NYSERDA **Heat Recovery** Roundtable

Starbucks Reserve Empire State Building January 31, 2024

Heat Recovery Roundtable Agenda

Q&A Session after each Manufacturer Presentation

nyserda.ny.gov/ Heat-Recovery

// Welcome Networking + Coffee/Pastries 9:00 AM - 9:30 AM //

- > <u>NYSERDA</u> Heat Recovery Design & Manufacturer Program
- Con Edison Heat Recovery Implementation Offering
- Manufacturer 1: Wastewater Heat Recovery by <u>SHARC Energy</u>
- Manufacturer 2: Condenser Heat Recovery by <u>Trane Technologies</u>
- Manufacturer 3: Exhaust Air Heat Recovery by <u>Howatherm / Ruhl</u>
- <u>Uptime Institute</u> Heat Reuse: A Management Primer [data centers]

// NYSERDA Closing + Final Networking 11:30 AM - 12:00 PM //

Heat Recovery turns a problem into an opportunity.

Buildings waste heat through a variety of processes including ventilation, cooling, & wastewater.

Recovering wasted heat and recycling it directly at point of use or storing it for later represents a promising approach to large building decarbonization.

Heat Recovery opportunities arise from the heat rejected by equipment or processes within building systems.

Heating

Cooling

Ventilation

Heat Recovery is an essential step in Phased Decarbonization

NYSERDA is seeking **Manufacturers** that can significantly improve heat recovery efficacy, make it more practical and economical to enable new heat recovery opportunities in New York State's existing buildings.

The NYSERDA Heat Recovery Solutions qualification will recognize technologies that enable buildings to decarbonize their operations and advances the adoption of heat recovery by New York State's real estate decision-makers and the architects, engineers, and retrofit construction communities.

Through this vetting of solution providers and their products, NYSERDA will promote qualified heat recovery solutions and their real-world efficacy:

- Help qualified Manufacturers access the New York retrofit market
- Support heat recovery knowledge/technology transfer
- Participate in exchanges with key market stakeholders

Heat Recovery Solutions -- RFQL 5217

Read RFQL Documentation | Share with Manufacturers | Submit Online Application

Heat Recovery projects accepted in NYSERDA's Heat Recovery Program receive up to 75% cost share across two categories:

Open to all <u>existing</u> commercial, multifamily, industrial, and institutional buildings in NYS who pay the System Benefits Charge [SBC].

Opportunity Assessment

- Document current operations and define heat recovery opportunity
- Up to \$40k

Project Design

- Develop schematic designs for technically and economically viable heat recovery projects
- Up to \$80k

<u>Heat Recovery Project</u> <u>Development -- PON 5547</u>

Heat Recovery Incentives

Laziza Rakhimova

Con Edison Incentive Programs – Clean Heat, Heat Recovery Track

Con Edison provides installation incentives for Heat Recovery projects which result in energy savings.

C&I and MF - NYS Clean Heat Program

Systems Incentivized	Ground Source Heat Pumps Incentives ¹ Existing & New Construction	All Other Heat Pump Technologies Existing Buildings ¹	Heat Recovery Technologies Incentivized
 Full Load Space Heating Full Load Space Heating + Envelope Partial Load Space Heating Custom Hot Water Heating 	\$100-\$225/MMBTU	\$70-\$200/MMBTU	 Heat Recovery Chillers Heat Pump Chillers HRV/ERV WSHP Waste to Energy Technologies

¹Project incentives cannot exceed 50% of the project cost. Total incentives are capped at \$1,000,000 for all projects, per account per year.

To be eligible for partial incentive, the project must displace at least 50% or min 4000 MMBTU of annual baseline heating consumption or alternative case fossil fuel consumption.

Project Example – less than 50% of fossil fuel displacement

Project	kWh	kW	Mlbs (District Steam)	MMBtu	ConEdison Potential
Cost	Savings	Savings	Savings	Savings	Incentive
\$4,400,000	560,000	275	10,345	10,370	\$726,000 (preliminary)

 Full Load Space Heating Full Load Space Heating + Envelope Partial Load Space Heating Custom Hot Water Heating 	\$70- \$225/MMBTU	 Heat Recovery Chillers Heat Pump Chillers HRV/ERV WSHP + heat recovery from condenser water loop Waste to Energy Technologies
---	--------------------------	---

C&I Heat Recovery Track – Energy Efficiency Program

C&I/MFEEP/Clean Heat Energy Efficiency Program Process

*Large Projects, Complex Projects, New Tech Projects are sent through Measurement and Verification per IPMVP to report more accurate savings.

Turn Your Wastewater Into Opportunity

COMPANY OVERVIEW

SHARC Energy headquartered in Port Coquitlam, BC, Canada

Founded in 2010, by a team of engineering professionals with significant experience in the HVAC & Geo-Exchange and Plumbing industries

Developed its first product: the 'SHARC' in 2011

In 2016, released second product the 'PIRANHA' for smaller scale applications

In 2019, released 'PIRANHA HC'

WHAT IS THE VALUE OF WASTEWATER?

ESTIMATES OVER

350,000,000,000 kWh

ARE DISCARDED DOWN THE DRAIN IN THE U.S. ON AN ANNUAL BASIS THAT'S ALMOST 88 HOOVER DAMS WORTH OF ENERGY

TIME

<u>The Average Person Uses</u> <u>**30 Gallons** of Hot Water</u> per Day at 120°F*

- Producing an estimated **60 gallons/day** of wastewater
- Average Residential Wastewater Temperature is **70°F**
- Commercial, Industrial, & Healthcare Wastewater Temperature can reach **140°F** or Higher

Wastewater sources:

- Black and Grey Water Within Buildings
- Sanitary Sewers
- Lift Stations/Treatment Centres

* Hot-Water Demand and Use Guidelines for Apartment Buildings, Medium Average Daily - Table 7. ASHRAE Heating, Ventilating & Air-Conditioning Applications, Chapter 50 - Service Water Heating

Why Wastewater?

