

⇒ Authors' Contact Information:

- Frederick J. Carranti, P.E., MAE Department (<u>carranti@syr.edu</u>)
- Ross DiLiegro, Industrial Assessment Center (<u>rldilieg@syr.edu</u>)

Mechanical & Aerospace Engineering 149 Link Hall Syracuse University Syracuse, NY, 13244

Acknowledgements

CHP 2008

The authors gratefully acknowledge the resources, assistance, prodding, and threats provided by...

Dr. William M. Worek (Univ. of Illinois – Chicago) and the fine folks at the Midwest CHP Applications Center for the use of their publications,

Hugh Henderson, P.E., CDH Energy, and, Joe Borowiec and Dr. Dana Levy of NYSERDA

Presentation Overview

- ⇒ Some Initial Thoughts
 - How CHP Works, Why is it "Good"
- ⇒ Primer on CHP/DG Configurations
 - Prime Movers, Heat Recovery
- ⇒ Factors for CHP/DG Decision Makers
 - Load Coincidence, Spark Spread
- ⇒ Regulatory History
- ⇒ Categories of NYSERDA Tech Transfer Studies
 - Market Potential
 - Environmental Issues
 - Reliability / Maintainability / Security
 - Regulation and Regulatory Effects
 - Guidebooks & Tools
- ⇒ Resources

How CHP Works

- Combined Heat and Power (CHP) uses the heat energy from a heat engine cycle that would otherwise be wasted as low-grade energy and stack gasses.
- ⇒ The available heat energy can be used for space heat, process heat, absorption cooling, or bottoming cycles.

Why is CHP "Good"?

CHP 2008

- ⇒ Reduced energy costs
- ⇒ Reduced life-cycle costs
- ⇒ <u>Attractive return on investment</u>
- ⇒ Improved power reliability
- ⇒ Improved economics for enhancing indoor air quality
- ⇒ Improved environmental quality
- ⇒ Reduced energy consumption

(http://www.chpcentermw.org/03-00_chp.html#basic)

Primer on CHP/DG Configurations

- ⇒ The Acronyms Tell the Story...
- ⇒ CHP Combined heat and power (or Cooling, heating, and power)
- ⇒ DG Distributed Generation
- ⇒ Cogen Cogeneration
- ⇒ CHPB Cooling, heating, and power for buildings
- ⇒TES Total energy systems
- ⇒...and on and on....

Prime Movers

Reciprocating Engines:

- Applications usually under 1 MW
- Heat recovery: supplemental heat and hot water

Gas Turbines:

- Applications usually over 1 MW
- Heat recovery: process steam and heat

Micro-turbines:

- Applications usually under 1 MW
- Each unit provides between 30-60 kW (dated)
- Can be linked (parallel/series) for greater output

Heat Recovery

Heat is low-grade energy: it is hard to capture, hard to usefully employ, and hard to move.

Space Heating:

- Must have an "immediate" need
- Domestic hot water is also an option

Process Heating or CIP:

- Good for pickling or plating baths or
- Food processing and equipment cleaning

Boilers, HRSG's, or Bottoming Cycles:

- This is what CHP is really all about

Absorption Refrigeration

Heat used to "make" cold.

When one has a source of "free" waste heat it can be used to "power" an absorption machine to provide moderate cooling. A good application when the available heat is at lower temperatures.

You won't freeze meat, but you can easily keep the beer cold.

Good for cold warehousing and grocery/produce applications, as well as comfort cooling in the right climate.

(a good reference: Dorgan, Leight, Dorgan, Application Guide for Absorption Cooling/Refrigeration Using Recovered Heat, ASHRAE, 1995.)

Factors for Decision Makers - 1

⇒ Coincidence of Need

It is important that a facility require BOTH thermal energy and electrical power, at some level of balance, AND at the same time.

This also insures that there is some level of need/load for the second commodity.

Factors for Decision Makers - 2

⇒ Spark Spread

This is the differential between the *cost* of grid power and the cost of natural gas. (Cost of electric power can be a nebulous parameter.)

Spark Spread: Higher is Better

Factors for Decision Makers - 3

⇒ Turnkey Cost Differential

The differential between turnkey costs of CHP vs. conventional systems:

Lower is Better

Is REDUNDANCY Important?
At what level?

Legislation Review

- ⇒ Rule 12 (~1997)
 - Imposed a penalty charge for on-site self generation
 - Charged per kWh
 - Made CHP impractical for smaller applications
- \Rightarrow SC 7 (2002)
 - Instead of penalty charge, standby (backup) charges are incurred
 - Backup equipment unnecessary at location
 - Two charges:
 - As-Used demand typical demand charges
 - © Contract demand standby service demand charge, based on facility's max load
 - SC 7 makes CHP much more financially attractive

Source: Hugh Henderson, P.E.

