
DG/CHP Integrated Database Functional Description

CDH Energy Corp. 1 August, 2016

Attachment D

DG/CHP Integrated Data System Functional Description

1 Introduction

This document describes the functional operation of the data components of the
NYSERDA CHP Integrated Data (DI) system. The DI system uses both on line and off
line components to consolidate and aggregate performance data from multiple CHP
systems into a homogenous database for tracking and comparing CHP system
performance. The DI system uses both on-line (web-based) and offline database
processing to handle and present the data in both graphical and tabular fashion through a
web-page interface.

The DI system operates using two distinct systems. The front-end system handles the
user interface; entry and tracking of site and CHP system characteristic data; and
dynamic generation of all HTML output. The front-end system is based on an Access
database coupled with Macromedia Cold Fusion. The Access database includes
operational/reliability (OR) data, emissions data, maintenance costs, equipment
characteristics, site details, baseline utility bills, and other information.

The back-end or data-handling system is responsible for handling all aspects of the time
series performance data. The back-end system is split into two areas, an online
processing system that handles data requests in response to user inputs, and an offline
processing system that handles manipulation of the raw data into hourly data for use by
the DI system asynchronously (once per day).

The online portion of the DI system is written in Python1 (version 3.4.1), with the
following extensions:

• matplotlib-1.4.0 – Plotting library
• PyMySQL-0.6.2 – Python to MYSQL database API
• numpy-1.9.0 – Provides mathematical extensions for Python

The DI system uses MYSQL V5.5.38 as the relational database engine to load, store,
retrieve, and aggregate the hourly time series data records. The online systems operate
on a hosted Linux server, which also runs the Apache2 HTTP web server for
communication with the front-end Cold Fusion server.

The offline portion of the system operates using PV Wave data visualization software and
python. Python is used in converting RAW data from formats provided from the various

1 http://www.python.org/

http://www.python.org/

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 2 August, 2016

CHP sites into a standardized comma delimited format that can be readily inserted into a
PV Wave based database. The data is then converted to hourly data contained in a
comma delimited text file that is loaded into the online MYSQL database. During this
phase, PV Wave also applies the range and relational check to the RAW data, and outputs
the data quality flag for each hourly data record produced.

Figure 1 displays a schematic representation of the operation DI system.

Back-End System
Front-End System

ColdFusion Server
(Dynamic HTML output)

Python Server
(Plots, Reports, Calculations)

Online
Processing

(Linux Server)

Access Database
(site Characteristic Data)

User Interface

Offline Processing
(PV Wave/Python)

Offline Processing
(Hourly Data Generation)

Data Quality
(Range and Relational Checks)

MYSQL
Server
(Time Series

Data)

SFTP
Server

(Data Transfer)

HTTP Server
(HTML and HTTP Communication)

Figure 1. Schematic of Major DI System Components and Interconnection

2 Back End System Online Component Description

This section provides a description of the functional components, developed routines, and
modifications that operate as part of the online processing of the DI system.

2.1 HTTP Web Server

The HTTP web server used is the open source Apache2 server v 2.2 The server
configuration has been modified to execute Python with the following line in the server
“apache2/sites-enabled/000-default” file:

AddHandler cgi-script .py

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 3 August, 2016

2.2 Python Programming

All of the data handling, interfacing with the MYSQL data base for storing and retrieving
time-series data records, and reporting routines are written in the PYTHON programming
language. Table 1 and Table 2 lists the PYTHON routines used in the DI System, along
with the overall type of routine and a short description of the routine’s function. The
routines in the table have been grouped according to their use in the DI system.

Table 1. DI System Python Routines

Name Type Function
DI API

data_handler.py HTTP Communication HTML Form Parsing
rate_handler.py HTTP Communication HTML Form Parsing
incentive_handler.py HTTP Communication HTML Form Parsing
summarytable_hc/index.py HTTP Communication HTML Form Parsing
daily_eff_plot/index.py HTTP Communication HTML Form Parsing

Loading and Retrieving Time-series Performance Data
mysql2dict.py Database MYSQL data handling
agg.py Database MYSQL data handling
dat2mysql.py Database MYSQL data handling

Custom MYSQL Functions for Time-series Performance Data
clean_scratch_tables.py Database MYSQL maintenance
dataheader.py Database MYSQL maintenance
dataint_mysql.py Database MYSQL maintenance
descriptiveheader.py Database MYSQL maintenance
load_all.py Database MYSQL maintenance
load_headers.py Database MYSQL maintenance

Reporting, Plotting, and Output Routines
eff_calc.py Reporting Calculation
utility_rate.py Reporting Calculation
wb_calc.py Reporting Calculation
monitoring_summary.py Reporting HTML Output
summary_table.py Reporting HTML Output
cplot.py Reporting Plotting
time_series.py Calendar/Timestamp Date calculations
dq_plot_outputs.py Reporting Plotting
hourly_profile.py Reporting Plotting
outputs.py Reporting Plotting assistance
plot_functions.py Reporting Plotting assistance
xy_scatter.py Reporting Plotting
csv_output.py Reporting CSV Output
summary_files(,2,3).py Predefined Data Queries CSV Output

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 4 August, 2016

Table 2. DI System Python Routines (continued)

Name Type Function
Utility Rate Calculator Routines

rate_table.py Reporting HTML Output
e_rate.py Reporting Calculations

NYSERDA Incentive Calculator Routines
incentive_calc.py Incentive Calculation
incentive_portfolio.py Incentive Calculation
rps_adg_calc.py Incentive Calculation
rps_fc_calc.py Incentive Calculation
collection_emails.py Incentive Email communication
email_notify.py Incentive Email communication
ecipp_calc.py Incentive HTML Output

Data Quality Summary Routines
dq_handler.py HTTP Communication HTML Form Parsing
dq_table_outputs.py Reporting HTML Output

Calendar Routines
dates.py Calendar/Timestamp Date calculations
dt_add.py Calendar/Timestamp Date calculations
dt_dict.py Calendar/Timestamp Date calculations
dt_subtract.py Calendar/Timestamp Date calculations
dtgen.py Calendar/Timestamp Date calculations
holidays.py Calendar/Timestamp Date calculations
timezone_adjust.py Calendar/Timestamp Date calculations

Front End - Back End Communication Routines
XML_CHPReliability.py Database Front End - Back End Communication Routines

2.2.1 DI Application Program Interface (API)

The DI System accepts commands through HTML form data using the HTTP Post
method. The HTML form data are handled using a common gateway interface (CGI)
routine called “handler” routines. These handler routines process the HTML form data
and based on the user input (transmitted from the Cold Fusion Front End User Interface),
load, processes and report the data as appropriate.

