Origin) | 6411<br>(67%)           | 6060<br>(69%)         | 6600<br>(68%)        |

from C. Driscoll

#### U.S. Anthropogenic Emissions of Mercury



Source: EPA 1990, 1996 NTI and EPA 1999 NEI. Short tons per year.



From M. Cohen



### Atmospheric Mercury Species

- Elemental Mercury (Hg<sup>0</sup>)
   Predominant species, Long range transport
   Globally distributed, 0.5 to 2 years residence time
- Gaseous divalent mercury (RGM, Hg<sup>2+,</sup>)
   Oxidized mercury: Hg(II): HgCl<sub>2</sub>, other species?
   Highly water soluble -> short atmospheric life time (0.5-2 days)
   Local and Regional effects
- Particulate Mercury (Hg<sub>p</sub>)
   Species largely unknown probably Hg(II)
   Local and Regional Effects (0.5-2 days)

# Estimated Speciation Profile for U.S. Atmospheric Mercury Emissions (1999)



#### Simplified Mercury Cycle from C. Driscoll



# Hg sampling sites in NYS



Potsdam and Stockton funded by NYSERDA, Sterling by US EPA

# Sterling, NY



Between Oswego and Rochester on a bluff overlooking the lake

## Manual Air Sampling



TGM: Adsorption into Gold traps

RGM: Annular Denuder coated by KCI





#### Monthly Average TGM Concentrations, ng/m<sup>3</sup>



## Daily TGM Concentrations, ng/m<sup>3</sup>



### Daily RGM Concentrations, pg/m<sup>3</sup>



#### Computation of Trajectories - HYSPLIT4

- □ NOAA Model
- □ Predicts history of air movement



# Potential Source Contribution Function (PSCF)



Back-trajectory representing high concentration

Back-trajectory representing low concentration

**PSCF** value

Cell 1 = 2/3

Cell 2 = 0/2

#### JP-PSCF result for TGM measurements taken in Potsdam, Stockton, and Sterling in NY



Figure 6. Source areas identified by three modeling results including MS-PSCF, multi-site RTWC, and multi-site SQTBA.



# Tekran Automated Speciation System — highly time resolved concentrations



# Hg concentrations obtained with a Tekran Speciation System







# Relationship between Hg and SO<sub>2</sub> concentrations in Rochester, NY



#### Data from NY DEC

# Hg Deposition Processes

- Wet deposition Hg associated with rain, dew, snow, fog (mostly RGM)
- Particle dry deposition Hg associated with atmospheric particles (mostly RGM)
- Air-surface exchange (water and vegetation)
  - RGM deposition only
  - Hg(0) deposition and emission

#### Deposition Processes



### Mercury Deposition

- Predominant source of mercury in most watersheds is atmospheric deposition (Lindqvisit et al. 1991; Mason 1994).
- Deposition of mercury has increased two to threefold over the past two centuries, with some locations exhibiting greater than a twenty fold increase (Meili 2003; Nriaguand Becker 2003).

From C. Driscoll

Historical deposition of mercury to sediments in West Pond and Little Echo Pond in the Adirondack region (Lorey and Driscoll, 1999)



#### Regional and Global Contributions to Total Hg Deposition to the Catskill, NY Receptor Site





Event-based wet deposition Potsdam, NY, Sept. 2003 – Apr. 2004)

(A) Precipitation Depth (mm)

(B) Hg concentration in precipitation (ng L<sup>-1</sup>)

(C) Hg wet deposition flux (µg m<sup>-2</sup>)

Sponsored by NYSERDA and US EPA

### PSCF result for wet deposition





## Dry Deposition

- Difficult to measure
- Function of surface type, Hg species, particle size, meteorological conditions
- Modeled as product of particle concentration and deposition velocity, Flux =  $V_d \times Hg(p)$
- Generally thought to be equal to or greater than wet deposition
- Area that needs additional research

# Air-Water Exchange of Hg<sup>0</sup>

$$= K_{OL} (C_d - C_a / H)$$

 $K_{OL}$ : mass transfer coeff.  $C_d$  – dissolved concentration Ca – air concentration H – Henry's Law constant

 $\rightarrow$  RGM - deposition only  $\rightarrow$  Hg(0) - deposition and evasion



#### Hg Mass Balance for Lake Ontario



#### **Conclusions**

- There are significant anthropogenic emissions of Hg – biggest source in US is utility coal combustion
- The form of Hg in the atmosphere controls its fate and transport
- There is evidence that North America sources contribute significantly to ambient Hg concentrations and deposition in NYS