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Carbon Capture and Storage (CCS)

Geological Work with the MRCSP

Geological Carbon Sequestration

Sequestration Targets in New York

Other Options in New York
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Volumetric storage is the amount of CO2 that can be stored by displacing the fluid cur-
rently residing in the pores of the target formation.   Volumetric storage is heavily de-
pendent on the storage efficiency factor, which is the percent of the pore space where 
the in situ fluid can be displaced which is variably estimated at between 0.5 and 30%.   
Any formation fluids in the pore space will have to be displaced as the CO2 is injected, 
and over time, some of the CO2 will dissolve into these fluids.  Solubility of CO2 greatly 
decreases as salinity rises.  Most of the prospective sequestration formations in New 
York contain high salinity brine near 300,000 ppm, so there will be very little solubility 
storage capacity in NY.  In Phase I of the MRSCP project, the CO2 storage capacity for the 
Mt. Simon Sandstone (Potsdam) was estimated using both volumetric and solubility 
storage equations.  The resulting potential storage capacity decreased by a factor of 
2.6 when salinity concentrations in the formation fluids was included in the calcula-
tion.  

The main opportunities for geological sequestration are depleted gas reservoirs and 
saline aquifers.  

Depleted Oil and Gas Reservoirs 
New York has produced natural gas for more than a century, and there are many de-
pleted reservoirs.  Most of the reservoirs are currently used for natural gas storage 
which is a lucrative business.  Most fields used for storage would not be available for 
carbon sequestration.  The biggest gas reservoirs in the State are in the Black River For-
mation. Assuming these reservoirs produce 500 BCF and that all of the pore space was 
filled with CO2 they could store the amount captured from one large powerplant for 
40 years.
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Onshore Saline Aquifers
Saline aquifers are formations deep in the subsurface that are filled with very salty 
water.   The formations need to have porosity and permeability and be at least 2500 feet 
deep.  All formations will be evaluated.  At present, the best options are thought to be in 
the Cambrian Potsdam (which has few wells drilled to it) and the Cambrian Rose Run 
Sandstone.  

Offshore Saline Aquifers
The greatest potential for geological carbon sequestration in saline aquifers is offshore.  
There more than 25 different layers with up to 30% porosity (compared to a maximum 
of 10-15% onshore). These Formations would require pipelines and platforms in off-
shore areas which are expensive, but many of the regulatory and safety issues would be 
avoided with offshore sequestration. 

Black River Core

Carbon capture and sequestration is the process by which carbon dioxide from station-
ary sources is captured and stored below ground or offshore under the ocean.   New 
York will be focusing on geologic storage (below ground). 

In order to effectively and efficiently sequester carbon dioxide underground,  it must be 
in a supercritical state, which has the density of a liquid but flows like a gas.  In a given 
space, one can store about 260 times more CO2 when it’s in a supercritical state as com-
pared to a gas or liquid state.  Supercritical CO2 requires temperatures and pressures of 
at least 31.1°C and 73atm, respectively.  Supercritical storage potential in New York 
State occurs in formations at least 2500’ below ground.   The potential for supercritical 
storage in NY is mainly in western and central portions of the state. 

The Midwest Regional Carbon Sequestration Partnership (MRCSP) began in 2003 and 
is one of seven USDOE regional partnerships exploring CCS.  New York recently joined 
the partnership and the NYS Museum Reservoir Characterization Group is now in the 
process of integrating its geological data with that of the other member states.  The 
first step for New York in the MRCSP CCS research plan is to perform a detailed charac-
terization of  geological formations in NYS to identify storage opportunities. 

Thickness map of Cambrian Rose Run Sandstone Number of feet of porosity >5% in Cambrian Rose Run Sandstone
Rose Run Core

 In addition to depleted gas reservoirs, enhanced gas recovery (EGR) is also being ex-
plored.  In gas shales, methane is adsorbed onto the surfaces of clay particles.  When CO2 
is injected into a carbonaceous gas shale formation, it can displace and desorb the meth-
ane, thus sequestering the CO2 and mobilizing the natural gas.  At this point EGR is more
of a theory than a reality,  however since there are large volumes of shale in NY it would
be beneficial to be able to apply this method of sequestration.  NYSERDA has funded two 
shale gas projects that are currently be researched at the New York State Museum.
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SANDSTONE and GRAVEL unconsolidated coarse,
abundant shell fragments, glauconite

LIMESTONE gray, mottled, microcrystalline to fine
crystalline, hard, tight, thin streaks of SHALE, gray,
gray-green

EARLY
CAMBRIAN?

UNAMED

BASEMENT

TD 16,071 ft.

