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Reactive N ana Unreactive N,

Unreactive N is N, (78%o of earth’s atmosphere)

Reactive N (Nr) includes all biologically, chemically and physically

active N compounds in the atmosphere and biosphere of the Earth
N controls productivity of most natural ecosystems
N, is converted to Nr by biological nitrogen fixation (BNF)

N, is converted to Nr by humans fossil fuel combustion, the Haber
Bosch process, and cultivation-induced BNF.
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Reactive N ana Unreactive N,

Unreactive N is N, (78%o of earth’s atmosphere)

Reactive N (Nr) includes all biologically, chemically and physically
active N compounds in the atmosphere and biosphere of the Earth

N controls productivity of most natural ecosystems
N, is converted to Nr by biological nitrogen fixation (BNF)

N, is converted to Nr by humans fossil fuel combustion, the Haber
Bosch process, and cultivation-induced BNF.
Bottom Lines
— Humans create more Nr than do natural terrestrial processes.
— Nr is accumulating in the environment.
— Nr accumulation contributes to most environment issues of the day.
— Challenge is to reduce anthropogenic Nr creation.
But, this is complicated by fact that Nr creation sustains most of
the world’s food needs.

— The real challenge is how can we provide food (and energy) while also
reducing Nr creation rates and arresting the nitrogen cascade?




Reactive Nitrogen Cuts Across
Multiple Global Issues and

Environmental Agreements
Regional air quality (LRTAP)

Climate change (UNFCCC & Kyoto Prot.)
Ozone Depletion (Montreal Protocol)
Biodiversity loss (CBD)

Transboundary water quality (Non-navigational
Uses of International Water Courses

Estuary damage (Regional Seas)
Fisheries loss (Law of the Sea?)



Need for an Integrated Analytical
Policy Approach to Reactive Nitrogen

First explain history of human alteration of
nitrogen cycle

|dentify the reasons why reactive nitrogen
cascades through so many segments of the
global ecosystem

Describe the International Nitrogen
Initiative



The History of Nitrogen
--Global Population & Discovery of N--
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The History of Nitrogen
--Major N processes--
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Nr Creation by Cultivation
--So that’s why we plant soybeans--
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Nr Creation by Fossil Fuel Combustion
--Nr produced by accident--
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The History of Nitrogen
--A British chemists view--
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The History of Nitrogen
--German science at the forefront--
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Nr Creation by Haber-Bosch
--most used for fertilizer--
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N. Creation by Food and Energy Production
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N. Creation by Food and Energy Production
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1860

The Global Nitrogen Budget in 1860 and mid-1990s, TgN/yr
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Nitrogen Drivers in 1860 & 1995
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1860

mid-1990s

The Global Nitrogen Budget in 1860 and mid-1990s, TgN/yr
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Nr Riverine Fluxes
1860 (left) and 1990 (right)
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Nitrogen Deposition
Past and Present
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Mid-Course Summary

Summary

¢ Humans mobilize ~50%
more Nr than natural
terrestrial ecosystems.
— Food production accounts
for 75%
¢ Nr is widely dispersed

— Atmospheric Nr emissions
have increased 3-fold since
1860; NH, twice as
Important as NO,
¢ Nr is accumulating in
ecosystems and the

atmosphere.

Next Questions

¢ What are the conseguences
of Nr accumulation?

¢ What is projected for future?

¢ How can science and policy
respond?



Nr and Agricultural Ecosystems

Haber-Bosch has facilitated
agricultural intensification

40% of world’s population is
alive because of it

An additional 3 billion people
by 2050 will be sustained by it

Most N that enters
agroecosystems is released to
the environment.




Nr and the Atmosphere

NO, emissions contribute to
OH, which defines the
oxidizing capacity of the
atmosphere

NO, emissions are responsible
for tens of thousands of excess-

deaths per year in the United
States

O, and N,O contribute to
atmospheric warming

N,O emissions contribute to
stratospheric O, depletion




Nr and Terrestrial Ecosystems

¢ N is the limiting nutrient in
most temperate and polar
ecosystems

Nr deposition increases and
then decreases forest and

grassland productivity

Nr additions probably decrease
biodiversity across the entire
range of deposition




Nr and Freshwater Ecosystems

¢ Surface water
acidification

— Tens of thousands of lakes
and streams

— Significant biodiversity

losses

— Negative feedbacks to
forested ecosystems




Nr and Coastal Ecosystems

¢ Riverine and atmospheric deposition
are significant Nr sources to coastal

systems
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There are significant effects
of Nr accumulation within each
reservoir

