Response of Forest Carbon and Nitrogen

Cycles to Decreasing Acidification
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Trends and Interactions:
Sulfate, DOC and Nitrate
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N Retention, DOC, and De-Acidification

Northeast United States
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*Driven by variation in catchment soils?
*Response to changes in acidification?

Goodale, CL, JD Aber, PM Vitousek, and WH McDowell. 2005. Long-term decreases in stream nitrate: successional causes unlikely;
possible links to DOC? Ecosystems 8:334-337.

Evans, CD, B Reynolds, A Jenkins, RC Helliwell, CJ Curtis, CL Goodale, RC Ferrier, BA Emmett, M Pilkington, SJIM Caporn, JA Carroll, D

Norriss, J Davies, and MC Coull. 2006. Soil carbon pool determines susceptibility of semi-natural ecosystems to nitrogen saturation.
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DOC and NO;
Affected by changing

acidification?
Description SO,*
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Soil Core Response to Weekly Leaching
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Bio-Available DOC (mg/L)
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Acidification increases DOC
bioavailability (week 34)
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Hypotheses

Increased Ca availability alters C and N cycling

Tree Response Soil Response
* Increased tree growth e Forest Floor:
* Increased litter production — Enhanced decomposition and N

mineralization

* Increased root production
P — Reduced C and N stocks

e Mineral soil

— Physical stabilization of organic
matter

— Increased C and N stocks

| Nl
Forest Floor

Mineral Soil




Lake Watershed

Woods




Liming increased soil
exchangeable Ca (cmol_kg, ).
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Liming increased surface soil pH.
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Live tree biomass decreased
but was unaffected by liming.

Control Limed =

C1 C2 L1 L2

- Lime effect P =0.76




Stand mortality driven by beech decline
and was unaffected by liming.
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No effect of liming on litter production.

Lime effect P = 0.36
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Liming increased fine roots, but only
in the Oe in one subcatchment.
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forest floor C stocks.
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Liming suppressed
soil basal respiration.
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Why has respiration decreased?

Hypotheses

* Increased chemical recalcitrance?
 Change in the microbial community?
* Increased physical stabilization?
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Liming stimulated
net nitrification.
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Increased Ca availability alters

= __._‘."_‘ q_‘\ H—.
Forest Floor

Mineral Soil

—

C and N cycling

Tree Response
- Wood production

- Leaf litter production

- Root production

Forest Floor
- Respiration
- N Mineralization
- Nitrification
- C and N stocks

-Mineral Soil
- C and N stocks

NO LIME EFFECT
NO LIME EFFECT
INCREASED

DECREASED
DECREASED
INCREASED
INCREASED

NO LIME EFFECT



Net C balance

20 - year

Increase in C stocks .
enhancement in C

Source of C flux In limed solls o
(t C ha't yr) stocks due to liming
(tC ha‘l)
Foliar litter " 0.32 6.4
Non - foliar litter nsd -0.20 -4.0
< 2 mm roots* 0.07 1.4
Hete_rotropinc 0.95 19
respiration
Observed increase In
forest floor C stocks 1.85 37
Net C balance of 114 29 8

measured fluxes



Some Conclusions

multlple forest C processes and pools
— Increases release of bio-available DOC.

* Implications for catchment NO;™ export?

— Decreases decomposition rates and yields
additional C storage in some forest soils.

e Exact mechanism and persistence uncertain.
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Sulfate Deposition
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Acidification increases DOC
bioavailability (week 34)
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Why calcium?

 Biologically important

e Abiotic soll Interactions



Woods Lake Watershed
Adirondack Park, New York




Tree response




nnual litter production




Litter C and N inputs

Carbon Nitrogen
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Litter Ca inputs

0.06

Lime effect P = 0.001



Increased Ca availability alters
C and N cycling

Tree response

Increased:
> L etree growth: NO LIME EFFECT

o leaf litter production: NO LIME EFFECT
 root production: INCREASED

Mineral Soil




Increased Ca availability alters

e P __\ e
Forest Floor

Mineral Soil

i

C and N cycling

Soil response

» Forest floor:
 increased decomposition and net N
mineralization DECREASED

e decreased C and N stocks INCREASED

 Mineral soil:
e Increased C and N stocks NO EFFECT



Increased Ca availability alters
C and N cycling

Soil response

 Forest floor:
= * increased decomposition and
net N mineralization

." i _ : -1..\ H
Forest Floor

Mineral Soil | e decreased C and N stocks

e Mineral soll:
e Increased C and N stocks




Increased Ca availability alters
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Forest Floor

Mineral Soil
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C and N cycling

Soil response

» Forest floor:
 increased decomposition and net N
mineralization DECREASED

e decreased C and N stocks INCREASED

e Mineral soll:
e Increased C and N stocks



Increased Ca availability alters

=
Forest Floor

Mineral Soil

—

C and N cycling

Soil response

 Forest floor:
* increased decomposition and net N
mineralization DECREASED

e decreased C and N stocks INCREASED

* Mineral soill:
e Increased C and N stocks
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Liming Increased forest floor N stocks

tN ha’

C1 C2 L1 L2
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Why a difference In forest floor mass?
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e Litter production E 407
e Root production - a0
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e Decreased:
o decomposition



Forest floor C and N cycling

e Soil basal respiration

e Net N mineralization and nitrification



Belowground response




Mineral soil C and N stocks

Carbon
300 @ o-10cm
@ 10-20cm
250 @ 20-30 cm
@ @ 30-40 cm
200 -
3 ab ab
®
£ 150 -
@)
~ 100
50 -

C1 C2 L1 L2

Lime effect P = 0.33



Soil basal respiration




In situ net N mineralization




Why have C and N cycling rates changed?

Hypotheses

e |Increased chemical recalcitrance



Why have C and N cycling rates changed?

Hypotheses

e |Increased chemical recalcitrance
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Why have C and N cycling rates changed?

Hypotheses

e |Increased chemical recalcitrance

 Change In the microbial community



Net C balance



Net C balance

20 - year
enhancement in C
stocks due to liming
(t C ha)

Increase in C stocks
Source of C flux In limed solls
(t C hatyr?)

Observed increase Iin

forest floor C stocks 1.85 37



Net C balance

Increase in C stocks

20 - year
enhancement in C

Source of C flux In limed soils .
(t C ha't yrY) stocks due t(_)lllmlng
(t C ha™)
Foliar litter "¢ 0.32 6.4
Non - foliar litter nsd -0.20 -4.0
Observed increase in 185 37

forest floor C stocks



Net C balance

Increase in C stocks

20 - year
enhancement in C

Source of C flux In limed solls o
(t C ha't yrY) stocks due t(_)lllmlng
(t C ha™)
Foliar litter " 0.32 6.4
Non - foliar litter nsd -0.20 -4.0
< 2 mm roots* 0.07 1.4
Observed increase in 185 37

forest floor C stocks



Net C balance

Increase in C stocks

20 - year
enhancement in C

Source of C flux In limed solls o
(t C ha't yrY) stocks due to liming
(tC ha‘l)

Foliar litter " 0.32 6.4
Non - foliar litter nsd -0.20 -4.0
< 2 mm roots* 0.07 1.4
Hete_rotropinc 0.95 19
respiration

Observed increase In 185 37

forest floor C stocks
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