Applying the Northeast Regional Multi-Pollutant Policy Analysis Framework to New York

John Graham
NYSERDA EMEP Meeting

Albany, NY October 14, 2009

Acknowledgements

NESCAUM

- Jason Rudokas
- Leah Weiss
- John Graham
- Huiyan Yang
- Kathleen Fahey
- Gary Kleiman
- Praveen Amar

NYSERDA

- Sandi Meier
- Ted Lawrence
- Carl Mas

NYSDEC

- Bob Bielawa
- Ona Papageorgiou
- David Gardner
- Scott Griffin
- Kevin Civerolo
- Carlos Mancilla
- Kevin Watz
- Rob Sliwinski

Presentation Outline

- Motivation for proposal and Multi-Pollutant planning in the Northeast
- Overview of project: objectives, scope, tasks, and deliverables
- Discussion of multi-pollutant framework: its application, advantages and limitations

Motivation for Multi-pollutant Planning

NYSERDA's Interest: Improved Energy and Environmental Modeling, including Multi-pollutant Control Strategies

- Enhance representation of EGUs and associated emissions
- Improve links between models
- Improve representation of new generation technologies, renewables, energy-efficiency technologies, combined heat & power, and emission control technologies
- Model impacts of achieving proposed EE and renewables targets
- Model multi-pollutant strategies to evaluate program interactions and ability to meet environmental goals

NESCAUM's Planning Approach

Traditional Approach

- State-based data collection (disparate sources, similar methods) occurs first, then combined into regional emissions inventories for SIP modeling purposes
- "Grown" inventories rely on IPM model (covering power sector only), historical trends, and growth factors
- Difficult to change growth assumptions once locked into IPM and inventories
- Analyzes one or two projection years; results in emissions and air quality changes as metrics

NE-MARKAL Energy-Environment model Approach

- Develop regional inventories based on national (DOE), state, and local databases; then statespecific refinement and vetting occurs
- Modeled evolution of technology needed to satisfy demand and policy constraints; these growth assumptions provided by the model are vetted with states and can be easily modified to reflect statespecific conditions
- Complete evolution over 30 year period with costs, technologies, and emissions

Project Overview

Project Goals:

- To identify a suite of strategies that will simultaneously be able to make significant progress toward ozone, PM, mercury, acid deposition, and climate goals
- To use NESCAUM's Multi-pollutant Policy Analysis Framework (MPAF) to develop a solid basis for these strategies from the perspectives of the economy, technological evolution, the environment, and other public health endpoints

Project Policy Objectives

- Build institutional capacity at NYSDEC to use MPAF
 - Identify policy challenges and capacity building needs, host workshop and document results
- Work with NYSDEC to identify & address crosssector pollutant interactions and trade-offs
 - Iterative and coordinated process -- strategies must be identified, tailored and refined
- Serve as model for replication in broader NE
 - Assist with NYSERDA on outreach activities: work with PAC/present at EMEP, outreach to EPA, NACAA. OTC, MARAMA, and academic audiences, publish in peer-reviewed literature

Tasks

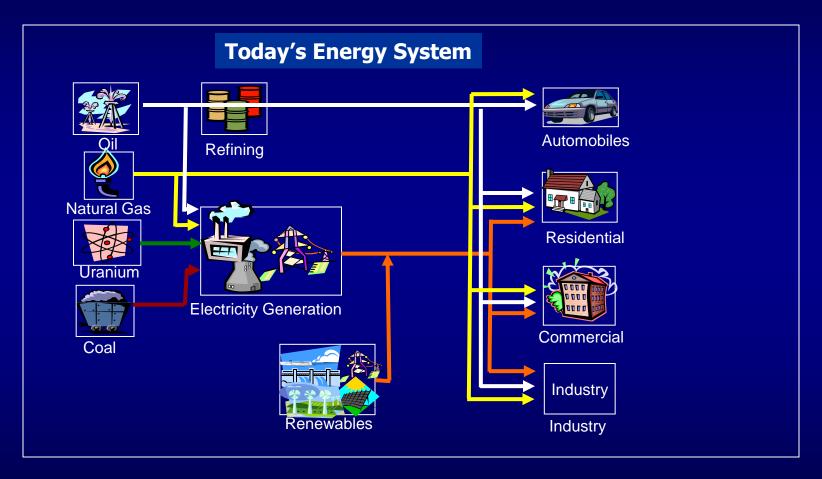
- Identify environmental targets
- Identify key strategies
- Represent goals and strategies in model, and document reference scenario and assumptions
- Employ MPAF
- Final Report
- Technology Transfer
- Public Outreach