CDH Energy Corp, Cazenovia, NY

NYSERDA Project (Study) Categories

CHP 2008

We opted to divide the collection of studies into the following categories:

- ⇒ Market Potential
- ⇒Environmental Issues
- ⇒ Reliability/Maintainability/Security
- ⇒ Regulation and Regulatory Effects
- **⇒Guidebooks and Tools**

There may be, however, some overlap.

Market Potential (overview)

- CHP Market Potential for NYS (Project #6133)
- Identifying Areas Where Distributed Resources are a Viable Alternative to Electrical System Upgrades (Project #7925)
- Inventory of Landfill Gas Potential in NY and Screening for DG-CHP Applications (Project #8602)
- Market Potential for DG Using Opportunity Fuels in NYS (Project #8605)

Market Potential II (overview)

⇒ Studies (Continued):

- Distributed Energy Alternative to Grid Expansion in ConEd Territory (Project #9151)
- NYS District Energy Vertical Market Development (Project #9933)
- A Collaborative Approach to Advancing the Development of DG Systems in NYC High-Rise Buildings (Project #9934)

Environmental Issues (overview)

- Environmental Performance of DG: Balancing Energy and Environmental Objectives (Project #4165)
- Emissions Allowance Market Opportunities for Small CHP Projects in NYS (Project #7165)
- Brownfield Tax Credits: An Incentive for Siting CHP (Project #9154)

Reliability/Maintainability/Security (overview)

CHP 2008

- Assessment of Industrial On-Site Generation
 Operational Reliability and Availability (Project #6477)
- Evaluation of the Cost Effectiveness, Constructability, and Replicability of DG-CHP Systems for Commercial Office Buildings within NYC (Project #9153)
- DG-CHP and Infrastructure Security (Project #9931)

Regulation and Regulatory Effects (overview)

CHP 2008

- Quantifying the Environmental Benefits of Increased Deployment of CHP Technologies in NYS and the Impact of Proposed Emissions Standards for Small DG (Project #7617)
- Mandatory Hourly Pricing and CHP (Project #9930)

Guidebooks and Tools (overview)

- Promoting DG-CHP in NYS Industrial Sector (Project #6533):
 - **ODG-CHP** Siting and Permitting
 - Ouse of Geographic Information Systems (GIS) as a Siting Assessment Tool for DG-CHP Deployment
 - © Economic Valuation of Power Quality and Reliability
- Analysis of New Pollution Control Strategy Utilizing Emission Reduction Credits and Small-scale CHP Units (Project #7615)

Guidebooks and Tools II (overview)

CHP 2008

⇒ Studies (Continued):

- Multifamily CHP Screening Tool (Project #8600)
- Development, Demonstration, and Dissemination of a Web-based Interactive Standby Rate Estimator (Project #8601)
- Web-based Data Integrator (Project #8621)
- Development of Best Practices Guidelines and Handbook for Small CHP Project Development in NY (Project #9152)
- Reducing Market Development Hurdles to CHP in Hospital Applications (Project #8603)

- ⇒ Study: CHP Market Potential for NYS
- ⇒ Project #6133

- ⇒ Potential for 8,500 MW of new CHP over the next decade
- ⇒ 74% of remaining capacity is for smallmedium sized (below 5 MW) commercial and institutional facilities
- ⇒ Focus should be shifted away from very large industrial plants

- ⇒ Study: Identifying
 Areas Where
 Distributed
 Resources are a
 Viable Alternative to
 Electrical System
 Upgrades
- ⇒ Project #7925

- ⇒ Incentive of \$150 per kW slightly increased overall potential market, but substantially decreased paybacks
- Downstate counties had highest density of market potential (Bronx, Kings, Queens, New York, Richmond, Rockland, Westchester)

- Study: Inventory of Landfill Gas Potential in NY and Screening for DG-CHP Applications
- ⇒ Project #8602

- ⇒ Landfill gas is renewable opportunity and can be used for CHP
- Unfortunately, CHP is difficult at landfill sites due to lack of nearby neighbors and no needed thermal energy
- ⇒ Short-list of potential landfills that could be good CHP candidates is included

- ⇒ Study: Market
 Potential for DG
 Using
 Opportunity
 Fuels in NYS
- ⇒ Project #8605

- ⇒ Opportunity fuels (landfill gas, biomass, anaerobic digester gas, etc.) can be a price stable alternative to natural gas when operating CHP units
- ⇒ Report provides a full breakdown and analysis of potential market for NYS as well as an action plan for switching from natural gas