- Limitless Energy Source Material
- Consistent Temperatures Year-Round

Reduces

- Energy Loss from Buildings
- Energy Use & Operational Costs
- GHG Emissions
 - Local Law 97

High Efficiency Electrification

- Market Demand
- NYSERDA Clean Heat Programs
- Utility Heat Pump Incentives
- Qualifies for Investment Tax Credit (IRA)

Wastewater – Geothermal – Ambient Temps

PIR/NHA

1

SERIES

Active energy recovery

No filtering needed

Small footprint

No odor

•

SHARC.sharcenergy.com

- **High capacity**
- **High volume filtration**
- Uses custom heat exchanger
- **Small footprint**
- No odor

Wastewater Energy Transfer (WET) Market Applications

The PIRANHA Series

The PIRANHA is a selfcontained heat pump that uses a specifically designed direct expansion heat exchanger to recover thermal energy from a building's wastewater for domestic hot water heating

Models: T5 / T10 / T15

- Design heat output
 - > 60 / 120 / 180 MBH
 - Increase output scalable with multiple units
- Designed to fit through standard double door
- Average COP of 3.5*
- NSF-372 rated BPHE
 - Double-wall, leak detection
- R-513a
 - 56% Lower GWP than R-134a (573 vs 1,430)
 - Same performance

*Average COP across a range of source temperatures, output temperatures and application types.

Heat Exchanger Heat Exchanger "Condenser" "Evaporator Tank"

- SHARC Filter Unit
- Support Frames/Skids
- Control Panel
- Macerator/Grinder
- Piping/Valve Assembly
- Plate & Frame Heat Exchanger
 - Wide Gap
 - Wastewater Holding Tank & Solids Handling Lift Pumps
 Existing Tank can be used
 - Heat Pump
 - May not be needed in

ambient/low temp systems

*Sourced Separately

SH/RC Series

The SHARC is a wastewater separator/filter that allows access to thermal energy by temporarily removing solids from wastewater.

The filtered wastewater is then passed through a Heat Exchanger where the thermal energy is transferred to/from the building.

SHARC Model	Max Flow	Typical Energy Transfer
660	550 GPM / 34 L/s	2,474 MBH / 0.725 MW
880	1,200 GPM / 75 L/s	5,399 MBH / 1.6 MW
1212 +	2,500 GPM / 157 L/s	11,248 MBH / 3.3 MW

Higher flow rates achieved with parallel modules

[†] Upcoming Product

With Solids Handling Pumps

With Solids Handling Pumps

How SHARC Works

Multi-Use (Heating/Cooling)

New York WET Projects

- ✓ Domestic Hot Water
- ✓ Heating & Cooling
- ✓ Geothermal Field Offset
- ✓ Thermal Energy Networks

Amalgamated Housing Corp Bronx, NY | 316 units | 425K SF

93% Reduction of tCO₂e/yr by 2035

Whitney Young Manor Yonkers, NY | 195 units | 234K SF

81% Reduction of tCO₂e/yr by 2035

Alafia | Vital Brooklyn Brooklyn, NY | 2,400 units | 1.2M SF

Closed loop geothermal – Passive House design standard

Alafia Brooklyn, NY

Vital Brooklyn Initiative

- \$373M project will bring 2,400 affordable apartments to the neighborhood
- Phase One includes:
 - $\circ~$ (1) SHARC 660 serving 2 buildings
 - **o** (2) PIRANHA T15HC serving 1 building
- Closed loop geothermal system supports water-source heat pumps (WSHP) to provide heating, cooling and domestic hot water.
- Designed to Enterprise Green Communities and Passive House Standards.

Whitney Young Manor Yonkers, NY

A radical transformation for Yonkers' affordable housing

This \$12 million decarbonization retrofit incorporates a SHARC 660 wastewater heat recovery system, air-source heat pumps (ASHP) and water-source heat pumps (WSHP)

- 195 affordable apartments in two towers (230,000 SqFt)
- New hydronic distribution piping enables integration of different heating sources & heat sharing between end-uses

SH/RC

CASE STUDY

2019 baseline	Expected by 2035
96 kBtu/SF/yr	48 kBtu/SF/yr Reduction of 50%
54% Natural Gas + 46% Electricity	25% Natural Gas + 75% Electricity
1,456 tCO2e/yr	273 tCO2e/yr Reduction of 81%

The Towers by Amalgamated Housing Cooperative Bronx, NY

Low Carbon Retrofit

New centralized hydronic distribution piping for two 20-story towers. Using geothermal and wastewater heat recovery that captures heat from domestic water sources, allows Amalgamated to decommission its cooling towers.

- (2x) PIRANHA T15 helps provide heating, cooling and domestic hot water for 316 affordable apartments
- Wastewater Heat Recovery allows for a reduction in the number of geothermal boreholes required

Current baseline	Expected by 2035
111.6 kBtu/SF/yr	32.5 kBtu/SF/yr Reduction of 71%
84% Natural Gas + 14% Electricity + 2% Oil	100% Electricity
2,771 tCO2e/yr	202 tCO2e/yr Reduction of 93%

AMALGAMATED HOUSING COOPERATIVE

SHARC

CASE STUDY

Seven35

North Vancouver, BC

- The first multi-family LEED® for Homes Platinum building in Canada
- Certified BuiltGreen Gold
- 60 Residential Units
 - PIRANHA T10 Commissioned Spring 2016
 - 9,350 Therms Natural Gas reduction
 - GHG Emission reductions of approximately 49.6 t CO₂e/year
- PIRANHA system provides domestic hot water preheating
- Piranha contributed to LEED® Platinum certification
- PIRANHA HC EPRI Challenge Site