There are five different handler routines that are called from the front-end system,
depending on the type of reporting required:

data_handler.py – API for accessing time-series performance data and associated
 reporting (plots, CSV output)

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 5 August, 2016

The following are a list of HTML form data that can be passed to the data_handler.py
routine:
data_handler.py
ptype Single string argument for plot type for output.

Supported Types: time_series, temp_trends, profile_plot,
csv_output, stackplot, xyplot and overplot

agg_quality Single integer argument that controls the number of
monitoring units with good data per data interval when
aggregating data from different CHP monitoring units
into a single time-series performance data set.

data_quality Single integer argument that indicates the data quality
level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

cn Single or Python string list argument that lists the
channel names to be loaded and analyzed

xcn Single string argument that indicates the channel to be
loaded for the x-axis in an xyplot. Defaults to DT for
time series plot.

figname File name for output
width Plot width in pixels
height Plot height in pixels
display_axis
dmask Array of days of the week for profile plot (0-6 for Mon-

Sun)

sites Single or Python interger list argument that lists the
monitoring names to be loaded and analyzed

int Single string argument for data interval loaded from
database (hourly, daily, monthly)

agg Single string argument for aggregation method for
multiple CHP monitoring units (total all monitoring
units, or compare all monitoring units)

stack_method Single string argument for how data are represented when
multiple CHP monitoring units are aggregated. None =
overlay all data, STACK_MU = Separate plots for each
data channel (combine monitoring units together),
STACK_CN = Separate plots for each monitoring units
(combine data channels together)

sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"

The data_handler.py routine then chooses the appropriate data loading, calculation, and
output routines, based on the form inputs. The data_handler.py routine returns a stub of
HTML code along with the output from the reporting function used, which is parsed by
the Cold Fusion Front End and displayed.

rate_handler.py – API for processing time-series performance data using calculation
 routines for supported utility bill rates

The following are a list of HTML form data that can be passed to the rate_handler.py
routine:

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 6 August, 2016

rate_handler.py
sites Single or Python integer list argument that lists the

monitoring names to be loaded and analyzed
con_dem_base Single integer argument of the utility contract demand

for building without CHP
con_dem_chp Single integer argument of the utility contract demand

for building with CHP
data_quality Single integer argument that indicates the data quality

level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

figname File name for output
gas_cost Single integer argument for cost of gas for CHP system

in $/MMBTU
recovery_value Value of displaced heat from CHP heat recovery in $/MMBTU

maint_cost Cost of CHP maintenance in $/kWh generated
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"

The rate_handler.py routine then chooses the appropriate data loading, calculation, and
output routines, based on the form inputs. The rate_handler.py routine returns a stub of
HTML code along with the output from the reporting function used, which is parsed by
the Cold Fusion Front End and displayed.

incentive_handler.py – API for processing time-series performance data using
 calculation routines to display current and historic performance

against the associated NYSERDA funding PON (not available for
all CHP sites). The incentive routines provide the calculations for
computing various metrics used by the performance CHP programs
(kWp, kWha, PR, and FCEchp)

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 7 August, 2016

incentive_handler.py
site Single or Python integer list argument that lists the

monitoring names to be loaded and analyzed
Sd Single string argument for data start date "mm/dd/yyyy"
Ed Single string argument for data end date "mm/dd/yyyy"
type Single string argument for report type (defaults to

“site”, now depreciated)
width Plot width in pixels (deprecated)
height Plot height in pixels (deprecated)
figname File name for output(deprecated)
Pon Single string argument for Incentive PON Number
kwpara Single floating point argument for CHP system parasitic

power adjustment (kW) (Default: 0 kW)
kwspc Standard Performance Contract Demand Reduction (kW)
low_emissions Single logic argument for ECIPP project low emissions

status (Default: False)
kwadg ADG-Rated Generation Capacity (kW)
inc_type Single string argument for ADG incentive type:

(Maintenance, Performance)
kwfc Single integer argument for fuel cell nameplate output

(kW)
cap_pmt Single integer argument for a cap on individual payment

calculations for RPS ADG and FC PONS
total_cap Single integer argument for a cap on total payment

calculations for RPS ADG and FC PONS

The incentive_handler.py routine then chooses the appropriate data loading, calculation,
and output routines, based on the form inputs. The incentive_handler.py routine returns
a stub of HTML code along with the output from the reporting function used, which is
parsed by the Cold Fusion Front End and displayed.

summarytable_hc/index.py - API for the “Monthly Summary Table”. This module makes
use of the library under the cgi-bin directory to produce a table containing the monthly
production values for a site through a given range of dates.

 summarytable_hc/index.py
data_quality Single integer argument that indicates the data quality

level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

monitor The facility number for a site to be processed
topic The expected output (summarytable, summarytable2)
pv_mode Controls the display of percent valid data for the

summary table topics (“full”,“comp”)
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 8 August, 2016

daily_eff_plot/index.py - API for the “Daily Efficiency vs Capacity Factor” plot. This
module makes use of the library under the cgi-bin directory to produce the plot for a site
through a given range of dates.

 daily_eff_plot /index.py
data_quality Single integer argument that indicates the data quality

level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

monitor The facility number for a site to be processed
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"

2.2.2 Loading and Retrieving Time-series Performance Data

The primary data format that the DI System handles is time-series performance data.
This time series data is loaded and stored in MYSQL databases, with one database per
CHP monitoring unit. A monitoring unit represents a single piece of data logging
equipment, which may monitor one or more CHP power units. A CHP power unit is an
individual CHP prime mover/generator set.