- Study: Distributed Energy Alternative to Grid Expansion in ConEd Territory
- ⇒ Project #9151

- □ Identifies critical circuits in Manhattan where DG-CHP could be a cost effective alternative to impeding grid expansion
- ⇒ Identifies possible candidate host sites for DG-CHP units on these circuits
- ⇒ Applicable to ConEd territory only

- ⇒ Study: NYS District
 Energy Vertical
 Market Development
- ⇒ Project #9933
- District Energy: Production of steam, hot water or chilled water, or any combination including all three, at a single central utility plant for distribution to other buildings through a network of pipes.¹

- ⇒ District Energy (DE) is a very efficient and cost effective form of DG-CHP
- ⇒ DE systems underutilized in NYS
- ⇒ CUNY campus system used as DE assessment case study
- ⇒ Standard DE feasibility assessment and development processes, DE assessment tools, and training programs will be developed.

http://www.stanford.edu/group/Power-Systems/electrical_technical_glossary.htm#d

- ⇒ Study: A
 Collaborative
 Approach to
 Advancing the
 Development of
 DG Systems in
 NYC High-Rise
 Buildings
- ⇒ Project #9934

- ⇒ DG-CHP systems in commercial office buildings in NYC are underutilized and have considerable potential
- ⇒ As a result of a number of issues, very few systems have been developed
- ⇒ A NY Clean DG working group will be established to provide information to building owners

Environmental Issues 1

- Study:
 Environmental
 Performance of
 DG: Balancing
 Energy and
 Environmental
 Objectives
- ⇒ Project #4165

- ⇒ Estimate of DG-CHP penetration in NYS over the next 20 years
- ⇒ Simple payback of DG technologies determined based on existing capacity
- ⇒ Technology forecast of DG estimated
- ⇒ DG-CHP inventory in NYS compiled from unit sales database

Environmental Issues 2

- Study: Emissions Allowance Market Opportunities for Small CHP Projects in NYS
- ⇒ Project #7615

- ⇒ Report explores how CHP facilities below 15 MW can be included in EE/RE allowance set-aside provisions of "cap and trade" emissions rules for NO_x and SO₂
- □⇒ CHP facilities are not regulated sources, so any allowances given as an incentive can be sold and turned into cash

Environmental Issues 3

CHP 2008

- ⇒ Study: Brownfield Tax Credits: An Incentive for Siting CHP
- ⇒ Project #9154
- ⇒ Brownfield: abandoned, idled or under-used industrial and commercial site where expansion or redevelopment is complicated by real or perceived environmental contamination that can add cost, time or uncertainty to a redevelopment project²
- ⇒ CHP projects are eligible for the Brownfield Redevelopment Tax Credit (BRTC) and capital CHP costs on brownfield sites can be offset by 10-22%
- ⇒ Project will conduct analysis of sites with highest probability for brownfield CHP
- Provide business world with info on the economic feasibility of developing brownfields with CHP using tax credits

² http://www.ny-brownfields.com/index.htm

Reliability/Maintainability/Security

- Study: Assessment of Industrial On-Site Generation Operational Reliability and Availability
- ⇒ Project #6477

- Operational reliability and availability database for industrial on-site generation technologies
- Data was assembled from DG facilities around the nation with a minimum of 75-100 in NYS
- DG system failures and outages identified and classified

Reliability/Maintainability/Security 2

- ⇒ Study: **Evaluation** of the Cost Effectiveness, Constructability, and Replicability of DG-CHP **Systems for Commercial Office Buildings within** NYC
- ⇒ Project #9153

- ⇒ NYC is one of the largest DG/CHP opportunities in NYS
- ⇒ Pre-packaged CHP systems need to focus on user perspective instead of vendor perspective
- ⇒ Project established an advisory panel to determine design criteria for preengineered CHP system for NYC office buildings

Reliability/Maintainability/Security 3

- ⇒ Study: DG-CHP

 and Infrastructure

 Security
- ⇒ Project #9931

- ⇒ In order to improve system ⇒ reliability, resiliency must be increased
- When a disturbance occurs, systems need high reliability in order to resume normal operation as soon as possible
- ⇒ Report pinpoints critical infrastructure sectors in NYS that have CHP potential

Regulation and Regulatory Effects 1

- Study: Quantifying the Environmental
 Benefits of Increased
 Deployment of CHP
 Technologies in NYS
 and the Impact of
 Proposed Emissions
 Standards for Small
 DG
- ⇒ Project #7617