<u>SHARC</u>

Lake Louise Inn

Lake Louise, Alberta

- Commissioned Summer 2018
- 247 room Hotel
- In-House Laundry
- PIRANHA T10 recovering heat from 4 commercial laundry washing machines
- Produce an average of 1700 Gallons of Hot water per day • Average COP of 5.25
- Main fuel source Propane
 - Approximate load reduction of 22,680 liters/year
 - GHG emission reduction of approximately 35 t CO2e/year

DC Water Headquarters Washington, DC

- Commissioned Summer 2018
- SHARC 660 System
- 250 Gallons Per Minute (GPM) flow
- Design heat transfer of 1.25 MMBH
- Estimated 30⁺ MMBtu/day transfer
- Heat Demand 3.3%
 - Natural gas boiler offset est. 12.6 t eCO₂/year reduction
- Cooling Demand 96.7%
- Cooling tower offset est. 1.5M gallons of water saved annually (evaporation & blowdown)
- Wastewater lift station sees 5M gallon per day average sanitary flow
- 150,000 ft² facility w/ 350 to 400 tons watercooled HVAC (HPs / Chilled Beams / DOAS)
- LEED® Platinum

Cooling Tower offset saves the use of an estimated 1.5M gallons of fresh water annually

"I have never seen a technology that could have as positive of an impact on energy as what I have seen at the DC Water Headquarters"

- Congresswoman Marcy Kaptur, Chairwoman of the House Appropriations Subcommittee on Energy and Water Development

SH/RC

CASE STUDY

Southeast False Creek Neighbourhood Energy Utility Vancouver, BC

- 3.2MW_{th} (4x) SHARC 880
- Expanding to 9MW_{th} (9x) SHARC 880
- Provides heat for 20M ft² of mixed-use space

District Energy – SHARC

SHARC project highlight

National Western Center

- (2) SHARC 880 provide 3.8MW of thermal transfer
- 90% of total heating & cooling load for 1M sq ft of indoor space
- ~2600 mt CO₂e/yr offset
- Plans to expand plant to 10MW

CUSTOMERS.sharcenergy.com

Alexandria Center for Life Sciences

Seattle, WA

- Alexandria Real Estates 1.6M sq ft science campus in Seattle's South Lake Union
- SHARC 660, expected to be commissioned 2025
- Leverages King County's groundbreaking legislation that enables public-private partnerships to access city sewer lines
- 99% carbon emissions reduction (compared to standard lab) while producing 70% of the heat for campus buildings

Turn Your Wastewater into Opportunity.

Thank you!

Condenser Water Heat Recovery

Corey Letcher, Comprehensive Solutions Account Executive, Trane New York January 31, 2024

Corey Letcher, C.E.M.

- Chemical Engineer
- Formerly a field engineer in the Oil and Gas Industry
- 10 years in the HVAC/Controls/energy industry in NYC
- Experience in project financing and incentive management
- Fun Fact: father of 4 (1 month old at home, pardon my baggy eyes)

- Why Is This Topic Important?
- Basic System Types
- Key Concepts & Terminology
- How Does Condenser Water Heat Recovery Work?
- Why Should Condenser Water Heat Recovery Be Implemented?
- Condenser Water Heat Recovery Applications
- Conclusion

Basic System Types

Basic Systems Types

Heat Pumps

Air to Air

VRF

Water to Air

Example: WSHP

Air to Water

Example: Air-Source Heat Pump Chiller

Water to Water

Example: Water-Source Chiller

Key Concepts & Terminology

- Heat Pump: A refrigeration unit that includes the capability to pump heat from a lower energy state to a higher energy state and can change the roles of the evaporator and condenser via use of a reversing valve within the unit. Either the cooling or heating duty may be primary depending on the operating mode and application.
- Heat Recovery: The process of using waste heat from the cooling process for building heating. To be beneficial it requires a simultaneous demand for cooling and heating.
- Heat Recovery Unit: A refrigeration unit with the primary function to provide cooling and all, or a portion of, its condenser heat is used to satisfy heating loads.
- Full Heat Recovery Unit: A refrigeration unit with the primary function of providing cooling and where all its condenser heat is used to satisfy heating loads
- Partial Heat Recovery Unit: A refrigeration unit that primarily provides cooling but can also satisfy some heating loads, utilizing a portion of its condenser heat.

Condenser Water Heat Recovery: How It Works

Heat Recovery How it Works

Example of Large Heat Recovery System (concept)

Condenser Water Heat Recovery Applications

All Compressors

Scroll Compressor Helical-Rotary Compressor

Centrifugal Compressor

Example Systems

Traditional Hydronic

TRANE

Why Implement Heat Recovery?

Why Implement Heat Recovery?

Coefficient of Performance (COP)

- COP = Useful work out / Power input
- COP (electric resistance heat) = 1.0

cooling

source

- COP (fossil fuel sources) < 1
- COP (compressor) >1

Example:

Cooling Only Unit

water heating and heat rejection

Why Implement Heat Recovery?

- Save money
- Reduce energy use intensity (EUI)
- Comply with codes and standards
- Legislative pressures
- Decrease site emissions compared to burning fossil fuel
- Energy recovery improves sustainability

- Limited natural gas or FF based infrastructure
- Local fees, fines or taxes
- Local grid has significant non-carbon emitting production (wind, solar, etc.)
- Energy Codes are evolving to require Heat Recovery in certain applications which will likely become more stringent over time

Heat Recovery Applications

Heat Recovery Applications – Heat Sources

Heating Units Applicable to Condenser Water Heat Recovery

Heat Pump Chillers

Two-pipe Cooling or Heating Four-pipe Cooling and heating

Six-pipe

Cooling and heating Third set of pipes for heat source / heat sink

Water-to-Water Heat Pumps

Variable Refrigerant Flow (VRF)

Air-to-Water Heat Pump: Dedicated Heat-Recovery TRANE HEAT M Μ COOL ÷., M dedicated heatrecovery chiller M C M COOL Μ 4 M ⋛≤ **********

62

Storage Source Heat Pump System Overview

A hydronic heating and cooling system including thermal energy storage enabling asynchronous energy transfer and recovery, without typical AWHP constraints.