The MYSQL databases for each monitoring unit contain the following performance data:

MYSQL Variable Name Description Units
dt Date na
wg DG/CHP Generator Output kWh
wg_kw DG/CHP Generator Output Peak kW
fg DG/CHP Gas Input cu ft
wt Total Facility Purchased Energy kWh
wt_kw Total Facility Purchased Demand kW
ft Other Facility Gas Use cu ft
qd Unused Heat Recovery MBtu
qhr Useful Heat Recovery MBtu
sg Status/Runtime of the DG/CHP Generator hrs
tao Ambient Temperature F
dflag_wg DataQualityFlag1 na
dflag_wg_kw DataQualityFlag2 na
dflag_fg DataQualityFlag3 na
dflag_wt DataQualityFlag4 na
dflag_wt_kw DataQualityFlag5 na
dflag_ft DataQualityFlag6 na
dflag_qd DataQualityFlag7 na
dflag_qhr DataQualityFlag8 na
dflag_sg DataQualityFlag9 na
dflag_tao DataQualityFlag10 na
load_dt Time database was last loaded na

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 9 August, 2016

The MYSQL database contains the hourly data converted from the RAW data files
provided by the sites and monitoring contractors. A description of the RAW data and
calculations used to create the hourly data are available in the
./Documentation/Monitoring Notes directory.

The data in the MYSQL database are loaded into a Python dictionary object using the
mysql2dict.py function. The Python dictionary has tagnames for each variable that
correspond to the MYSQL variable names in the table above.

The function uses the following arguments to modify the data loaded. Without the
optional arguments, the mysql2dict.py function loads all of the hourly data for a given
monitoring unit.

mysql2dict.py
unitno Single integer argument for monitoring unit number to be

loaded into a dictionary
data_type Single string argument for type of data to extract from

MYSQL (HOURLY, DAILY, MONTHLY)
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"
cn Single string or list argument containing data channels

to load. Default is load all channels.
dqlvl Single integer argument representing the data quality

level for each channel to filter the data loaded from
MYSQL on

stderr Redirect standard error to a log file to allow for
debugging

To load multiple monitoring units into a single dictionary (“aggregated” dictionary), the
agg.py Python function is used. Agg.py operates similar to mysql2dict.py routine, but
takes a list argument for unitno, that allows multiple databases to be loaded.

agg.py
unitno List integer argument for monitoring unit numbers to be

loaded into a single dictionary
data_type Single string argument for type of data to extract from

MYSQL (HOURLY, DAILY, MONTHLY)
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"
cn Single string or list argument containing data channels

to load. Default is load all channels.
dqlvl Single integer argument representing the data quality

level for each channel to filter the data loaded from
MYSQL on

stderr Redirect standard error to a log file to allow for
debugging

The hourly data that is generated by the offline processing system are loaded into the
corresponding MYSQL databases by the dat2mysql.py routine. The dat2mysql routine
takes a comma separated file in the format:

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 10 August, 2016

10/28/2009,22:00:00,182.000,193.000,2388.750,43.000,77.000,0.000,1.720,
0.471,1.000,53.140,3.000,3.000,3.000,3.000,3.000,0.000,3.000,3.000,3.000

10/28/2009,23:00:00,154.000,181.000,2435.000,39.000,50.000,0.000,1.641,
0.547,1.000,51.980,2.000,3.000,3.000,3.000,3.000,0.000,3.000,3.000,3.000

and loads it into the MYSQL database for the corresponding monitoring unit number.
Dat2mysql.py uses MYSQL commands to prevent duplicate data from being loaded in
the database. Dat2mysql.py can be called directly from the command prompt, or from
inside another python routine.

dat2mysql.py
Datnum Single integer argument for monitoring unit number to be

loaded into a MYSQL database
reload Single string argument that forces MYSQL to drop the

entire MYSQL table and reload the data into the table
sd Single string argument for data start date "mm/dd/yyyy"
ed Single string argument for data end date "mm/dd/yyyy"

2.2.3 Custom MYSQL Functions for Time-series Performance Data

The following routines are Python routines used to do standard maintenance on the
MYSQL databases containing the performance data.

dataheader.py – Creates a header table (DATA_HEADER) for the time-series
performance data tables containing the channel names, descriptions, units of measure,
and aggregation method of each variable,

descriptiveheader.py – Creates a header table (FACILITY_HEADER,
INCENTIVE_HEADER, POWERUNIT_HEADER, USER_HEADER) for the
descriptive data for each facility, power unit, user, and incentive.

load_headers.py – Loads the descriptive data from the front end Access database into the
corresponding tables created by descriptiveheader.py. Descriptiveheader.py uses the
XML_CHPReliability.py routine to retrieve the descriptive data entered into the Access
database on the front end system.

load_all.py- Script to assist in loading multiple data files into the database when loading
by hand.

clean_scratch_tables.py- Script to remove old scratch tables from MYSQL database.
Scratch tables are used in some complex sorting routines.

dataint_mysql.py – Contains several functions used as library functions in creating,
loading and compressing MYSQL time-series performance data databases. Functions
included are:

mysql_date_convert.py – creates date/time string compatible with MYSQL

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 11 August, 2016

db_connect.py – opens connection socket to MYSQL database

db_create.py - creates empty performance data table (MONITORINGUNIT#_DATA)

db_populate.py – inserts individual records into performance data table

db_compress.py – removes duplicate data from performance data tables

db_close.py – closes connection socket to MYSQL database

2.2.4 Reporting, Plotting and Output Routines

There are several routines which dedicated to producing output for the website, in the
form of plots, HTML output, and CSV output. Two functions are also included in this
section that calculate the electrical and CHP efficiency and total building demand
(defined as the CHP output + the building imported electricity). These two parameters
are calculated, rather than stored in the database, to prevent redundant data from being
stored.

Calculation Routines

eff_calc.py – operates on a dictionary of time-series performance data loaded from
mysql2dict.py or agg.py. The efficiency calculation are returned as a key inside the
dictionary. Eff_calc.py returns either the CHP gross or net efficiency, or the electrical
generation gross or net efficiency, depending on the value of the hvtype keyword.

wb_calc.py- operates on a dictionary of time-series performance data loaded from
mysql2dict.py or agg.py. The calculation returns the whole building load as a new key in
the dictionary.

