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Reactive N and  Unreactive N2
 
� Unreactive N is N2 (78% of earth’s atmosphere) 
� Reactive N (Nr) includes all biologically, chemically and physically 

active N compounds in the atmosphere and biosphere of the Earth 
� N controls productivity of most natural ecosystems 
� N2 is converted to Nr by biological nitrogen fixation (BNF) 
� N2 is converted to Nr by humans fossil fuel combustion, the Haber 

Bosch process, and cultivation-induced BNF. 
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Reactive N and  Unreactive N2
 

� Unreactive N is N2 (78% of earth’s atmosphere) 
� Reactive N (Nr) includes all biologically, chemically and physically 

active N compounds in the atmosphere and biosphere of the Earth 
� N controls productivity of most natural ecosystems 
� N2 is converted to Nr by biological nitrogen fixation (BNF) 
� N2 is converted to Nr by humans fossil fuel combustion, the Haber 

Bosch process, and cultivation-induced BNF. 
� Bottom Lines 

–	 Humans create more Nr than do natural terrestrial processes. 
–	 Nr is accumulating in the environment. 
–	 Nr accumulation contributes to most environment issues of the day. 
–	 Challenge is to reduce anthropogenic Nr creation. 

� But, this is complicated by fact that Nr creation sustains most of 
the world’s food needs. 

–	 The real challenge is how can we provide food (and energy) while also 
reducing Nr creation rates and arresting the nitrogen cascade? 



 
 

 

 

Reactive Nitrogen Cuts Across
 
Multiple Global Issues and
 
Environmental Agreements
 

� Regional air quality (LRTAP) 
� Climate change (UNFCCC & Kyoto Prot.) 
� Ozone Depletion (Montreal Protocol) 
� Biodiversity loss (CBD) 
� Transboundary water quality (Non-navigational 

Uses of International Water Courses 
� Estuary damage (Regional Seas) 
� Fisheries loss (Law of the Sea?) 



  

 

 

Need for an Integrated Analytical
 
Policy Approach to Reactive Nitrogen
 

�First explain history of human alteration of 
nitrogen cycle 

� Identify the reasons why reactive nitrogen 
cascades through so many segments of the 
global ecosystem 

�Describe the International Nitrogen 
Initiative 



   

The History of Nitrogen
 
--Global Population & Discovery of N--
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The History of Nitrogen 
--Major N processes--
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Nr Creation by Cultivation
 
--So that’s why we plant soybeans--
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Nr Creation by Fossil Fuel Combustion
 
--Nr produced by accident--
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The History of Nitrogen
 
--A British chemists view--
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World is running out of N* 
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*1898, Sir William Crookes, president of the British Association for the Advancement of Science 

Galloway JN and Cowling EB. 2002; Galloway et al., 2002a 



   

 

 

The History of Nitrogen
 
--German science at the forefront--
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Nr Creation by Haber-Bosch
 
--most used for fertilizer--

0 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

0 

50 

100 

150 

200 

N-Discovered N-Nutrient BNF 

N2 + O2 
--> 2NO 

N2 + 3H2 
--> 2NH3 

H-B 

1750 1800 1850 1900 1950 2000 2050 
Humans, millions Haber Bosch 
Legumes/Rice, Tg N NOx emissions, Tg N 

Galloway JN and Cowling EB. 2002; Galloway et al., 2002a 



   

Nr Creation by Food and Energy Production 
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Nr Riverine Fluxes 
1860 (left) and 1990 (right) 

TgN/yr 
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Mid-Course Summary
 

Summary
 

� Humans mobilize ~50%
 
more Nr than natural
 
terrestrial ecosystems.
 
–	 Food production accounts 

for 75% 

� Nr is widely dispersed 
–	 Atmospheric Nr emissions 

have increased 3-fold since 
1860; NH3 twice as 
important as NOx 

� Nr is accumulating in 
ecosystems and the 
atmosphere. 

Next Questions
 

� What are the consequences 
of Nr accumulation? 

� What is projected for future?
 

� How can science and policy 
respond? 



 

 

Nr and Agricultural Ecosystems
 

� Haber-Bosch has facilitated 
agricultural intensification 

� 40% of world’s population is 
alive because of it 

� An additional 3 billion people 
by 2050 will be sustained by it 

� Most N that enters 
agroecosystems is released to 
the environment. 