Key Components Air to Water Heat Pumps Chiller-Heaters Thermal Energy Storage Tanks Trickle Heater Boiler (if needed) Buffer Tanks Controls

Storage Source Energy Transfer Loop AWHP Sink/Source Loop Heating Distribution Loop Cooling Distribution Loop

Storage-Source Heat Pump (SSHP) System

An innovative way to make all-electric heat pump heating possible even in cold climates and dense urban environments where there is limited roof space.

TRANE

FEATURES:

- Energy efficient: Reclaims excess heat from the building using it to heat when needed.
- Reliable operation: Collects and stores heat from air-to-water heat pump operation during favorable conditions enabling heating at all outdoor conditions including extreme cold.
- **Save roof space:** Collecting and storing heat over 24-hour period for later use, can reduce required airto-water heat pump capacity and cost.
- **Higher supply water temperatures:** Sourcing energy from a stable thermal energy storage source enables up to 130F.
- Lowers costs: Storing thermal energy for later use provides flexibility to use lower-cost electricity.
 Thermal energy storage can frequently qualify for up to 40% tax credit reducing overall system costs via the IRA which can reduce overall first cost.

Example Case Study

TRANE

Building Details

- Large Commercial Office Building
 - 24-7 Cooling load from Data Center and other Tenant loads
- Existing Thermal Storage that was used for cooling only application
- Con Ed Steam Heating and Hot water infrastructure

Impacts

- Addition of Heat recovery chillers and Domestic Hot water heat pumps in cascade
- Eliminates Steam for perimeter heating and domestic hot water generation (66% reduction in total steam usage with only a 5% increase in electrical consumption)
 - o 17% full building energy reduction
- Qualifies for Clean heat incentives as well as IRA tax credits to offset project costs

Conclusion

TRANE

Important Aspects

- Heating and cooling loads
 - Heating temperature
 - Outdoor conditions
- Unit capabilities and performance
- System configuration and control
- Analysis
- Detailed design
- Building operator training

High Level Guidance

- Select lowest heating temperature that meets requirements
- Design the system properly
- Select equipment appropriately
- Keep controls as simple as possible
- Ensure operators understand the system

NYSERDA Heat Recovery Roundtable Event "Exhaust Air Heat Recovery Solutions by HOWATHERM" January 31st, 2024

Table of Contents

- 1. Why Energy-Recovery for Ventilation Systems
- 2. Possible Designs for Energy-Recovery
- 3. Introducing the HOWATERM Technology
- 4. 777 6th Introducing the Pilot Project for Ventilation Heat-Recovery
 - a. Redesigning Airflows Rates
 - b. Simulation of Summer- and Winter-Operation
 - c. Aircon-Unit Design
 - d. Balancing of Exhaust- and Supply Airflows
 - e. Heat Pump Technology
 - f. Hydraulic Design Scheme
 - g. Aircon and Heat Pump Installation, Ducting and Piping
 - h. Calculations Baseline, Scenarios & Savings

In today's buildings, energy loss through infiltration and uncontrolled air change (passive ventilation) counts for 50-75% of the total energy consumption. In case of high negative pressure being generated by exhaust air fans (active ventilation), ventilation energy loss may be even higher.

The main purpose of ventilation systems is to supply the occupants with fresh air and to discharge humidity and emissions from inside of the building. Mold protection is a very important issue.

Therefore, ventilation systems should be operated with 100% outside air, and considering energy use, designed for isothermal air distribution (room temperature), not covering heating or cooling loads.

And since future HVAC-systems must be designed for renewable energy supply only, <u>efficient energy-recovery from the exhaust air is inevitable</u> to dramatically reduce the building loads before using e.g., heat pumps.

How this could be implemented for residential buildings, the ventilation retrofit project for 777 6th had been intended to prove as a pilot.

70

Table of Contents

- 1. Why Energy-Recovery for Ventilation Systems
- 2. Possible Designs for Energy-Recovery
- 3. Introducing the HOWATERM Technology
- 4. 777 6th Introducing the Pilot Project for Ventilation Heat-Recovery
 - a. Redesigning Airflows Rates
 - b. Simulation of Summer- and Winter-Operation
 - c. Aircon-Unit Design
 - d. Balancing of Exhaust- and Supply Airflows
 - e. Heat Pump Technology
 - f. Hydraulic Design Scheme
 - g. Aircon and Heat Pump Installation, Ducting and Piping
 - h. Calculations Baseline, Scenarios & Savings

Rotary Wheel Energy Recovery

PROS

- + High heat-recovery rate (up to 80%)
- + Re-humidification in wintertime
- + compact design
- + Low risk of freezing

- Cross-contamination between supply and exhaust air
- Risk of mold formation in summertime
- Demanding installation and commissioning
- Demanding maintenance
- High heat-recovery rate may not be achieved in operation

Reference: https://ecolivingexpert.com

Fixed-Plate (Cross-Flow) Energy Recovery

PROS

- + High heat-recovery rate (up to 85%)
- + Low risk of crosscontamination between supply and exhaust air

- No re-humidification in wintertime
- High space requirements and weight
- Risk of freezing reduces the extend of heat-recovery
- Due to difficult controllability to prevent freezing (bypass "on" or "off") the high heatrecovery rate may not be achieved in operation

73

Run-Around (Closed Loop) Energy Recovery

CONS

+ Highest hygienic standard (no crosscontamination possible)

