Ultrafine Particles and Cardiac Responses

Mark J. Utell, MD

University of Rochester Medical Center NYSERDA EMEP CONFERENCE October 14, 2009

Idealized Size Distribution of Particulate Matter (EPA, 2004)

EFFECTS AND FATE OF INHALED ULTRAFINE (NANO)PARTICLES (UFP)

Sources

Exposure

Dose

Response

Indoors

frying broiling grilling electric motors

Outdoors

urban air internal combustion power plants forest fires airplane jets recreation (ski waxing)

<u>Workplace</u>

metallurgy (fumes) welding polymer fumes nanotechnology (biomed. electronics) nanotubes

Concentration

 $ng/m^3 - mg/m^3$ 10² - >10⁶ part./cm³

<u>Duration</u>

minutes hours days continuous/peak

Location distance from source

rt./cm³ traci alvee

tracheobronchial alveolar ventilatory parameters

Disposition

Deposition

nose

within respiratory tract extrapulmonary organs disease state

<u>Physico-chemical</u> <u>Properties</u>

organics metals crystalline amorphous surface area solubility (water, lipid)

Epidemiologic Studies

ambient UFP susceptibles only? mortality/morbidity

<u>Clinical Studies</u>

lab. generated UFP ambient UFP healthy/susceptibles (respiratory, cardiovascular)

Animal Studies

lab. generated UFP ambient UFP compromised animal models (respiratory, cardiovascular, CNS) mechanisms

<u>In vitro Studies</u>

mechanisms oxidative stress

Ultrafine Particles: Why the Concern From A Health Perspective?

Numbers and Surface Area of Particles of Unit Density of Different Sizes at a Mass Concentration of 10 µg/m³

Particle Diameter µm	Particle Number 1/cm ³	Particle Surface Area µm²/cm³
0.1	19,100	600
0.5	153	120
1.0	19	60
2.5	1.2	24

Surface Molecules as Function of Particle Size

From Fissan, 2003

UFP Deposition and Retention During 2 h Exposure

Fractional Deposition of Inhaled Particles in the Human Respiratory Tract

(ICRP Model, 1994; Nose-breathing)

Background: Evidence for UFP Health Effects

- Animal studies: increased lung inflammation and translocation to blood and distant organs (Oberdorster et al.)
- UFP concentrations high at roadside (Sioutas, et al.) and as a result of local sources (Jeong, et al.)
- Traffic-related PM effects on mortality/morbidity (Kunzli et al.; Peters et al.)
- UFP decreased peak expiratory flow rates in asthmatics (Peters et al.)
- UFP caused ST-segment depression during exercise testing in CAD (Pekkanen et al.)

Objectives - NYSERDA Study: UFP and Cardiac Responses

- Test over 10 weeks whether changes in community ambient ultrafine particle counts are associated with changes in cardiac rehabilitation patients' :
 - Symptoms
 - Heart rate and blood pressure
 - Cardiac electrophysiology, autonomic nervous system control
 - Blood markers of inflammation, coagulation
 - Rate of cardiac rehabilitation

Study Design

- 75 non-smoking patients with recent coronary artery disease exercise for 30 minutes in the cardiac rehabilitation center
- Baseline questionnaire
- Exercise twice weekly x 10 weeks
- Treadmill, cycle, or rowing
- Multiple Clinical Assessments each visit

Exposure Measures

- Ultrafine particles in two community sites, hourly average
- Ultrafine particles in cardiac rehab center, hourly average
- Ozone, N0x, CO, sulfur dioxide, temperature from same site as ultrafines
- Sub-ample: ultrafine particles for 48 hours indoors, subject homes
- Sub-sample: ultrafine particles in vehicles driving to/from cardiac rehab center.

Map of Rochester area showing measurement sites and major emissions in the study

Daily Morning Variability:

Mean hourly patterns of the indoor particle number concentration in three size bins Cardiac Center

Time of Day Variability:

(a) Indoor

(b) Outdoor

Mean daily patterns of particle number concentration in the 10-50 nm size bin at Cardiac Center

Subject Recruitment to Date

75 subjects recruited and under study
68 have completed full protocol
Age range : 36-80 years (mean = 60 yrs)
Gender: 66% male
Subjects live within 10 mile radius of a particle monitors
Diagnoses: recent myocardial infarction 60%); unstable angina with coronary stents (35%)

Outcome Variables

- Days with angina
- Heart Rate/BP pre, peak, post exercise
- Electrophysiology pre, peak, post exercise (HRV, repolarization, etc)

- Rated perceived exertion at maximal exercise
- Blood counts,
 C-reactive protein
 fibrinogen, weekly (preexercise)

Analysis Strategy

- Biostatistics Group examining UFP number concentrations and outcome variables
- Key Features of study design:
 - longitudinal measurement on each subject
 - highly susceptible group
 - indoor and outdoor continuous UFP

Cardiac Rehab Study of Ultrafine Particles

Univ. of Rochester School of Medicine Clarkson University

- Philip Hopke
- Mark Frampton
- G. Oberdorster
- Wojciech Zareba
- David Oakes
- Annette Peters
- Bill Beckett

- Karen Stulpin
- David Chalupa
- John Kasumba
- Funding: EPRI, EPA, NYSERDA