These effects are linked temporally
and biogeochemically in the
Nitrogen Cascade




Human Activities |

The Nitrogen
Cascade

Galloway et al., 2002a

Atmosphere

Terrestrial
Ecosystems

Aquatic Ecosystems



NO

Energy
Production

Human Activities |

Ozone
Effects

The Nitrogen
Cascade

Galloway et al., 2002a

Atmosphere

Terrestrial
Ecosystems

Aquatic Ecosystems




Atmosphere
Ozone Pl &
NO, »| Visibility
Effects Effects
Energy
Production

Terrestrial
Ecosystems

Human Activities |

The Nitrogen
Cascade

Aquatic Ecosystems

Galloway et al., 2002a



Energy
Production

Human Activities |

The Nitrogen
Cascade

Galloway et al., 2002a

Atmosphere

. PM &
E],_Zfonte »| Visibility
2 Effects

Terrestrial
Ecosystems

Forests &
Grassland

T,

Aquatic Ecosystems




Energy
Production

Human Activities |

The Nitrogen
Cascade

Galloway et al., 2002a

Atmosphere
Ozone Pl &
p| Visibility
Effects Effects

Terrestrial
Ecosystems

Forests &
Grassland

Groundwater

*_

Effects

Surface water
Effects

Aquatic Ecosystems



Energy
Production

Human Activities |

The Nitrogen
Cascade

Galloway et al., 2002a

Ozone

Atmosphere

Effects

>

PM &

Visibility

Effects

Terrestrial
Ecosystems

Forests &
Grassland

Groundwater

1._

Effects

Effects

Surface water

h 4

Coastal

> Effects

Aquatic Ecosystems




Energy
Production

Human Activities |

Ozone

Atmosphere

Effects

The Nitrogen
Cascade

>

PM &
Visibility
Effects

Terrestrial
Ecosystems

Forests &
Grassland

Groundwater

1._

Effects

Surface water

Effects

h 4

A 4

Galloway et al., 2002a

Coastal
> Effects

Ocean
Effects

Aquatic Ecosystems




Atmosphere

| |
! NO, | I(E)fzfonte > Vi?giclgicty
I I Gk Effects
Energy
l Production |
| | Terrestrial
I s Ecosystems
FOOd_ I Agroecosystem Effects
| Production Forests &
I Crop [—»| Animal Grassland
| Peopl_e ki g UL
(Food; Fiber) v
I I org
| |
|  Human Activities | Sy 1._
Surf l i
= urface water
Coastal Ocean
The Nitrogen Effect gy Effectj

Cascade

Aquatic Ecosystems

Galloway et al., 2002a



NO

Energy
Production

People

(Food; Fiber)

N
l
|

Human Activities |

The Nitrogen
Cascade

Galloway et al., 2002a

org

Atmosphere

Ozone

Effects

A

NO

X

NH,

PM &
Visibility
Effects

h 4

Agroecosystem Effects

Crop ¥ Animal

=TS

Terrestrial
Ecosystems

Forests &
Grassland

A 4

Groundwater

Effects

Surface

Effects

water

h 4

Coastal
> Effects

Ocean
Effects

Aquatic Ecosystems




NO

Energy
Production

Food
Production

People

(Food; Fiber)

N
l
|

Human Activities |

The Nitrogen
Cascade

org

--Indicates denitrification potential

Atmosphere

Ozone

Effects

A

NO, NH,

PM &
Visibility
Effects

h 4

Agroecosystem Effects

Crop ¥ Animal

Forests &
Grassland

=TS

NO,

Groundwater

Effects
gt

Surface water
Effects

Terrestrial
Ecosystems

h 4

=

Coastal
> Effects

Ocean
Effects

=

Aquatic Ecosystems




NO

Energy
Production

Food
Production

People

(Food; Fiber)

N
l
|

Human Activities |

The Nitrogen
Cascade

org

--Indicates denitrification potential

Atmosphere

Ozone
Effects

A

PM &
Visibility

Stratospheric
Effects

+

GH

Effects

NO, NH, v Ecosystems
Agroecosystem Effects
Forests &
Crop —» Animal Grassland

=TS

Terrestrial

v

NO,

Groundwater

Effects

Surface water
Effects

Effects

h 4

Coastal

=

> Effects

Ocean
Effects

o=

Aquatic Ecosystems




THE BIG PICTURE

¢ Food and energy production results in creation of ~160 Tg
N of new Nr, most of which is released to the environment.

¢ We know where some of it goes and we generally know
what it does when it gets there.

¢ We do not know:
— How much is stored in ecosystems vs. how much is denitrified to
N,
— How to feed and fuel the global population without releasing
excess N to environmental reservoirs.
¢ \We know another thing--Nr creation will increase In
the future, as will Nr accumulation and an
Intensification of the N Cascade--but how much?
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Nr Creation Rates by Food and
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The Future of Nitrogen
--N. Creation, Total--
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The Issues of Nitrogen

We need food; we need energy.
How do we get it without Nr accumulation?

Create less Nr by:

increasing N use efficiency in food production,
Reducing NO, emissions from fossil fuel combustion.

Convert Nr to N, before environmental release.

While both are possible, an integrated N
management strategy is required.
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The Clean Air Act

The Clean Air Act favors existing plants in three
ways:
— In attainment areas, new plants must meet NSPS and
PSD; existing plants face no comparable requirements.

— In non-attainment areas, new plants must meet NSPS
and NSR; existing plants face much weaker standards.

— The SO, trading system gives free allowances to
existing plants, based on 1980s fuel consumption;
others must buy allowances.

Half of coal plant capacity was built before 1975,

a quarter before 1965. More than half of all sulfur
emissions nationwide, and a large part of nitrogen
emissions, come from pre-1975 coal plants.
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Cost ($/MWh)

Coal vs. gas: current
conditions
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The economics of coal plants

No one wants to build a new coal plant -- and no
one wants to close an old one.

The key cost comparison: how do operating costs
of existing coal plants compare to

of a new gas combined cycle
plant?

Three versions of this comparison:
— Current conditions: > 99% of coal Is cheaper than gas.

— Comparable emissions scenario (meeting new plant
standards industry-wide): 94% of coal remains cheaper
than gas.

— Comparable emissions plus $10/ton CO, tax: 64% of
coal remains competitive.
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The Fate of Haber-Bosch Nitrogen

N Fertilizer N Fertilizer N N N
Produced Consumed in Crop Harvested inFood Consumed
l l 4 ]_6 -5

14% of the N produced in the Haber-Bosch process enters the
human mouth.......... If you are a vegetarian.


http:mouth���.if

The Fate of Haber-Bosch Nitrogen

N Fertilizer N Fertilizer N N N
Produced Applied in Crop In Feed in Store Consumed
l l _16 _

4% of the N produced in the Haber-Bosch process and used
for animal production enters the human mouth.
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