- ⇒ Project will assess the impacts of proposed DG emissions standards on:
 - Market penetration of CHP in NYS
 - Statewide emissions of critical pollutants
 - Mercury and CO₂
 - NYISO electricity market parameters
- ⇒ Project will evaluate penetration and impact on air quality of CHP

Regulation and Regulatory Effects 2

- ⇒ Study: Mandatory
 Hourly Pricing and
 CHP
- ⇒ Project #9930

- ⇒ Hourly Pricing of electricity is a way to help reduce system peaks and improve efficiency of electric markets
- ⇒ Report contains a a quantitative analysis involving detailed modeling on an hourly basis of sample projects in NYS CHP markets to determine impact of Hourly Pricing on CHP adoption

- Study: Reducing Market Development Hurdles to CHP in Hospital Applications
- ⇒ Project #8603

- ⇒ Hospitals are a highpriority sector for CHP market
- ⇒ CHP siting and permitting is more complex in hospital environment due to Dept. of Health regulations
- Guidebook developed to explain role and benefits of CHP in hospitals

CHP 2008

⇒ Study: Promoting DGCHP in NYS Industrial Sector

- DG-CHP Siting and Permitting
- Use of Geographic
 Information Systems (GIS)
 as a Siting Assessment Tool
 for DG-CHP Deployment
- Economic Valuation of Power Quality and Reliability
- ⇒ Project #6533

- ⇒ Comprehensive study to review the existing NYS siting and permitting processes and streamline it for the future
- ⇒ Production of locationemphasized visual display of candidate CHP sites
- ⇒ Evaluation of the economic impact of variations in power quality and interruption in electrical service to industrial, large commercial, and institutional consumers

CHP 2008

- Study: Analysis of New Pollution Control Strategy Utilizing Emission Reduction Credits and Small-scale CHP Units
- ⇒ Project #7615

⇒ Guidebook to document

potential and process for creating Emissions

Reduction Credits (ERCs) for permanent reductions from small-scale CHP applications in NYS

- ⇒ Study: Multifamily
 CHP Screening Tool
- ⇒ Project #8600

- ⇒ Design of a simple, effective screening tool for CHP in multifamily buildings that could be used by the existing energy auditor

- Study: Development, Demonstration, and Dissemination of a Web-based Interactive Standby Rate Estimator
- ⇒ Project #8601

- Developed in coordination with an Advisory Committee and demonstrated for NiMo and ConEd territories
- ⇒ Project will provide insight into standby rate tariffs with plain english explanations

- ⇒ Study: Web-based

 Data Integrator
- ⇒ Project #8621

- ⇒ Goal: acquire, store, analyze and present data from as many existing operational DG-CHP demonstration projects as practicable and each of the remaining projects as they come online
- Maintain a system to acquire data related to the performance of NYSERDA's DG-CHP demonstration projects
- ⇒ Present data using an internet website

- Study: Development of Best Practices Guidelines and Handbook for Small CHP Project Development in NY
- ⇒ Project #9152

- ⇒ Handbook will document:
 - Project development hurdles
 - Descriptions of project development requirements
 - Detailed guidance for successful project development approaches
 - Commonly-recognized pitfalls

Resources

CHP 2008

Syracuse University Industrial Assessment Center

References (print)

- CHP 2008
- ⇒ Application Guide for Absorption Cooling/Refrigeration Using Recovered Heat, C.B. Dorgan, S.P Leight, C.E. Dorgan, ASHRAE, 1995.

Related Websites

NVCEDDA

NIGERDA
US Combined Heat and Power Association (USCHPA)
US EPA CHP Partnership
Northeast CHP Application Center
World Alliance for Decentralized Energy (WADE)
US DOE Distributed Energy Program
NY Public Service Commission
NY Department of Environmental Conservation (DEC)
NY State
Energy and Environmental Analysis Inc. (EEA)
CDH Energy
ASERTTI Distributed Generation Testing Protocols and
Performance Database
(from http://chp.nyserda.org/links/index.cfm)

Documents and Other Resources

NYSERDA DG/CHP Integrated Data System User Guide
 (21 page PDF)
 Monitoring and Data Collection Standard for NYSERDA
 DG/CHP Sites (17 page PDF)
 Summary of Data Requirements for NYSERDA DG/CHP
 Sites (1 page PDF)
 Directions for Submitting Data to NYSERDA (2 page PDF)
 (from http://chp.nyserda.org/links/index.cfm)

Industrial Assessment Centers

26 Centers, based at universities across the United States, provide FREE in depth assessments of a plant's site.

IAC assessments involve a thorough examination of potential savings from:

- Energy Efficiency Improvements
- Waste Minimization and Pollution Prevention
- Productivity Improvement

Syracuse University IAC Coverage