HTML Output Routines

summary_table.py- produces an HTML summary table of the data collected over the past
24 hours for display on the front page of the website. It also produces the summary plot
on the front page, as well as calling the monitoring_summary.py routine to summarize
the performance of each monitored site over the past 24-hours and 30-days, and the
corresponding time series plot of the aggregate generation output corresponding to the
monitoring_summary.py output. All summary_table.py output is stored in the
./summary_table directory.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 12 August, 2016

Figure 2. summary_table.py Output Example

monitoring_summary.py- produces an HTML summary table of the data collected over
the previous month for each project type (ADG, CHP, Solar, Fuel Cell).

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 13 August, 2016

Figure 3. monitoring_summary.py Output Example

Plot Output Routines

Plotting routines are divided into two categories – library routines, and plotting routines.
Library routines act as containers for various plotting methods developed, and plotting
routines actually produce the plot and write the output to a file for display on the website.
Plots are produced from data contained in a Python dictionary loaded by mysql2dict.py or
agg.py.

cplot.py- library function that produces a time series plot of one variable against
date/time. The cplot.py routine also connects contiguous sections of data by a line, and
leaves a space where data are missing.

outputs.py- library function that prepares for any plot output by importing the proper
Python extensions.

plot_functions.py – library function that initializes x-axis and y-axis defaults before
plotting.

time_series.py – plotting function that produces a time-series plot using the cplot.py
routine.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 14 August, 2016

times_series.py
cn Single string or list argument that lists the channel

name to be plotted
dqlvl Single integer argument that indicates the data

quality level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

save_fig Filename for saved figure
keep_dflags Include dflag variable in plot (data quality flags are

ignored by default)
xsize Figure width in pixels (default 640)
ysize Figure height in pixels (default 640)
stack_method 'data_point', 'monitoring unit' or none – how are

multiple channels plotted (by data point or aggregated
by monitoring unit.

display_axis List of “L” or “R” entries corresponding to which y-
axis to plot the data against.

Figure 4. time_series.py Output Example

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 15 August, 2016

hourly_profile.py – plotting function that produces a power profile plot displaying the
variation of a variable across the hours of each day.

hourly_profile.py
cn Single string or list argument that lists the channel

name to be plotted
dqlvl Single integer argument that indicates the data

quality level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

save_fig Filename for saved figure
keep_dflags Include dflag variable in plot (data quality flags are

ignored by default)
xsize Figure width in pixels (default 640)
ysize Figure height in pixels (default 640)
stack_method 'data_point', 'monitoring unit' or none – how are

multiple channels plotted (by data point or aggregated
by monitoring unit.

display_axis List of “L” or “R” entries corresponding to which y-
axis to plot the data against.

Figure 5. hourly_profile.py Plot Output Example

xy_scatter.py – plotting function that produces an x-y scatter plot of multiple data
channels.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 16 August, 2016

xy_scatter.py
xcn Single string argument that lists the channel name to

be plotted on the x-axis
ycns Single string or list argument that lists the channel

name to be plotted on the y-axis
dqlvl Single integer argument that indicates the data

quality level for data loading and plotting
(1 = All data, 2 = Passes Range Checks, 3 = Passes
Relational Checks)

save_fig Filename for saved figure
keep_dflags Include dflag variable in plot (data quality flags are

ignored by default)
xsize Figure width in pixels (default 640)
ysize Figure height in pixels (default 640)
stack_method 'data_point', 'monitoring unit' or none – how are

multiple channels plotted (by data point or aggregated
by monitoring unit.

display_axis List of “L” or “R” entries corresponding to which y-
axis to plot the data against.

Figure 6. xy_scatter.py Ouput Example

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 17 August, 2016

CSV Output Routines

The CSV output routine produces a comma separated file of a Python dictionary loaded
from data contained in a Python dictionary loaded by mysql2dict.py or agg.py.

csv_output.py
cn String list argument that lists the channel name to be

written to a file
dt_range List of dates to output data between
fname Filename for saved file

summary_files(,2,3).py are a set of python files which fulfill requests for large data sets
that cannot be generated by the website. These predefined data queries are generated on
a regular basis depending on the needs of the group that has requested them. These files
can only be called through a command prompt and accept month/day/year as an argument
for how far back to generate the report. More information is available at:
http://dataint.cdhenergy.com/custom_data.html

2.2.5 Utility Rate Calculator Routines

Two routines are used to handle the utility rate calculation portion of the website. The
first routine provides the actual utility rate calculation, using a series of pre-defined
framework files for the various utility rate parameters describing the different
components of the rates and data for the energy supply cost.

utility_rate.py- calculation engine that works on an array of hourly demand or natural gas
flow data in the form of a Python dictionary loaded from mysql2dict.py or agg.py.
Utility_rate.py assumes that the power factor of the entire facility is 0.9 for the purposes
of calculating reactive power and the associated reactive power charges. Utility rate
framework files are read in from the ./utility_rates directory.

utility_rate.py
rate Single string argument for the utility rate framework

file to use for rate calculation
dt Array of date/time intervals corresponding to energy

data
arr Array of energy data (electricity or natural gas) used

in the rate calculation
con_dem Single integer argument for contract demand used in

utility rate calculation
export Keyword that allows utility export during rate

calculation
power_factor Power factor used in utility calculation. Defaults to

0.90 PF.
verbose Keyword to output calculation details
Verbose_file File for verbose output

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 18 August, 2016

stderr Redirect of standard error for debugging purposes
gas Keyword that indicates the data in arr is an array of

gas data (default is False = electricity)

rate_table.py- route that outputs the results of two utility calculations on one dataset for
comparison into an HTML table.

