Woodsmoke in Upstate NY: A New Technique for Improved Spatial Modeling

Michael Brauer^{1,} Jason Su^{2,} George Allen^{3,} Lisa Rector^{3,} Paul J. Miller³

¹School of Environmental Health, University of British Columbia ²School of Public Health, University of California, Berkeley ³Northeast States for Coordinated Air Use Management (NESCAUM) Boston, MA

EMEP Conference October 13, 2009 Albany NY

Rationale

- Woodsmoke is an important contributor to PM during heating season
- Potential for increased use of biomass fuels
 - Renewable, GHG benefits
 - Relatively inexpensive
- Woodsmoke health impacts¹
- Woodsmoke often not well-characterized with existing monitoring networks
- Woodsmoke has high intake fraction²

¹Naeher et al. Woodsmoke health effects: A review. Inhalation Toxicology. 2007; 19:67-106. ²Ries et al. Intake fraction of urban wood smoke. Environmental Science and Technology. 2009. 43 (13): 4701–4706

Goals

- Apply mapping/mobile monitoring approach developed in Pacific NW¹⁻³ to up-state NY
 - 7 county study area
 - Focus on evenings with meteorology conducive to woodsmoke build-up
- Improve understanding of spatial extent and patterns in woodsmoke
- Screening approach to locate potential woodsmoke hotspots in rural/semi-rural areas

¹Larson et al. A Spatial Model of Urban Winter Woodsmoke Concentrations. Environmental Science and Technology. 2007; 41 (7): 2429 -2436.; ²Su et al. Modeling spatial variability of airborne levoglucosan in Seattle, Washington. Atmospheric Environment 2008; 42(22):5519-5525: ³Su et al. 2007. Spatial Modeling for Air Pollution Monitoring Network Design: Example of Residential Woodsmoke. Journal of the Air & Waste Management Association. 57: 893-900.

Enhanced PM2.5 emissions surface

Spatial residential woodsmoke PM emissions mapping

- Wood heating appliances
 - woodstoves
 - fireplaces with inserts
- Fireplaces w/o inserts
- Pellet heaters
- Centralized wood heaters (including outdoor wood boilers)

Estimating woodsmoke PM emissions at census block group level

- Estimate total mass of wood burned for each source category
 - census and survey data
- Calculate block group emissions with AP-42 emissions factor
- Enhance (spatially disaggregate) woodsmoke emissions surface within each block group with property assessment data

Estimating block group total (left) and mean (right) emissions

Property distribution map and woodsmoke emissions surface

Property distribution map

Enhanced PM2.5 emissions surface

Fixed Site Sampler Location

Design of Mobile Monitoring Routes

Spatial Modeling

Location of fixed site monitoring sites

- Based on a location-allocation algorithm
 - Use predicted emissions map to optimally place limited number of samplers in study area to (semivariance surface)
 - efficiently provide information on woodsmoke spatial variability
 - incorporate additional constraints (e.g. locate in populated areas).
- Reflects the maximum gradients of change of woodsmoke

Estimated residential woodsmoke semi-variance surfaces and 20 monitoring location candidates (north and south loops)

final **6 sites** in each loop chosen for coverage of high, intermediate and low woodsmoke emissions.

0 3 6 12 Km

Design of mobile monitoring route(s)

- Application of network analysis algorithm to design mobile monitoring routes that
 - efficiently cover full range of spatial
 variability in woodsmoke emissions in study area
 - in a limited amount of time (i.e. by minimizing the distance of the route and therefore the required time spent sampling)
 - connect fixed monitoring sites

Six fixed-site monitoring locations (green) and corresponding mobile sampling route (red)

North loop mobile monitoring route

Mobile monitoring

- North Domain: 10 inversion nights
- South Domain: 4 "inversion" nights
 - Work with DEC forecasters to identify sampling nights
- Two-wavelength Aethalometer[™] (Magee Scientific AE42) as WS indicator:
 - Difference btwn optical absorption of PM₁ at 880 nm (BC) and 370 nm (UV-C). ("Delta-C").
 1 min avg.
 - Delta-C factor to convert to WS concentration*
- Supplement with nephelometer (Thermo DR-4) as PM_{2.5} surrogate. 1 sec avg.
- Driving speed <20 mph in towns, asposted elsewhere

*Allen et al. 2004. Evaluation of a New Approach for Real Time Assessment of Woodsmoke PM, in Proceedings of the Regional and Global Perspectives on Haze: Causes, Consequences and Controversies, Paper #16, Air and Waste Management Association Visibility Specialty Conference, Asheville, NC, <u>http://tinyurl.com/allen-realtime-woodsmoke</u>.