- + Higher flexibility, since supply and exhaust air unit may be installed apart
- + Easy coupling to other hydronic systems (e.g. DHW) through the closed loop
- + Existing risk of freezing is reduced through good controllability of the loop temperature
- + Easy installation and maintenance
- Lower heat-recovery rate (45-65%, but with high performance systems up to 75-80%)
- No re-humidification in wintertime
- Risk of freezing reduces the extend of heat-recovery

Table of Contents

- 1. Why Energy-Recovery for Ventilation Systems
- 2. Possible Designs for Energy-Recovery
- 3. Introducing the HOWATERM Technology
- 4. 777 6th Introducing the Pilot Project for Ventilation Heat-Recovery
 - a. Redesigning Airflows Rates
 - b. Simulation of Summer- and Winter-Operation
 - c. Aircon-Unit Design
 - d. Balancing of Exhaust- and Supply Airflows
 - e. Heat Pump Technology
 - f. Hydraulic Design Scheme
 - g. Aircon and Heat Pump Installation, Ducting and Piping
 - h. Calculations Baseline, Scenarios & Savings

HOWATHERM A family-operated company since 1969

German family owned manufacturer of energy-optimized aircon systems Founded in 1969 Located in Rhineland-Palatinate, 30

miles away from the US Airbase Ramstein

CEO Prof. Dr.-Ing. Christoph Kaup

180 employees

Manufacturing base on 168.000 ft²

Patented energy-recovery technology and designs

© HOWATHERM Klimatechnik GmbH
Patented Closed Loop Energy-Recovery Design

Closed Loop Energy-Recovery with ecoFin+ Heat Exchangers

© HOWATHERM Klimatechnik GmbH

Table of Contents

- 1. Why Energy-Recovery for Ventilation Systems
- 2. Possible Designs for Energy-Recovery
- 3. Introducing the HOWATERM Technology
- 4. 777 6th Introducing the Pilot Project for Ventilation Heat-Recovery
 - a. Redesigning Airflows Rates
 - b. Simulation of Summer- and Winter-Operation
 - c. Aircon-Unit Design
 - d. Balancing of Exhaust- and Supply Airflows
 - e. Heat Pump Technology
 - f. Hydraulic Design Scheme
 - g. Aircon and Heat Pump Installation, Ducting and Piping
 - h. Calculations Baseline, Scenarios & Savings

Introducing the Pilot Project for Ventilation Heat-Recovery

777 6th Avenue, NYC

Equity Residential

Build year:	1999
Number of floors:	32
Number of apartments:	295
Building owner: Equity Resid	ential (Chicago)

- Pressurizing the hallways with a gas-fired roof top unit
- > Discharge of exhaust from bathrooms and kitchens with roof fans
- > Steam-coil PTACs for space heating and cooling in apartments
- > Base load heat supply for DHW through a gas fired CHP in the basement
- Heat supply for space heating and DHW reheating through gas-fired steam boilers in the basement

Existing Conditions Exhaust Air Flow Old Design

OLD DESIGN

100 | 170 50 | 85

EXHAUST AIR OLD DESIGN	EXH-1	EXH-2	EXH-3	EXH-4	EXH-5	EXH-6	EXH-7 (kittchen)	EXH-8 (kittchen)	EXH-9	floor	exhaust air flow [CFM]	exhaust air flow [m³/h]
31. floor	100	100	50	100	100	50	200	100	50	31st floor	850	1.444
30. floor	100	100	50	100	100	50	200	100	50	30st floor	850	1.444
29. floor	100	100	50	100	100	50	200	100	50	29st floor	850	1.444
28. floor	100	100	50	100	100	50	200	100	50	28st floor	850	1.444
27. floor	100	100	50	100	100	50	200	100	50	27st floor	850	1.444
26. floor	100	100	50	100	100	50	200	100	50	26st floor	850	1.444
25. floor	100	100	50	100	100	50	200	100	50	25st floor	850	1.444
24. floor	100	100	50	100	100	50	200	100	50	24st floor	850	1.444
23. floor	100	100	50	100	100	50	200	100	50	23st floor	850	1.444
22. floor	100	100	50	100	100	50	200	100	50	22st floor	850	1.444
21. floor	100	100	50	100	100	50	200	100	50	21st floor	850	1.444
20. floor	100	100	50	100	100	50	200	100	50	20st floor	850	1.444
19. floor	100	100	50	100	100	50	200	100	50	19st floor	850	1.444
18. floor	100	100	50	100	100	50	200	100	50	18st floor	850	1.444
17. floor	100	100	50	100	100	50	200	100	50	17st floor	850	1.444
16. floor	100	100	50	100	100	50	200	100	50	16st floor	850	1.444
15. floor	100	100	50	100	100	50	200	100	50	15st floor	850	1.444
14. floor	100	100	50	100	100	50	200	100	50	14st floor	850	1.444
13. floor	100	100	50	100	100	50	200	100	50	13st floor	850	1.444
12. floor	100	100	50	100	100	50	200	100	50	12st floor	850	1.444
11. floor	100	100	50	100	100	50	200	100	50	11st floor	850	1.444
10. floor	100	100	50	100	100	50	200	100	50	10st floor	850	1.444
9. floor	100	100	50	100	100	50	200	100	50	9st floor	850	1.444
8. floor	100	100	50	100	100	50	200	100	50	8st floor	850	1.444
7. floor	100	100	50	100	100	50	200	100	50	7st floor	850	1.444
6. floor	100	100	50	100	100	50	200	100	50	6st floor	850	1.444
5. floor	50	100	100	100	100	50	300		100	5st floor	900	1.529
4. floor	50	100	100	100	100	50	300		100	4st floor	900	1.529
3. floor	50	100	100	100	100	50	300		100	3st floor	900	1.529
2. floor	100	50		100			150			2st floor	400	680
1. floor										1st floor	0	0
basement					75					basement	75	127
total exhaust	2850	2950	1600	3000	2975	1450	6250	2600	1600		25.275	42.942

kitchen exhaust with continuous operation [CFM]| [m³/h] bathroom exhaust with continuous operation [CFM]| [m³/h]