rate_table.py
d Python dictionary from mysql2dict.py or agg.py.
rate1 Single string argument for the utility rate framework

file to use for rate calculation (building without
CHP)

rate2 Single string argument for the utility rate framework
file to use for rate calculation (building with CHP)

path Keyword to allow output path to be changed if
necessary

con_dem_base Single integer argument for contract demand for the
building without CHP used in utility rate calculation

con_dem_chp Single integer argument for contract demand for the
building with CHP used in utility rate calculation

dqlvl Single integer argument representing the data quality
level for each channel to filter the data loaded from
MYSQL on

gen_gas_cost Single floating point argument for the cost of natural
gas used in the economic analysis

heat_rec_val Single floating point argument for the value of the
heat recovered used in the economic analysis

gen_maint_cost Single floating point argument for the cost of
maintenance on the CHP system

filename Filename for output
stderr Redirect of standard error for debugging purposes

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 19 August, 2016

Figure 7. rate_table.py Ouput Example

2.2.6 NYSERDA Incentive Calculator Routines

Several routines have been developed to perform incentive calculations for various
NYSERDA performance based programs related to CHP and RPS/ADG systems. These
routines output summary tables and plots that succulently summarize the performance of
the monitored system performance during a requested portion of the performance period,
and provide a calculation of the current incentive level of the project. These routines are
directed toward the applicants, NYSERDA staff and technical assistance contractors, and
are not intended for consumption by the general public.

incentive_calc.py- primary incentive calculator that also provides several shared
framework functions for the other incentive calculators. Output from incentive_calc.py
includes HTML tables.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 20 August, 2016

incentive_calc
kw_po Single numeric parameter describing contracted peak

demand reduction
lhv Single numeric parameter defining the fuel LHV to be

used while calculating efficiencies
sd Start date of data request
ed End date of data request
tableid Automatically set; this could potentially allow the

caller to request a different data calculation scheme
or table format but no other formats are currently
available (default: incentive)

step Specify step size; this is read but not used as only
one step size is available in this report

Figure 8. incentive_calc.py Ouput Example

2.2.7 Calendar Routines

Several routines were developed to handle various calendar functions and calculations
necessary for handling time-series data.

dates.py- wrapper function that contains the dt_add.py, dt_subtract.py, dt_dict.py,
dtgen.py, and holidays.py functions in one file

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 21 August, 2016

dt_add.py, dt_subtract.py - functions that add or subtract a fixed offset from a Python
datetime variable. The offset is specified by the keyword (day, month, year, hour,
minute, second). Returns a Python datetime object.

dtgen.py – function that generates a contiguous date/time stamp variable starting from a
Python datetime variable, using a fixed offset similar to dt_add.py, but for a specified
number of dates. Returns a Python datetime object.

holidays.py – function that returns an array containing the dates of major holidays.
Returns a Python dateime object.

timezone_adjust.py – wrapper for built-in Python timezone calculations. Used to convert
localtime to Eastern Standard Time, which is the convention for storage of data in the
MYSQL databases.

2.2.8 Front End - Back End Communication Routines

The back end data server synchronizes with the font end web server via an XML file that
is requested by the back end data server once per day. This XML file contains all the
descriptive data contained in the front end Access database, and is parsed and loaded into
the MYSQL descriptive data header databases on the back end data server. The XML
file is downloaded by the XML_CHPReliability.py routine, as part of the
load_headers.py file, which is executed once per day.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 22 August, 2016

2.3 Scheduled Routine Execution

The back end server executes several commands once per day using the servers built in
crontab scheduler. The server’s crontab file is shown below, which shows
load_headers.py, summary_table.py, incentive_portfolio.py, and collection_emails.py
every day at 6:30 AM.

DAILY UPDATES TO THE DATABASES

30 6 * * * cd /www;/usr/bin/python load_headers.py
30 */2 * * * cd /www;/usr/bin/python summary_table.py > /www/Summary_table_run.log
2>&1
30 6 * * * cd /www;/usr/bin/python facility_power_summary.py >>
/www/facility_power_summary_run.log 2>&1
0 8 * * * cd /www;/usr/bin/python collection_emails.py
* * * * * cd /www;/usr/bin/python collection_sentry.py >> /www/collection_sentry.log 2>&1
0 1 * * 1 cd /www;/usr/bin/python summary_data.py >> /www/summary_data.log 2>&1
DELETE TEMPORARY WEB FILES MORE THAN 1 DAY OLD

DELETE TEMPORARY WEB FILES MORE THAN 1 DAY OLD, LOGS MORE THAN 5 DAYS

0 0 * * * find /www/figures/ -name "*.png" -mtime +0 -exec rm -f {} \; >> /dev/null
0 0 * * * find /www/csv_files/ -name "*.csv" -mtime +0 -exec rm -f {} \; >> /dev/null
0 0 * * * find /www/rate_output/ -name "*.htm" -mtime +0 -exec rm -f {} \; >> /dev/null
0 0 * * * find /www/rate_output/ -name "*.txt" -mtime +0 -exec rm -f {} \; >> /dev/null
0 0 * * * find /www/summary_table/ -name "*.html" -mtime +0 -exec rm -f {} \; >>
/dev/null
0 0 * * * find /www/summary_table/ -name "*.png" -mtime +0 -exec rm -f {} \; >>
/dev/null
0 0 * * * find /www/ -name "request*.log" -mtime +5 -exec rm -f {} \; >> /dev/null

CLEANUP TEMPORARY SCRATCH TABLES

0 0 * * * cd /www;/usr/bin/python clean_scratch_tables.py
Delete logfiles for sites that send all files every night (must be kept current)
0 0 * * * find /home/setchurch/upload/ -name 'NYChurch_2014*.csv' -exec rm -f {} \; >>
/dev/null 2>&1
0 0 * * * find /home/setchurch/upload/ -name 'NYChurch_20150[1-2]*.csv' -exec rm -f {} \;
>> /dev/null 2>&1
0 0 * * * find /home/setchurch/upload/ -name 'NYHilton*.csv' -exec rm -f {} \; >>
/dev/null 2>&1

0 0 * * * find /home/sethilton/upload/ -name 'NYHilton_201[3-4]*.csv' -exec rm -f {} \;
>> /dev/null 2>&1
0 0 * * * find /home/sethilton/upload/ -name 'NYHilton_20150[1-2]*.csv' -exec rm -f {} \;
>> /dev/null 2>&1