Fixed-site monitoring

- North Domain: 6 fixed sites for entire winter (Dec-Mar)
- South Domain: 2 fixed sites Jan 15-Mar. 31
- Two-wavelength Aethalometer™
 - 5 mins processed to 1 hour averages
- Supplement with nephelometer at 1 fixed site in north and 1 fixed site in south domain

– 10 minute averages

WS North Loop 2, Jan 1-2, 2009 3-minute running averages

Jan 1-2, 2009

Spatial modeling

- Mobile monitoring measurements
 - temporally-corrected for between-day differences
 - averaged within hydrological catchment areas.
- Model catchment-areas average woodsmoke
 with upslope catchment area predictors
 - Assumes that under conditions of elevated woodsmoke concentrations/monitoring periods, drainage flow dominates smoke transport
- Use model predictor variables to estimate woodsmoke PM concentrations throughout study area

Comparing woodsmoke emissions surface and between-day adjusted measurements

Corrected PM2.5 on all 10 runs

Spatial modeling

- Mobile monitoring measurements

 temporally-corrected for between-day differences
 averaged within hydrological catchment areas.
- Model catchment-area average woodsmoke with upslope catchment area predictors
 - Assumes that under conditions of elevated woodsmoke concentrations/monitoring periods, drainage flow dominates smoke transport
- Use model predictor variables to estimate woodsmoke PM concentrations throughout study area

Catchment areas

For a typical drainage wind speed of 1 m/s maintained over a 3 hour period, expect upstream influence ~ 10 km

North loop 16 km² threshold catchments

Catchment Buffer

(solid color area)

Predictor variables

Population	Building age	Economic	Physical property	
Total	<1950	Average dwelling value	Elevation	
White	1951-60	Average household income	Green vegetation index	
Non-White	1961-70	Median household income	Soil brightness	
Black	1971-80	Median family income	Emissions	
Asian	1981-90	Average family income	Wood heating appliance density	
Immigrants	1991-00	Average income Education less than grade nine	Centralized wood heater density	
Households	Total buildings Median year	(pop)	Woodsmoke emissions	
Families	built	Population in poverty Unemployment population (age over 25)		

Determine optimum upslope search distance (correlation between corrected residential woodsmoke and chosen spatial covariates)

Spatial Models

Modeling type	Variable Groups	\mathbf{R}^2	Variable(s) ²	β	p - v a l a
			· · · · · · · · · · · · · · · · · · ·		
		0.44	4	2 3 8 0 . 8 4 3	< 0.001
	*		w		
		0.41	4 • • • • • • •	1 0 5 . 1 9 3	< 0.001
		0.23		à. à 4 7	< 0.001
				0.005	0.001
		0.53	N W	• . • •	0.006
			w	- 0 . 0 0 6	0.021
				1 9 . 8 6 4	0.001
				0.01	0.019
				- 0 . 0 5	0.006
adjusted ¹			· · · · · · · · · · · · · · · · · · ·		
			d	2 5 9 6 . 1 7 5	e 0.001
			N W	0.049	0.001
	c	0.58	w . b . t	- 0 . 0 9	0.001
				0.012	0.004
			W • d 1 • • • • • • • • • • • • • • • • •	- 8 . 9 0 E - 0 9	0.091
				- 0 . 0 0 5	0.006
	р	0.40		2 2 3 1 . 4 4 4	< 0.001
	D	0.49	Median household income	1 1/E 009	<0.020

A = Emissions variables only; B = socioeconomic status and physical properties variables only: C = best fit model. D = parsimonious model

¹Adjusted based on E-town Aethalometer data; ²All the covariates had 4 km uphill search distance km except median household income (3 km), elevation and total structure built (on uphill distance).

Comparing fixed-site Aethalometer DC concentrations with modeled DR4 concentrations (ug m⁻³)

Modeled residential woodsmoke (Essex County)

Modeled residential woodsmoke (all counties)

Estimated population exposure

(*Based on upper tertile)

North loop							
	Population	Exposed*	%				
Total population	57,000	28,800	51				
Non-White population	2,830	1,800	64				
All (7 Counties)							
Total population	610,960	127,670	21				
Non-White population	22,790	6,810	30				

Conclusions

- Census information combined with survey and property assessment data provides a broadly applicable estimate of spatial patterns of woodsmoke PM_{2.5} emissions.
- Catchment area-based regression model of woodsmoke PM_{2.5} concentrations explained
 - ~50-60% of variability in measured nighttime woodsmoke PM_{2.5} (mobile monitoring)
 - Up to 40% of variability explained by emissions variables
 - ~80% of variability in seasonal average woodsmoke PM (fixed—site monitors)
- Based on model, roughly 20% of the population is exposed to the highest tertile of woodsmoke PM_{2.5}.