Collaborative National Program for the Development of Performance Testing Protocols for Distributed Generation with CHP

Presented by:

Mark Hanson New York, NY June 24, 2004

Presentation Outline

Introduction

- Program Organizational Structure
- Laboratory and Field Protocol Outlines
- Case Study and Long Term Monitoring Protocols
- National Database
- Program Timetable
- Industry Adoption and Coordination

Introduction

- Partnership between US DOE and Association of State Energy Research and Technology Transfer Institutions (ASERTTI)
- Objective is nationally accepted performance testing protocols for micro-turbines, reciprocating engines, small turbines and in the future, fuel cells
- Develop an applications case study protocol
- Develop a long-term monitoring protocol
- Develop an online searchable database populated with DG performance results in lab and field

Organizational Structure-1

Steering Committee Composed of Sponsors California Energy Commission Energy Center of Wisconsin Illinois Department of Commerce and Economic Opportunity National Renewable Energy Laboratory NYSERDA U.S. Department of Energy

Organizational Structure-2

Stakeholders Advisory Committee

- Manufacturers and distributors
- End users (owners) and operators
- Utilities, researchers including National Labs, public interest groups, and governmental including U.S. EPA

Subcontractors

- Laboratory protocol– Gas Technology Institute w/ UL
- Field protocol– Southern Research Institute
- Case study protocol– University of Illinois at Chicago Energy Research Center
- Long term monitoring protocol- Connected Energy Corporation

Field Testing Protocol Outline

Scope and Purpose
DG/CHP System Boundaries
Electrical Generation Performance
Electrical Generation Efficiency
CHP Thermal and Total Efficiency
Atmospheric Emissions Performance
Acoustic Emissions Performance
Appendices and Forms

System Boundaries

ASSOCIATION OF STATE ENERGY RESEARCH AND TECHNOLOGY TRANSFER INSTITUTION

Micro-turbine Generator

Power Output v. Intake Air Temperature

Reciprocating Engine System Efficiency_{v.} Water Inlet Temperature (As a function of power output)

ASSOCIATION OF STATE ENERGY RESEARCH AND TECHNOLOGY TRANSFER INSTIT

Director of State Relations

Micro-turbine Generator

NO_x Emissions v. Intake Air Temperature

Lab, Field, LongTerm Monitorin g and Case Study Protocols

- Specific to performance parameters
- Affordability is a critical feature to support widespread adoption
- Lab protocol up to 3 MW with laboratory level control and greater accuracy
- Field protocol up to 7 MW
- Case study protocol describes application and field results including economic performance

Timetable for Program-Phase 1

- September 2003 Stakeholder Advisory Committee meeting
- Final draft protocols reviewed by SAC March 25th
- Microturbine, IC, and Small Turbine Interim Protocols published July 2004
- Second phase funding finalized summer 2004
- Field validation in summer and fall 2004
 NREL Database Start-up Summer 2004

Timetable for Program-Phase 2

- Database at NREL on-line beginning fall 2004 and continues through 2007
- Work commences on Fuel Cell protocol in fall 2004
- SAC meeting to review final MTG, IC, and Small Turbine protocols, validation results, and database design in late 2004
- Fuel Cell protocols drafted for SAC review in spring 2005
- Interim Fuel Cell Protocol Published Summer 2005

Timetable for Phase-2 (cont.)

Fuel Cell protocol validation testing fall 2005

- Database operation and expansion continuing through 2007
- Planning for long term Database support

Industry Adoption and Coordination

- Manufacturers' use of lab protocol is critical to populating the database
- End User/ASERTTI/DOE field protocol use is critical to populating the database
- End User confidence in database is critical to marketplace adoption
- Database will include access to long-term project monitoring

Contacts

Richard Drake

NYSERDA E-mail: rld@nyserda.org Phone: 518-862-1090 x 3258

Mark Hanson

ASERTTI, Director of State Relations E-mail: MHanson@hoffman.net Phone 608 692-1915

Arthur Soinski

California Energy Commission E-mail: asoinski@energy.state.ca.us Phone 916 654-4674