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 23 August, 2016

2.4 MYSQL Database Table Samples

mysql> describe DATA_HEADER;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
CN	varchar(12)	YES		NULL	
DESCRIPTION	varchar(40)	YES		NULL	
UOM	varchar(10)	YES		NULL	
AGGTYPE	varchar(10)	YES		NULL	
+-------------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> describe INCENTIVE_HEADER;
+--------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+--------------+------+-----+---------+-------+
MONITORID	varchar(128)	YES		NULL	
STARTDATE	varchar(128)	YES		NULL	
TOTALCAPACITYPAYMENTS	varchar(128)	YES		NULL	
SPCPEAKDEMANDREDUCTION	varchar(128)	YES		NULL	
NAMEPLATEOUTPUT	varchar(128)	YES		NULL	
PARASITICPOWERADJUSTMENT	varchar(128)	YES		NULL	
PON	varchar(128)	YES		NULL	
INCENTIVETYPE	varchar(128)	YES		NULL	
LOWEMISSIONS	varchar(128)	YES		NULL	
TOTALINCENTIVE	varchar(128)	YES		NULL	
GENCAPACITY	varchar(128)	YES		NULL	
CAPACITYINCENTIVE	varchar(128)	YES		NULL	
PROJECTFUNDINGCAP	varchar(128)	YES		NULL	
+--------------------------+--------------+------+-----+---------+-------+
13 rows in set (0.00 sec)

mysql> describe POWERUNIT_HEADER;
+---------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------------------+--------------+------+-----+---------+-------+
MONITORID	varchar(128)	YES		NULL	
SECONDARYPOWERAPPLICATION	varchar(128)	YES		NULL	
NUMBER	varchar(128)	YES		NULL	
PRIMARYHEATUSE	varchar(128)	YES		NULL	
INSTALLER	varchar(128)	YES		NULL	
THERMALOUTPUT	varchar(128)	YES		NULL	
ID	varchar(128)	YES		NULL	
MONITORENDDATE	varchar(128)	YES		NULL	
CAPACITY	varchar(128)	YES		NULL	
GENERATOR	varchar(128)	YES		NULL	
INTEGRATION	varchar(128)	YES		NULL	
MONITORSTARTDATE	varchar(128)	YES		NULL	
FUEL	varchar(128)	YES		NULL	
MONITORNAME	varchar(128)	YES		NULL	
DESCRIPTION	varchar(128)	YES		NULL	
GENSETPACKAGER	varchar(128)	YES		NULL	
EFFICIENCY	varchar(128)	YES		NULL	
CONTROLLER	varchar(128)	YES		NULL	
MANUFACTURINGDATE	varchar(128)	YES		NULL	
TECHGROUP	varchar(128)	YES		NULL	
PRIMARYPOWERAPPLICATION	varchar(128)	YES		NULL	
SECONDARYHEATUSE	varchar(128)	YES		NULL	
MANUFACTURER	varchar(128)	YES		NULL	
COMMISSIONDATE	varchar(128)	YES		NULL	
FACILITYID	varchar(128)	YES		NULL	
EMCON	varchar(128)	YES		NULL	
HEATRECOVERY	varchar(128)	YES		NULL	
INSTALLATIONDATE	varchar(128)	YES		NULL	
DECOMMISSIONDATE	varchar(128)	YES		NULL	
MODEL	varchar(128)	YES		NULL	
PRIMEMOVER	varchar(128)	YES		NULL	
+---------------------------+--------------+------+-----+---------+-------+
31 rows in set (0.00 sec)

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 24 August, 2016

mysql> describe FACILITY_HEADER;
+--------------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------------+--------------+------+-----+---------+-------+
ELECTRICITYEXPORTTOGRID	varchar(128)	YES		NULL	
TOTALANNUALGASCONSUMPTION	varchar(128)	YES		NULL	
BASEELECTRICRATE	varchar(128)	YES		NULL	
HEATSUPPLYTEMPERATURE	varchar(128)	YES		NULL	
GASUTILITY	varchar(128)	YES		NULL	
DEVELOPERWEBSITE	varchar(128)	YES		NULL	
LASTMONITORDATE	varchar(128)	YES		NULL	
ISOZONE	varchar(128)	YES		NULL	
COUNTY	varchar(128)	YES		NULL	
PEAKELECTRICDEMAND	varchar(128)	YES		NULL	
TIMEZONE	varchar(128)	YES		NULL	
TOTALINSTALLEDCAPACITY	varchar(128)	YES		NULL	
THIRDPARTYOPERATION	varchar(128)	YES		NULL	
SYSTEMENCLOSURE	varchar(128)	YES		NULL	
DEVELOPER	varchar(128)	YES		NULL	
CITY	varchar(128)	YES		NULL	
NYSERDAPROJECTNUMBER	varchar(128)	YES		NULL	
MAINTENANCECOST	varchar(128)	YES		NULL	
PRIMARYFUEL	varchar(128)	YES		NULL	
FACILITYWEBSITE	varchar(128)	YES		NULL	
ALTITUDE	varchar(128)	YES		NULL	
ZIPCODE	varchar(128)	YES		NULL	
ID	varchar(128)	YES		NULL	
GASCOMMODITYPURCHASED	varchar(128)	YES		NULL	
FACILITYELECTRICSERVICEVOLTAGE	varchar(128)	YES		NULL	
STATE	varchar(128)	YES		NULL	
NYSERDAPROJECTMANAGER	varchar(128)	YES		NULL	
TOTALANNUALELECTRICITYUSAGE	varchar(128)	YES		NULL	
LATITUDE	varchar(128)	YES		NULL	
PROJECTTYPE	varchar(128)	YES		NULL	
SYSTEMOWNERSHIP	varchar(128)	YES		NULL	
BOILEREFFICIENCY	varchar(128)	YES		NULL	
NUMBEROFHEATEXCHANGERS	varchar(128)	YES		NULL	
CHPELECTRICRATE	varchar(128)	YES		NULL	
GOVERNMENTSUBSIDIES	varchar(128)	YES		NULL	
THIRDPARTYMAINTENANCE	varchar(128)	YES		NULL	
DESCRIPTION	varchar(128)	YES		NULL	
NAME	varchar(128)	YES		NULL	
ELECTRICUTILITY	varchar(128)	YES		NULL	
AVERAGEGASCOST	varchar(128)	YES		NULL	
SYSTEMINSTALLATIONCOST	varchar(128)	YES		NULL	
FIRSTMONITORDATE	varchar(128)	YES		NULL	
TOTALOUTPUT	varchar(128)	YES		NULL	
OPERATINGDAYSPERWEEK	varchar(128)	YES		NULL	
ADDRESS	varchar(128)	YES		NULL	
OPERATINGHOURSPERDAY	varchar(128)	YES		NULL	
CHILLEREFFICIENCY	varchar(128)	YES		NULL	
STANDALONECAPABILITY	varchar(128)	YES		NULL	
SYSTEMAPPLICATION	varchar(128)	YES		NULL	
CHPCONTRACTDEMAND	varchar(128)	YES		NULL	
NAICS	varchar(128)	YES		NULL	
UNITIDS	varchar(128)	YES		NULL	
LONGITUDE	varchar(128)	YES		NULL	
SIC	varchar(128)	YES		NULL	
AVERAGEFUELLHV	varchar(128)	YES		NULL	
NUMBEROFPOWERUNITS	varchar(128)	YES		NULL	
OPERATINGMONTHSPERYEAR	varchar(128)	YES		NULL	
+--------------------------------+--------------+------+-----+---------+-------+
57 rows in set (0.00 sec)

