A Method for Extracting Additional Information on the Organic and Elemental Carbon from Real Time Measurements with the Sunset Carbon Aerosol Analyzer

Min-Suk Bae¹, James J. Schwab³, Kenneth L. Demerjian¹, Oliver Rattigan², Dirk Flett², Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York, USA, ²Division of Air Resources, Bureau of Air Quality Surveillance, New York State Department of Environmental Conservation, Albany, New York, USA

INTRODUCTION

- Semi-continuous Organic Carbon and Elemental Carbon (OCEC) instruments are becoming more widely employed to measure the carbonaceous fraction of atmospheric particulate matter. Determining accurate concentrations of atmospheric OC and EC is necessary for identifying their sources and predicting their effects on various atmospheric processes, but lacks the detail required to fully elucidate sources. We have obtained hourly time-resolved measurements of OC and EC at Pinnacle State Park (PSP) in upstate New York and the South Bronx, New York City. OC and EC were determined using a NIOSH-like protocol and a Sunset Real Time ECOC Analyzer - that is, using four temperature steps to a final temperature of 840 °C for OC and two steps to 850 °C for EC.
- There is currently no standard procedure for determining concentrations of the empirical parameters OC and EC in the atmosphere, and there is considerable controversy over measurement methods and parameter designations. In this study, we examine contour plots of the time series carbonaceous concentrations associated with the analysis temperature steps in the hope of providing additional information and details into the carbonaceous nature of sources.

SITE DESCRIPTION

Pinnacle State Park (PSP)
- Low population density rural village of Addison, New York
- Surrounded by parklands, and forested areas

Intermediate School 52 (IS 52)
- Residential area with high traffic density
- Schools (IS 52)
- Interstates 87

FIGURE 1

Characteristics of the Instrument

Helium (He) Atmosphere
Organic compounds volatilized
Converted to CO₂
- Measured by NDIR detector
- 2% Oxygen in Helium Atmosphere
Elemental carbon completely burned
Converted to CO₂
- Measured by NDIR detector
O₂, Inlet Calibration
Monitoring of the Laser Transmittance

FIGURE 2

OC Blank correction: we used "Environmental Blanks" for the PSP site, and Dynamic Blanks for the IS 52 site.

FIGURE 3

OC monthly variation for the PSP and IS 52 sites.

FIGURE 4

Comparison of 24 hour average of hourly measurement SUNSET and 24 hour Integrated STN for the PSP site.

FIGURE 5

Comparison of 24 hour Integrated STN and IMPROVE for the PSP site.

FIGURE 6

FIGURE 7

Winter time at PSP

FIGURE 8

Summertime at PSP

FIGURE 9

Comparison of only Peak 3 conc. and NO₂ at the IS 52 site.

FIGURE 10

Speculative for observed peaks shown in Figure 8

CONCLUSIONS AND SUGGESTIONS

- Data validation by sucrose calibration and blanks correction.
- Fair agreement with 24 hour integrated STN measurement.
- Differences between STN and IMPROVE possibly due to material of filter substrates for sampling and post-sampling filter handling protocol.
- A contour method can be used for the extraction of additional information.
- Thermal peaks measured with the SUNSET analyzer can be related to different classes of carbonaceous material.

This work was supported by NOAA Award number NAOCA3319105, EPA cooperative agreement R828060010, and NYSERDA contract 4914ERT699.