Environmental Goals

- Climate Change
- Attain All NAAQS
- Toxics
- Reduce critical load exceedences
- Improve visibility

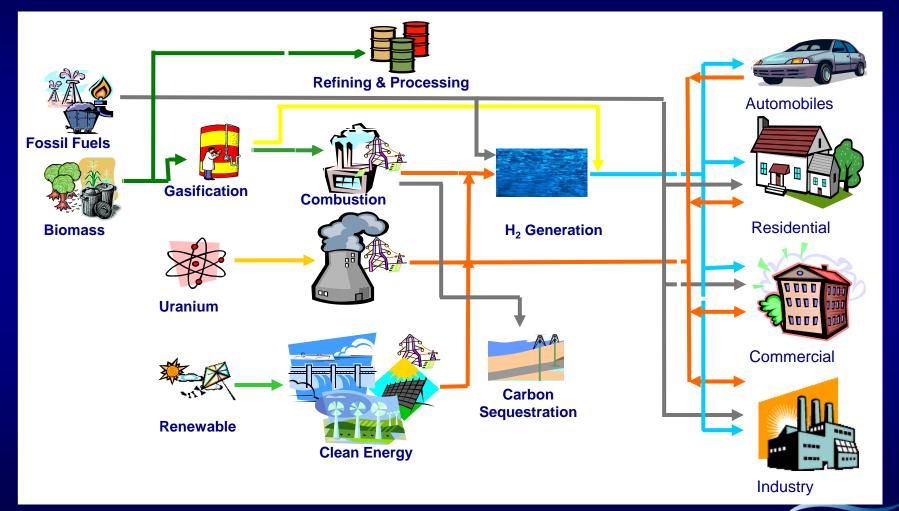
Strategies

- Renewables (30% by 2015)
- Energy Efficiency
- Appliance Standards (Energy Star)
- Transportation
 - Increased efficiency in light/heavy duty vehicles
 - New fuels (ethanol, electricity)
- CHP and Industrial Sector Efficiency



NESCAUM's Multi-Pollutant Policy Analysis Framework (MPAF)

NESCAUM's Multi-Pollutant Policy Analysis Framework


Goals & Policies emissions **NE-MARKAL Energy Model CMAQ BenMAP** Air Quality Model Health Benefits Assessment **Evolution of Energy System** expenditures **Ambient** 12-State REMI Concentrations **Economic Model** Health Effects Wet/Dry Incidence and Deposition Cost/Benefit Key Economic Indicators NESCAUM

NE-MARKAL: Energy Model as Centerpiece

Source: EPA ORD

NE-MARKAL: Energy Model as Centerpiece

Advantages to Using NE-MARKAL

- Quick and relatively inexpensive to run
- Transparent to review
- Detailed and versatile framework
 - Multi-pollutant and Multi-Sector
 - Analysis of a wide range of climate, air quality and energy strategies
 - Single or multiple strategy analysis
 - Single state or entire northeast region
 - Linked to other models REMI, CMAQ, BenMAP
- Integrated air quality and energy planning

NE-MARKAL Caveats

- While expansive in its coverage, it does not provide perfect representation of all sectors and technologies
- Should be used for comparative policy analysis
- Is not an energy dispatch forecast tool

THANK YOU!

- John Graham
 - jgraham@nescaum.org (617-259-2023)