 

Nr and the Atmosphere
 

� NOx emissions contribute to 
OH, which defines the 
oxidizing capacity of the 
atmosphere 

� NOx emissions are responsible 
for tens of thousands of excess-
deaths per year in the United 
States 

� O3 and N2O contribute to 
atmospheric warming 

� N2O emissions contribute to 
stratospheric O3 depletion 



 

 

Nr and Terrestrial Ecosystems
 

� N is the limiting nutrient in 
most temperate and polar 
ecosystems 

� Nr deposition increases and 
then decreases forest and 
grassland productivity 

� Nr additions probably decrease 
biodiversity across the entire 
range of deposition 



 

Nr and Freshwater Ecosystems
 

� Surface water
 
acidification
 
–	 Tens of thousands of lakes 

and streams 
–	 Significant biodiversity 

losses 
–	 Negative feedbacks to 

forested ecosystems 
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Nr and Coastal Ecosystems
 

� Riverine and atmospheric deposition 
are significant Nr sources to coastal 
systems 



There are significant effects
 
of Nr accumulation within each
 

reservoir
 

These effects are linked temporally
 
and biogeochemically in the 


Nitrogen Cascade
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THE BIG PICTURE
 

� Food and energy production results in creation of ~160 Tg 
N of new Nr, most of which is released to the environment. 

� We know where some of it goes and we generally know 
what it does when it gets there. 

� We do not know: 
–	 How much is stored in ecosystems vs. how much is denitrified to 

N2. 
–	 How to feed and fuel the global population without releasing 

excess N to environmental reservoirs. 

� We know another thing--Nr creation will increase in 
the future, as will Nr accumulation and an 
intensification of the N Cascade--but how much? 



 
 

Nr Creation Rates by Food and
 
Energy Production in 2050
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The Issues of Nitrogen
 

♦ We need food; we need energy. 
♦ How do we get it without Nr accumulation? 

♦ Create less Nr by: 
♦ increasing N use efficiency in food production, 
♦ Reducing NOx emissions from fossil fuel combustion. 

� Convert Nr to N2 before environmental release.
 

While both are possible, an integrated N 
management strategy is required. 



The Challenge to all Parties 

Maximize food and energy production 
while maintaining environmental and 

human health! 



  

The Clean Air Act
 
� The Clean Air Act favors existing plants in three 

ways: 
– In attainment areas, new plants must meet NSPS and 

PSD; existing plants face no comparable requirements. 
– In non-attainment areas, new plants must meet NSPS 

and NSR; existing plants face much weaker standards. 
– The SO2 trading system gives free allowances to 

existing plants, based on 1980s fuel consumption; 
others must buy allowances. 

� Half of coal plant capacity was built before 1975, 
a quarter before 1965.  More than half of all sulfur 
emissions nationwide, and a large part of nitrogen 
emissions, come from pre-1975 coal plants. 
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The economics of coal plants
 
� No one wants to build a new coal plant -- and no 

one wants to close an old one. 
� The key cost comparison: how do operating costs 

of existing coal plants compare to capital plus 
operating costs of a new gas combined cycle 
plant? 

� Three versions of this comparison: 
– Current conditions:  > 99% of coal is cheaper than gas. 
– Comparable emissions scenario (meeting new plant 

standards industry-wide): 94% of coal remains cheaper 
than gas. 

– Comparable emissions plus $10/ton CO2 tax: 64% of 
coal remains competitive. 







  N Fertilizer 
Produced 

N Fertilizer 
Consumed 

N 
in Crop 

N 
Harvested 

N 
in Food 

N 
Consumed 

-6 -47 -12 

100 144794 2631 

-5-16 

The Fate of Haber-Bosch Nitrogen 

14% of the N produced in the Haber-Bosch process enters the 
human mouth……….if you are a vegetarian. 
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  N Fertilizer 
Produced 

N Fertilizer 
Applied 

N 
in Crop 

N 
In Feed 

N 
in Store 

N 
Consumed 

-6 -47 -3 

100 44794 731 

-24-16 

The Fate of Haber-Bosch Nitrogen
 

4% of the N produced in the Haber-Bosch process and used
 
for animal production enters the human mouth.
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