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 25 August, 2016

mysql> describe USER_HEADER;
+---+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---+--------------+------+-----+---------+-------+
USERNAME	varchar(128)	YES		NULL	
NYSERDA	varchar(128)	YES		NULL	
ADMINISTRATOR	varchar(128)	YES		NULL	
MONITORNOTIFYRELATIONALPERCENTAGE	varchar(128)	YES		NULL	
NAME	varchar(128)	YES		NULL	
INCENTIVENOTIFY	varchar(128)	YES		NULL	
FACILITY	varchar(128)	YES		NULL	
MONITORNOTIFYRANGEANDRELATIONALPERCENTAGE	varchar(128)	YES		NULL	
MONITORNOTIFYCOLLECTION	varchar(128)	YES		NULL	
ID	varchar(128)	YES		NULL	
OPERATIONALNOTIFY	varchar(128)	YES		NULL	
MONITORNOTIFYRELATIONAL	varchar(128)	YES		NULL	
LASTLOGIN	varchar(128)	YES		NULL	
MONITORNOTIFYCOLLECTIONPERCENTAGE	varchar(128)	YES		NULL	
MONITORNOTIFYRANGEANDRELATIONAL	varchar(128)	YES		NULL	
EMAIL	varchar(128)	YES		NULL	
WEBADMIN	varchar(128)	YES		NULL	
+---+--------------+------+-----+---------+-------+
17 rows in set (0.00 sec)

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 26 August, 2016

3 Offline System Online Component Description

The offline data processing system is responsible for converting raw data provided by the
data monitoring contractor for the CHP sites into hourly data suitable for loading into the
online MYSQL database. At present, the offline system runs using a combination of
command line batch files, Python, and Visual Numerics PV-WAVE data visualization
language. Some of the PV-WAVE code used in the offline system was developed prior
to development of the Integrated Data system. The code for these functions is proprietary
to CDH Energy, but functions developed for the DI system are described below. Many
of the functions provided by PV-WAVE are easily duplicated in a combination
database/processing language such as Python. Some of the functions have already been
replaced by Python modules designed by CDH.

The offline system performs the following functions in handling the data:

• Download data from online processing server for all CHP sites
• Parse raw data files, arrange data entries in chronological order, eliminate

duplicate entries
• Store raw data in a UTOPIA flat-file database for historical archiving
• Archive raw data files as necessary (move to long term storage location and zip)
• Apply documented adjustments to data (typically in the form of a multiplier

adjustment, or mathematical conversion from an rate to an amount per data
interval)

• Convert a fixed duration of data (typically past two-weeks) of adjusted raw data
to hourly data, write to a file for upload to online processing server

3.1.1 Download the data

This process is primarily accomplished by the download.bat batch files that handle
changing to the proper sites raw data directory and executing a download of the
corresponding raw data files from the server. Downloading the data is accomplished
using the psftp.exe command to facilitate the secure ftp connection required by the
server.

An excerpt from the download.bat file and the psftp.exe script is shown below.

download.bat for Connected Energy Sites
psftp -l solarlog -pw <password> -b download.psftp

download.psftp psftp.exe script for Connected Energy Sites
open data.cdhenergy.com
cd /home/solarlog/AllPlants
mget *.CSV
mget *_solarlog_6524258.csv
rm *_solarlog_6524258.csv

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 27 August, 2016

These are typical scripts that are repeated across all sites where data is provided by an
outside monitoring contractor directly to the CDH data server.

Alternatively, outside contractors may deliver data to the CDH data collection email
address, data_collection@cdhenergy.com. When the main collection script runs each
day, a set of python modules is called to process all un-processed emails currently on the
server using the imap protocol.

imap_version.py is a CDH module which control the overall process and loads the
individual site configuration and modules when applicable. In the same directory, each
site which sends emails has a folder that contains a configuration file which specifies
information used to search for valid emails. An example:
[settings]

data_path : G:\data_int\Solar_data\Compass Forwarding\raw_data\
senders_emails : scheduledreports@datareadings.com

scheduledreports_test@datareadings.com
valid_attch : csv

xls
xlsx
pdf

fout_prefix : compass_forwarding_inverter_
compass_forwarding_

subject: *Compass Forwarding NYSERDA monitoring report - Inverter*
compass forwarding

Emails that have had files successfully extracted are moved from the inbox to a
processed_emails folder on the email server. Emails which had no files to extract or ran
into some other issue are moved to a failed_emails folder. Failed emails are manually
checked for issues and either deleted if they do not contain data or the modules are
updated to handle them properly. It is not uncommon for sites to CC the collection email
address during normal communications.

imap_email_find.py is a CDH module which uses information from the configuration file
to identify emails which meet the criteria for each site and returns the resulting list of
unique identifiers. This module is generic for most sites, but custom versions can be
specified and used on a site by site basis.

imap_extract_attachments.py is a CDH module which identifies attachments and
deliveries them to the specified data_path in the configuration file. This module is
generic for most sites, but custom versions can be specified and used on a site by site
basis.

