Research Directions and Challenges for EPA's Air Climate and Energy Research Program

Tim Watkins Deputy National Program Director Office of Research and Development

2011 NYSERDA/EMEP Conference November 15, 2011

New Directions for EPA's Office of Research and Development

- Sustainability is the "true north" that will guide our research and innovation priorities
- We will create broad sustainability research programs based on *systems thinking*
- We will engage with our *stakeholders* to develop *sustainable solutions* relevant to their needs
- We will engage in *integrated, transdisciplinary* research throughout our portfolio
- We will be a *catalyst* for progress in sustainability in the U.S. and around the world

Sustainability & Systems Thinking

Sustainability: to create and maintain conditions, under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic, and other requirements of present and future generations. *NEPA* [1969] and Executive Order 3514 [2009]

Sustainability and the US EPA (National Research Council 2011)

Sustainability Impact Assessment

Environmental Justice Tools

Present Condition and Future Scenario Tools

Tradeoffs/Synergy Analysis

Decision Implementation

Evaluation

4

Building Sustainability and Systems Thinking into EPA Research

Earth Systems

Climate

Changes in: Temperature · Extremes Precipitation · Sea Level

Ecosystems · Watersheds

Human Health and Communities

Responses

Air

Ambient Air Quality

Pollutant Deposition

Mitigation Prevention Adaptation

Human Systems

Social Factors

Population · Public Health · Economy Technology · Transportation · Behavior Water/Food Supply · Land Use Change

Responses

Mitigation Prevention Adaptation

Energy

INTE BUILDING

Emissions of Air Pollutants and Other Environmental Stressors

Adapted from IPCC 2007

- The multipollutant nature of air pollution
- The impacts of climate change and the development and evaluation of sustainable adaptation and mitigation options
- The human health and environmental impacts of current and future energy alternatives
- The expanding and contracting scales of environmental problems that range from global to local
- The social, behavioral, and economic factors that influence the effectiveness of air quality and climate policies

Evolution of ACE Research

ACE Research Themes

Assess Impacts

Prevent and Reduce Emissions Respond to Changes in Climate and Air Quality

Assess Impacts

Assess human and ecosystem exposures and effects associated with air pollutants and climate change at individual, community, regional, and global scales.

Objectives:

- o Inform the review of the NAAQS
- Assess multipollutant exposures and effects
- Innovative approaches to assess exposures and effects of pollutants in the atmosphere
- Identify characteristics of populations and ecosystems susceptible to exposure to air pollutants and climate change

ACE Theme 2

UNITED STATES - DONBOL - DONBO

Prevent and Reduce Emissions

Provide data & tools to develop and evaluate approaches to prevent and reduce emissions of pollutants to the atmosphere, particularly environmentally sustainable, cost effective, and innovative multipollutant and sector-based approaches

<u>Objectives</u>:

- Support the management of air pollution problems at different scales of time and space
- Support implementation of NAAQS
- o Innovative technologies to support AQ management strategies
- o Evaluate pollution reduction and prevention solutions
- Develop methods and data for life-cycle analyses of alternative pollution reduction and energy options

ACE Theme 3

Respond to Changes in Climate & Air Quality

Provide human exposure and environmental modeling, monitoring, metrics and information needed by individuals, communities, and governmental agencies to adapt to the impacts of climate change and make informed public health decisions regarding air quality

Objectives:

- Evaluate alternative adaptation strategies
- Devise innovative methods to inform individualand community-level adaptation to climate change and decision making for air quality
- Evaluate social, behavioral, and economic factors that influence adaptation strategies for climate change and decision making for air quality

ACE Themes and Research Topics

ACE Framework

Theme 1:

Assess Impacts

Theme 2: Prevent / Reduce Emissions

> Theme 3: Respond to Changes

Sustainable Solutions

Proposed ACE Research Projects

ACE Topic Area	ACE Project
Air Quality and Climate Interactions	Characterization of Relationships between Air Quality, Climate Change, and Adverse Health Effects
	Net Climate and Air Quality Impacts
Energy and Biomass	Protecting Human and Ecosystem Health in an Evolving Energy Landscape
	Managing the Impacts of Emerging Bioenergy Pathways
Emission and Measurements	Methods for Measurement to Inform Policy Decisions
	Improving Emissions Inventories
	Changing the Paradigm for Air Pollution Monitoring
Mitigation and Adaptation	Vulnerable People and Ecosystems
	Climate change impacts, at national, regional, and local scales
	Developing Sustainabile Climate Adaptation and Mitigation Approaches
Modeling and Decision Support Tools	Local- to Urban- to State-Scale MP Air Quality Models
	Regional- to Continental-Scale MP Air Quality Modeling
	Modeling Air Quality impacts on Pollutant Deposition and Water Quality
	Hemispheric- to Global-Scale MP Air Quality and Climate Models
	Predictive Modeling of Population Variability in Biomarkers
	One Environmental Modeling System
NAAQS and Multipollutant	Human exposure and effects of air pollutant mixtures and NAAQS pollutants
	Multipollutant exposures to understand impacts of mixtures on health effects
	Climate change/health impacts and controls related to sources and atmospheric transformations
	Near-source impacts and mitigation options
	Susceptible populations to exposures to pollutant mixtures
	Methodologies to better understand multipollutant exposures and health effects
	Atmospheric deposition tools to inform secondary NAAQS
Sustainable Solutions	Green Chemistry to Develop Alternatives for Air Toxic Chemicals
	Sustainability Metrics and Indicators across Sectors, Systems and Communities

Note: Bolded Projects are potential ACE Signature Projects because they embody the strategic evolution of the ACE program towards sustainable solutions, systems analysis, innovation and integration,

Example: Systems Modeling of Environmental Impacts of Technology Change with MARKet ALlocation (MARKAL)

MARKAL Inputs:

- Future-year energy service demands
- Primary energy resource supplies
- Current & future technology characteristics
- Emissions and energy policies

•Through linear optimization MARKAL finds the least cost set of technologies

MARKAL Outputs:

- Technology penetrations for meeting industrial, residential, commercial, and transportation demands
- Fuel use by type and region
- Sectoral and system-wide emissions
- Marginal fuel and emissions reduction prices

Policy Challenges/Opportunities for ACE Research

- Multipollutant Air Management
 - Air Quality
 - Climate Change
 - Climate-Air Quality Interactions
- Sustainability/Systems Analysis
 - Incorporating sustainability concepts into decision making process
- Technology Innovation
 - Keeping up with rapid pace of innovation
 - Responding to external applications (e.g. measurements)
 - Evaluation for internal EPA use