Redesigning Airflow Rates Exhaust Air Flow New Design

NEW DESIGN

kitchen exhaust with continuous operation [CFM] | [m³/h] bathroom exhaust with continuous operation [CFM] | [m³/h]

25 | 43

20 | 34

EXHAUST AIR NEW DESIGN	EXH-1	EXH-2	EXH-3	EXH-4	EXH-5	EXH-6	EXH-7 (kittchen)	EXH-8 (kittchen)	EXH-9	floor	exhaust air flow [CFM]	exhaust air flow [m³/h]
31. floor	40	40	20	40	40	20	50	25	20	31st floor	295	501
30. floor	40	40	20	40	40	20	50	25	20	30st floor	295	501
29. floor	40	40	20	40	40	20	50	25	20	29st floor	295	501
28. floor	40	40	20	40	40	20	50	25	20	28st floor	295	501
27. floor	40	40	20	40	40	20	50	25	20	27st floor	295	501
26. floor	40	40	20	40	40	20	50	25	20	26st floor	295	501
25. floor	40	40	20	40	40	20	50	25	20	25st floor	295	501
24. floor	40	40	20	40	40	20	50	25	20	24st floor	295	501
23. floor	40	40	20	40	40	20	50	25	20	23st floor	295	501
22. floor	40	40	20	40	40	20	50	25	20	22st floor	295	501
21. floor	40	40	20	40	40	20	50	25	20	21st floor	295	501
20. floor	40	40	20	40	40	20	50	25	20	20st floor	295	501
19. floor	40	40	20	40	40	20	50	25	20	19st floor	295	501
18. floor	40	40	20	40	40	20	50	25	20	18st floor	295	501
17. floor	40	40	20	40	40	20	50	25	20	17st floor	295	501
16. floor	40	40	20	40	40	20	50	25	20	16st floor	295	501
15. floor	40	40	20	40	40	20	50	25	20	15st floor	295	501
14. floor	40	40	20	40	40	20	50	25	20	14st floor	295	501
13. floor	40	40	20	40	40	20	50	25	20	13st floor	295	501
12. floor	40	40	20	40	40	20	50	25	20	12st floor	295	501
11. floor	40	40	20	40	40	20	50	25	20	11st floor	295	501
10. floor	40	40	20	40	40	20	50	25	20	10st floor	295	501
9. floor	40	40	20	40	40	20	50	25	20	9st floor	295	501
8. floor	40	40	20	40	40	20	50	25	20	8st floor	295	501
7. floor	40	40	20	40	40	20	50	25	20	7st floor	295	501
6. floor	40	40	20	40	40	20	50	25	20	6st floor	295	501
5. floor	20	40	40	40	40	20	75		40	5st floor	315	535
4. floor	20	40	40	40	40	20	75		40	4st floor	315	535
3. floor	20	40	40	40	40	20	75		40	3rd floor	315	535
2. floor	40	20		80			37,5			2nd floor	177,5	302
1. floor										1st floor	0	0
basement					60					basement	60	102
total exhaust	1140	1180	640	1240	1220	580	1562,5	650	640		8.853	15.040

Redesigning Airflow Rates Supply Air Flow New Design

Reduction of exhaust air: 66% Pressure conditions changed to "positive"

SUPPLY AIR NEW DESIGN	supply air flow according ventilation riser diagram [CFM]	needed supply air flow for exhaust air balance [CFM]	supply air flow according to exhaust air balance +10% [CFM]	supply air flow according to exhaust air balance +10% [m ³ /h]	total supply air flow at this point [m³/h]	dimension width [inch]	dimension length [inch]	dimension width [m]	dimension length [m]	duct surface [m²]	air flow speed [m/s]
31st floor	250	295	325	551	16.000	71	12	1.80	0.30	0.55	8.1
30st floor	250	295	325	551	15.449	71	12	1,80	0,30	0,55	7,8
29st floor	250	295	325	551	14.897	71	12	1,80	0,30	0,55	7,6
28st floor	250	295	325	551	14.346	71	12	1,80	0,30	0,55	7,2
27st floor	250	295	325	551	13.795	71	12	1,80	0,30	0,55	6,8
26st floor	250	295	325	551	13.243	71	12	1,80	0,30	0,55	6,6
25st floor	250	295	325	551	12.692	68	12	1,73	0,30	0,53	6,6
24st floor	250	295	325	551	12.141	68	12	1,73	0,30	0,53	6,2
23st floor	250	295	325	551	11.589	68	12	1,73	0,30	0,53	6,0
22st floor	250	295	325	551	11.038	66	12	1,68	0,30	0,51	6,0
21st floor	250	295	325	551	10.487	66	12	1,68	0,30	0,51	5,7
20st floor	250	295	325	551	9.935	66	12	1,68	0,30	0,51	5,4
19st floor	250	295	325	551	9.384	64	12	1,63	0,30	0,50	5,2
17st floor	250	295	325	551	8.833	64	12	1,63	0,30	0,50	4.8
16st floor	250	295	325	551	8.281	60	12	1,52	0,30	0,46	5.0
15st floor	250	295	325	551	7.730	60	12	1,52	0,30	0,46	4
14st floor	250	295	325	551	7.179	60	12	1,52	0,30	0,46	4.4
13st floor	250	295	325	551	6.627	48	12	1,22	0,30	0,37	4.8
12st floor	250	295	325	551	6.076	48	12	1,22	0,30	0,37	4.5
11st floor	250	295	325	551	5.525	48	12	1,22	0,30	0,37	4.3
10st floor	250	295	325	551	4.973	36	12	0,91	0,30	0,28	5.0
9st floor	250	295	325	551	4.422	36	12	0,91	0,30	0,28	4.4
8st floor	250	295	325	551	3.871	36	12	0,91	0,30	0,28	3.9
7st floor	250	295	325	551	3.320	26	12	0,66	0,30	0,20	4.4
6st floor	250	295	325	551	2.768	26	12	0,66	0,30	0,20	3.3
5st floor	300	315	347	589	2.21/	26	12	0,66	0,30	0,20	2.9
4st floor	300	315	347	589	1.628	16	12	0,41	0,30	0,12	3.8
3st floor	300	315	347	589	1.039	16	12	0,41	0,30	0,12	2.4
2st floor	400	1/8	192	332	451	10	12	0,41	0,30	0,12	1.5
IST TIOOP	0	0	0	0	119						
pasement	<u>u</u>	00	00	112	119						
total supply	7.550	8.558	9.413	15.993							

