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Environmental, Energy Market, and Health Characterization
�
of Four Wood-Fired Hydronic Heater Technologies
�
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•Conventional, 

Single Stage HH 

•Single stage 

combustion 

•Fan-assisted, 

natural updraft 

•250,000 Btu/h 

•Damper-

regulated 

•Three Stage HH 

•Three stage combustion 

•Primary stage gasification 

•Second stage superheated air 

mixing 

•Third stage combustion 

chamber. 

European 2-StagePellet 

Burner 

•2-Stage combustion 

•Wood pellets 

•137,000 BTU/h 

•EN303-5, Class 3 

U.S. 2-Stage Downdraft 

Burner 

•Staged combustion, 

combustion and gasification. 

•Cord Wood 
Red Oak White Pine Red Oak with Refuse •160,000 Btu/h 

•Damper regulated 

Red Oak Hardwood Pellets •Heat Storage used 

•150,000 BTU/h 
Red Oak 

Emissions during a 24-h winter cycle were measured under realistic firing scenarios. Cumulative and temporal measurements: CO, CO2, Heat, PM, PM(t, N), THC, OC/EC, 

CH4, N2O, PAHs, Volatiles, Semi-Volatiles, PCDD/PCDF.  
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Conventional HH Wood heat is likely to remain a relatively small market share1606x104 

5x104 

4x104 

3x104 

2x104 

1x104 

W
at

er
te

m
p

e
ra

tu
re

(o F
) 

P
J 

us
ef

ul
 e

ne
rg

y

700Internal sampling platform 400000 
140 

120 
300000 

100 

80 
200000 

60 

Newer Wood Stoves600 of total residential space heating demands. 
500 Existing Wood Stoves 

400 
Electricity 

300 
Natural Gas 

200 

B
u

il
d

in
g

w
a

ll
 

CEM 

Flow Measurements Indoor sampling duct 
40Primary ParticulateMeasurements 100000 

Liquified Petroleum10020dilution 

E
LP

I/
T

E
O

M

P
A

H
S

V
o

la
ti

le
s

E
C

/O
C

R
E

M
IP

I/
TO

F
M

S

A
TO

F
M

S

Gas0 0 0 
0 4 8 12 16 20 24 0 3 6 9 12 15 18 21 24 00 0 

Run Time (Hours)QStack 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Run Time (hr) 2005 2010 2015 2020 2025 2030 

CEM Run Time (Hours)Secondary 

dilution 

8” OD stack 
The heat release rate and emissions correlate with damper openings..  The heat release rate on theTo 
CO emissions surpass 5%. Emissions are related to time from charge 90 
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42000 

100 

50 The evolution of the technology mix within the marketSampling system and heat 

load curve. The heat load 

profile was for a 2500 sq-

ft area home in Syracuse, 

New York (BNL). 
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•Emissions from hydronic heaters are a strong function of technology type and can be •CO values up to 8% by mass and CH4 values up to 10% of the total hydrocarbon emissions 

Conclusions significant for units with cyclical damper openings.  

•For these same units, nuisance odor can be troublesome 

were observed. 

•Wood heat is expected to remain a small and declining share of the residential heating market, 

•The magnitude of the emissions are related more to the duration since the last fuel charge, yet be a significant contributor to pollution. 

rather than the heat load. Fuel type also plays a minor role. 
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