CLCPA SCOPING PLAN
PUBLIC COMMENT SESSION
SYRACUSE, NY 13210
APRIL 26, 2022

SUBMITTED BY:

COLIN BEIER SUNY ESF + CAFRI

Forest Carbon Mapping & Monitoring for NYS

"DEC is currently working with SUNY ESF to develop site-specific models of aboveground forest carbon across the landscape, which is expected to be complete in 2022, however updates and improvements will be ongoing."

CLCPA SCOPING PLAN, CH. 15: AF1 & AF7, pp. 199, 207

CAFRI works with NYS DEC and the US Forest Service to build and operate a New York statewide carbon benefits mapping system that allows us to:

Estimate current forest biomass and C stocks at parcel scales

Estimate recent C sequestration and emissions (1990-2019)

· Monitor future C benefits, track compliance, and observe land use

Forecast C benefits of policy and stewardship decisions

All of these capabilities support the design, implementation, and evaluation of efforts to carry out multiple recommendations in Ch. 15: Agriculture & Forestry of the CLCPA Scoping Plan (see green sidebar)

Scoping Plan
Recommendations

AF1. Identify where Forest Management would Provide the Greatest Benefit

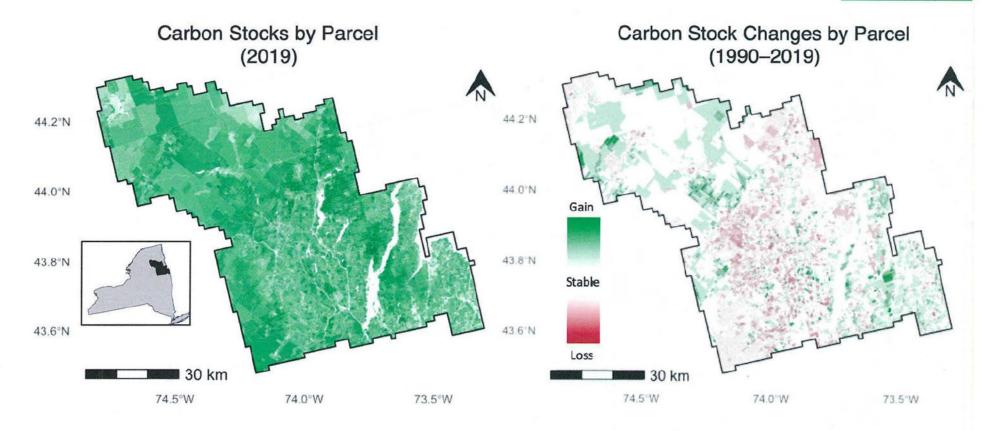
AF3. Maintain and Improve Sustainable Forest Management Practices & Mitigation Strategies

AF4. Assist
Landowners in
Implementation of
Sustainable Forest
Management &
Mitigation Strategies

AF5. Support Local Communities in Fores Protection & Management

AF7. Monitor Progress
& Advance Forestry
Science and
Technology

ESF


State University of New York College of Environmental Science and Forestry

Applications: Parcel-Level Carbon Accounting

CAFRI
Climate & Applied Forest Research Institute
www.esf.edu/cafri-ny

Parcel-level mapping and monitoring directly supports recommendations AF1, AF3, and AF7, by enabling DEC and landowners to track climate benefits and land use change using GHG accounting methods that are IPCC-compliant and consistent with US EPA.

Questions? Contact: Dr. Colin Beier cbeier@esf.edu 315 470 6578

We combine field inventory, remote sensing and machine-learning to produce accurate, unbiased and fine-scale (30m) maps of forest biomass and carbon stocks over time. These maps estimate past and current carbon sequestration and storage, and help us forecast these climate benefits under different scenarios, on a parcel-by-parcel basis.