SHALE gumbo-like, interbeds of coarse sand, gravel,
glauconite

SANDSTONE unconsolidated coarse to very coarse,
in part calcareous, interbeds of red and gray
gumbo-like shale, lignite, pyrite, argillaceous
DOLOMITE near base

SHALE gray (gumbo) few beds of unconsolidated
SANDSTONE, coal near top

SAND very coarse, scattered pebbles, thin beds of gray
SHALE (gumbo), coal or LIGNITE at base

SHALE and CLAY light gray, interbeds of coarse SAND,
thin beds of DOLOMITE and SHALE near base

SAND and loosely cemented SANDSTONE, medium to 
coarse, few COAL and lignite beds, in part shaly,
pyritic, micaceous

SHALE orange-brown, dolomitic, abundant lignite,
pyrite, few thin interbeds of fine to coarse SANDSTONE

SANDSTONE and SHALE about 60-40 SANDSTONE
coarse to very coarse, loose; traces of pyrite, lignite
SHALE red, yellow, gray, brown, in part silty, micaceous

SANDSTONE unconsolidated, coarse to very coarse,
slightly arkosic, some pea-gravel, thin interbeds of 
brown-red and variegated SHALE

SAND very coarse, unconsolidated, thick interbeds
of SHALE, red-brown, gray, some COAL, pyrite

SANDSTONE consolidated, medium, interbedded
SHALE, red brown, green, silty, traces of COAL, thin
beds of micrite

LIMESTONE fine to medium crystalline pelletal
fossiliferous, micrite at base

SHALE gray-green, abundant carbonaceous flecks,
LIMESTONE, dense, fossiliferous, few thin beds of 
very fine SANDSTONE

SANDSTONE thinly, interbedded, very fine-crystalline
light DOLOMITE, SHALE, red--brown and gray, grading
to SILTSTONE, thin LIMESTONE at base

SANDSTONE thin interbeds fine to medium, SHALE, gray, gray-green,
red brown, thin LIMESTONE beds, thick SHALE grading to SANDSTONE,
COAL at base

DOLOMITE, light gray-beff, dense-fine crystalline, part limy,
trace COAL

SHALE, red, brown, gray, silty, micaceous, dolomitic, interbedded
SANDSTONE, fine to medium, consolidated trace COAL

DOLOMITE light gray-buff, cryptocrystalline, in part sandy,
silty or pelletal, interbeds of ANHYDRITE, scattered GYPSUM
nodules, few thin beds of red-brown SHALE

SANDSTONE light gray-pink, very fine to fine, DOLOMITE,
cream-buff, brown, dense, a little red SHALE and ANHYDRITE

SHALE red-brown, streaks and inclusion of DOLOMITE and
ANHYDRITE, thin interbeds of DOLOMITE, few thin beds of tight
SANDSTONE

SANDSTONE fine to medium, rust-red, argillaceous, interbeds
of SHALE, red, brown, micaceous, part dolomitic, conglomerate
zones with interbedded SANDSTONE and SHALE, few thin beds 
of DOLOMITE, gray-tan microcrystalline

QUARTZ CONGLOMERATE, red-pink, red dolomitic SHALE
matrix, few interbeds of red SHALE, SANDSTONE and dense
LIMESTONE and DOLOMITE, thick, red sandy, SHALE, pink-red,
medium to coarse-grained SANDSTONE at base

SERICITIC METADOLOMITE, light-gray to white, fine dense
crystalline, black SLATE partings
PHYLLITE with wedges and layers of metaquartzite, pyrite,
pyrite cubes and masses, some schistose foliation and 
graphite stain
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CO2 solubility decreases as salinity increases

Parameter (mg/L)
Sodium (Na)
Calcium (Ca)
Magnesium (Mg)
Strontium (Sr)
Barium (Ba)
Potassium (K)
Iron (Fe)
Manganese (Mn)
Chloride (Cl)
Bromide (Br)
Sulfate (SO4)
Bicarbonate (HCO3)
Iodine (I)
Lithium (Li)
Trace Metals
Hydrocarbons
Measured TDS
Calculated TDS
IONIC RATIOS
Na/Ca
Ca/Mg
Mg/K
Cl/Br
No. of Analyses

Potsdam/
Theresa
36, 712
31,256
4,449

-
790

3,367
17
0

183,701
1,417

18
89
9

54
-
-

300,763
299,137

2.4
9.75
1.07

142.84
9

Medina
69,893
37,124
2,766

-
-
-

676
84

181,298
1,721
736
25
18
-
-
-

292,121
292,723

1.89
15.90

-
102.49

8

Queenston
73,500
36,603
2,887

0
0
-

1,124
195

182,418
1,120

-
-

10
-
-
-

298,358
302,609

2.01
12.76
2.64

255.07
2

Oriskany
45,457
33,684
3,169

-
-

1,307
215

-
145,442

1,687
57

203
10
-
-
-

231,836
232,743

1.42
6.93
4.00

104.66
4

Bass Island
60,750
36,400
3,160

-
-
-

18
0

208,000
-

180
50
-
-
-
-

323,500
323,558

1.08
34.17

-
-
2

Upper
Devonian
Oil Zones

36,367
16,467
2,733
107

8
71

189
7

92,167
860
619

0
200

-
0.74

107.5
156,267
149,582

2.24
6.04

47.03
104.60

3

Table 2.4
BRINE QUALITY DATA FROM

NEW YORK’S GAS AND OIL PRODUCING ZONES

DEC, 1988

156,267Measured TDS 300,763 292,121298,358 231,836 323,500

Salinity concentrations are very high.  What type of reactions might 
occur between the CO2 and other elements in the brine?

Original illustration by Eric A. Morissey, USGS
Illustration modified by Sean Brennan, USGS