Another option often used by sites to deliver data is the upload function on Obvius data
loggers. In this case each data logger is provided a unique URL on the CDH data server
which points to a receive_obvius.py module. This module accepts the http push from the
data logger and places the data into a unique directory on the server while logging the
transfer. Data files are then pulled down using a modified version of the SFTP script
previously shown. In cases where the Obvius data logger uploads many files over a short
period, 10 device files every minute for instance, request_compress.py is called first to
combine the files together and reduce overhead.

mailto:data_collection@cdhenergy.com

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 28 August, 2016

3.1.2 Parse Raw Data Files

Parsing and importing raw data files for each site is handled by a custom data loader
(loader.pro) for each site, written in PV-WAVE. The loader.pro routine handles loading
the existing flatfile database into memory, expanding the database past the end of the
current month as new data is loaded (if necessary), storing the UTOPIA flat-file database,
and calling the upload routines for (if necessary).

Parsing of the raw data occurs when loader.pro calls handle_csv.py. This python module
loads the configuration information from site_data.conf which specifies format
information regarding the raw data files. An example of the file specification in the conf
file is provided below:
[file1]
device: 001
hfname: header_1.csv
fname: mb-%(device)s*.log
data_path: raw_data\
d_store: d_mb%(device)s.pkl
dt_fmt: '%Y-%m-%d %H:%M:%S'
col_offset: 4
time_offset: -5
raw_compression: 1

The site_data.conf file also contains descriptive information about the site. The
handle_csv.py module then calls the process_csv.py module and passes in this
information and any additional functions that may be needed to process the file. In
certain cases functions may need to be passed along to fix odd issues that can affect
individual lines or in extreme cases of malformed files, a function may be passed to
adjust the entire file before processing is done. After the file is processed, a simple
comma delineated file is returned that can be readily loaded into the existing flatfile
database by csv_ld.pro.

3.1.3 Store Raw Data in a UTOPIA Flat-File Database2

The UTOPIA flat-file database is written back to disk using the store.pro command,
called from the loader.pro routine. Raw data files that have been loaded and stored in the
UTOPIA flat-file database are archived by zipping the files in monthly zip files.

3.1.4 Apply Documented Adjustments to Data

Data that are loaded from the UTOPIA flat-file database are adjusted by rules
documented in the data_adjust.pro routine located in each project directory. This routine
adjusts individual data channels in the database based on feedback from the site, or
investigation and analysis of the data trends provided. The typical adjustment is a
multiplier or offset correction, or potential the adjustment from an accumulated value
(odometer-style reading) to an incremental value (difference of two consecutive

2 Routines associated with the actual operation of the UTOPIA flat-file database system (load.pro,
store.pro, expand.pro) predate the development of the integrated data system and code for these routines
will not be provided.

DG/CHP Integrated Database Functional Description

CDH Energy Corp. 29 August, 2016

accumulator values). These adjustments are not stored in the database, but executed each
time the data is loaded, to prevent irrevocable damage to the raw data provided by the
CHP sites.

3.1.5 Conversion to Hourly Data

The raw data loaded from the UTOPIA flat-file database system are then converted into
hourly data by the make_nyserda_db.pro routine. This routine handles the math of
totalizing, averaging, or maximizing the interval data in the UTOPIA database (based on
the raw data interval) into hourly values. The make_nyserda_db.pro routine can be
adjusted for each site, however data is loaded into specific channels which correspond to
the data channels in the mysql database. Only these channels are converted to hourly
data using the method defined in range_checks.pro. These channels are typically
populated by loaded data directly into them, or calculated from other channels in
data_adjust.pro. Make_online_db.pro also adds a data quality variable to the hourly
data set, with one data quality variable corresponding to each data channel output.

As part of the hourly data generation, a series of automated range and relational checks
are implemented. These checks are contained in the range_checks.pro and
relational_checks.pro routines. range_checks.pro compares the hourly data from
make_online_db.pro against a predefined set of minimum and maximum values. If the
hourly data exceeds the ranges set, then the data quality flag variable for that channel
(output as part of make_online_db.pro) is set appropriately. relational_checks.pro
compares the data to a series of tests where hourly data from make_online_db.pro are
compared against each other for nonsensical combinations (such as CHP system power
with no corresponding gas flow). Any data channels that fail the relational checks have
the corresponding data quality flag set as such.

The hourly data are written to a file on disk for temporary storage before being uploaded
to the online server. The hourly file is uploaded using an HTTP POST method by the
upload.py command, to indicate to the server that new data has arrived. This hourly
datafile upload provides the input to the dat2mysql.py Python routine on the online
server, which will populate the online version of the hourly database.

	Attachment D
	DG/CHP Integrated Data System Functional Description
	1 Introduction
	2 Back End System Online Component Description
	2.1 HTTP Web Server
	2.2 Python Programming
	2.2.1 DI Application Program Interface (API)
	2.2.2 Loading and Retrieving Time-series Performance Data
	2.2.3 Custom MYSQL Functions for Time-series Performance Data
	2.2.4 Reporting, Plotting and Output Routines
	2.2.5 Utility Rate Calculator Routines
	2.2.6 NYSERDA Incentive Calculator Routines
	2.2.7 Calendar Routines
	2.2.8 Front End - Back End Communication Routines

	2.3 Scheduled Routine Execution
	2.4 MYSQL Database Table Samples

	3 Offline System Online Component Description
	3.1.1 Download the data
	3.1.2 Parse Raw Data Files
	3.1.3 Store Raw Data in a UTOPIA Flat-File Database1F
	3.1.4 Apply Documented Adjustments to Data
	3.1.5 Conversion to Hourly Data