Balancing of Exhaust- and Supply Airflows

To guarantee stable and pressure-conditions in the building (= overpressure to reduce energy loss caused by infiltration) through balanced airflows, of each single air outlet and inlet must be adjusted.

- Therefore, airflow-controllers or -limiters are used for
- exhaust air risers on the roof

Exhaust air inlets in bathrooms and kitchens

84

Simulation of Summer-Operation with 92.7°F and 55% r.H.

85

Winter-Operation Scenario 1: Outside air with 5.0°F

NYSERDA Heat Recovery Roundtable 86

Winter-Operation Scenario 2: Outside air with -4.0°F

NYSERDA Heat Recovery Roundtable

Aircon-Unit Design

- Roof mounted unit pressurizes the corridors with 100% outside air.
- Supply- and return-air unit are connected through a maintenance space as weather protection for the equipment and to maximize pre-installation.
- Highly efficient closed loop heatrecovery with ecoFin⁺ heat exchangers.
- Hydronic heat exchangers to feed in heat pump-based energy for heating and cooling.

© HOWATHERM Klimatechnik GmbH

88

Aircon-Unit Design

89

© HOWATHERM Klimatechnik GmbH

Aircon-Unit Design

© HOWATHERM Klimatechnik GmbH

Why Combination of Heat Pump and Heat-Recovery?

Reference: HOWATHERM

Heat Pump Technology Integrated reversible heat pump for heating and cooling operation

The refrigeration circuit is completely integrated into the ventilation unit.

The reversal of the refrigerant flow allows cooling and heating operation, because the coils are used alternately as a condenser or as an evaporator.

The design of an integrated reversible heat pump is very compact, and the on-site installation effort is low.

In <u>cooling mode</u>, the evaporator coil extracts heat from the supply air and releases it as waste heat to the exhaust air via the integrated condenser coil. This means that only as much cooling capacity can be generated as the exhaust flow can discharge in the form of waste heat. Therefore, the required cooling capacity for dehumidification operation in summer can only be provided to a limited extent, which makes additional external cooling energy supply necessary.

In <u>heating mode</u>, the heat pump's capacity is limited by the heat energy content of the exhaust air after energy-recovery – energy may only be recovered once.

However, during defrosting operation, no "heat pump heating energy" is available for heating the supply air, which means that a sufficiently dimensioned "backup heating system" must be available for reasons of operation safety.

Reference: Peter Hofstetter (WOLF GmbH), TGA-Fachplaner 08.2023

Heat Pump Technology External reversible heat pump for heating and cooling operation

Since in ventilation units with an <u>integrated</u> heat pump, additional systems for dehumidification and backup-heating must be installed anyhow, it seems to be cost efficient to use only one energy source for heating and cooling energy supply only.

An <u>external</u> reversible air-source heat pump is using a hydronic loop to feed in both heating- and cooling-energy. An energy storage tank with electricheating-device is used to cover peak-loads and as back-up for defrosting and very low ambient temperatures.

2 pcs. reversible air-source heat pumps Cooling capacity at 92.7°F with 55% r.H. (18,2 g/kg): Heating capacity at 5°F:

2 x 23.8 RT (2 x 83.3 kW) 2 x 170,648 BTU/h (2 x 50 kW)

Heat-Source air: 5°F (-15°C)(dry bulb temperature) Heat-Source air: 4.6°F (wet bulb temperature) Heat-Sink: 104/87°F (40/30.5°C) COP = about 1.99 (at 5°F) SCOP = about 3.90

3 x 153,583 BTU/h (3 x 45 KW)

Reference: Peter Hofstetter (WOLF GmbH), TGA-Fachplaner 08.2023, CARRIER AquaSnap 30RQ-090R-A

Heat Pump Technology Schematic design for hydraulic integration

Equipment Installation on the Roof Top (2D)

NYSERDA Heat Recovery Roundtable 95

Equipment Installation on the Roof Top (3D)

Power availability with three elevators in use: 106.7 KW

Heat pump heating operation at 5°F (-15°C) Total electrical power consumption in regular operation: 65.0 KW OK Total electrical power consumption in defrosting operation: 83.1 KW OK

Electrical heating operation at -4°F (-20°C) **Total electrical power consumption in regular operation:** 135 KW *but:* mostly at night

Heat pump cooling operation at 92.7°F, 55% r.H. (18,2 g/kg)Total electrical power consumption in regular operation:78 KWOK

The elevators will be supplied with priority in any case, which means other equipment's supply will be reduced if necessary.

Therefore, a load management system will constantly monitor the available load for the equipment by measuring the actual power consumption of the elevators.

If it comes to a peak demand of the elevators, the load management system will switch off the electrical heating devices in the energy storage tank, that can be controlled in 9 stages, stepwise.

During this (short) period, the energy storage tank will cover the heat supply.

- The total exhaust air flow of 25,275 CFM must be re-heated/-cooled to the required room temperature, either through the gas-fired RTU or the steam-coil PTACs.
- RTU operation: hallway air flow to be treated: 7,550 CFM
 - The RTU's supply air temperature in winter is 75°F (23.9°C) and the efficiency of the gas-firing will be estimated with 80%. In cooling operation, the supply air temperature is 68°F (20°C) and the integrated a/c's EER is about 8.5 (related to unit RT).
 - There is no controlled dehumidification, the supply air is only cooled down to the setpoint temperature (saturation).
 - There is a change-over-operation according to the actual outside temperature (heating operation, if ambient temperature < 68°F/20°C and cooling operation, if ambient temperature > 75°F/24°C).
- PTAC operation: infiltrated air flow to be treated: 17,725 CFM
 - In addition to the transmission loads for space heating and cooling, that are not considered here, the PTACs must condition the infiltrated air to the required room temperature.
 - The room temperature is estimated to be set to 72°F (22.2°C) in winter and 74°F (23.3°C) in summer.
 - The efficiency of the steam-based heating is estimated to be 60% (incl. gas-firing and steam transmission) and the integrated a/c's EER is about 7.7 (related to unit RT).
 - There is <u>no controlled dehumidification</u>, the supply air is only cooled down to the setpoint temperature (saturation).

Calculations – Baseline, Scenarios & Savings Definition of Scenario 1

- The new aircon unit with energy recovery and heat pump-based heating and cooling energy supply with be operated with reduced air rates. To enable comparison with the baseline scenario, there is no controlled dehumidification, the supply air is only cooled down to the setpoint temperature (saturation).
- The total exhaust air flow will be balanced with air flow limiters to 8,620 CFM.
- To stop infiltration through the façade, there will be a roughly 10% over pressure being supplied by the new aircon unit to the hallways with 9,424 CFM.
- The RTU's supply air temperature in winter is 75°F (22°C). In heating operation, the reversible heat pumps SCOP is 3.26 (related to unit kW).
- In cooling operation, the supply air temperature is 70°F (21°C). In cooling operation, the reversible heat pumps SEER is 4.29 (related to unit kW).
- Control strategy
 - Heating operation will be released only, if the actual ambient temperature is < 68°F (20°C), and during the last 4 days, heating had been required for at least 48 hours.
 - Cooling operation will be released only, if no heating operation is required, the actual ambient temperature is > 75°F (24°C) and during the last 4 days, cooling had been required for at least 48 hours.
 - If the RTU isn't in heating or cooling operation, the heat pumps will be switched off. As soon as either heating or cooling operation is released for the RTU, the heat pumps will be switched on in the respective operation mode (response time about 1 hour).

Calculations – Baseline, Scenarios & Savings Definition of Scenario 2

- Exhaust and supply air flows are set according to scenario 1.
- In addition to scenario 1, cooling operation will be combined with controlled dehumidification of the supply air.
- Control strategy
 - Heating operation will be released only, if the actual ambient temperature is < 68°F (20°C), and during the last 4 days, heating had been required for at least 48 hours.
 - Cooling operation will be released only, if no heating operation is required, the actual ambient temperature is > 75°F (24°C) and during the last 4 days, cooling had been required for at least 48 hours.

- Cooling operation with <u>controlled dehumidification</u> will be released only, if the absolute humidity is > 12.0 g/kg (upper limit of the "still comfortable zone"). In this case absolute humidity of the supply air will be reduced to 10.7 g/kg (70°F, 68.8% r.H., "comfort zone").
- If the RTU isn't in heating or cooling operation, the heat pumps will be switched off. As soon as either heating or cooling operation is released for the RTU, the heat pumps will be switched on in the respective operation mode (response time about 1 hour).

results	baseline	scenario 1	scenario 2
energy cost	\$156.838,17	\$51.669,81	\$54.349,40
annual tons CO2	499,27 t CO2	79,23 t CO2	83,3 t CO2
annual energy use	2.041.064,65 kWh	215.290,87 kWh	226.455,85 kWh
% saving kwh	0%	89,45%	88,91%
% saving CO2	0%	84,13%	83,31%
% saving USD	0%	67,06%	65,35%

Total savings:	105,168.36 USD [100.0%]
Savings for building owner:	93,416.27 USD [88.9%]
Savings for tenants (PTAC cooling):	11,752.09 USD [11.1%]

Sustainable solutions for a world worth living

RUHL TecDesign LLC is a New York based MEP engineering and design company with a German background, being focused on the development of low carbon footprint projects using renewable energy and energy efficient building technology.

With the experience of over 65 years in business and being specialised in commercial buildings, production facilities and large housing projects in Europe, the Americas, Asia and Africa, RUHL achieved growing success developing carbon-neutral projects, being realised needless of fossil energy.

In 2022, RUHL successfully took part in the NYSERDA Empire Building Challenge, designing a steam-to-heatpump retrofit for a residential high rise in NYC.

Contact:

RUHL TecDesign LLC, 1 World Trade Center, 85th floor, New York, NY, 10007 Kevin Appleby, e-mail: Kevin.Appleby@ruhl.org, phone: +1 904 377 0571

Copyright and related rights of technical conceptions by RUHL TecConsult GmbH

Heat reuse: a management primer

Jacqueline Davis, Research Analyst

Presented to NYSERDA Heat Recovery Roundtable January 31, 2024

Uptime Intelligence

ACTIONABLE INSIGHT FOR THE DIGITAL INFRASTRUCTURE ECOSYSTEM

- Independent research arm of Uptime Institute
- Reports analyze trends, developments in all aspects of the mission critical infrastructure industry
- On heat recovery:

Max Smolaks

Research Analyst Heat reuse: a management primer (2023)

Jacqueline Davis

Research Analyst Data center cooling, 2021-present Data center heat recovery, 2024

Accessing Uptime's report

The briefing report **Heat reuse: a management primer** is available for download from the Uptime Institute website:

uptimeinstitute.com/resources

Uptime's report in summary

What is waste heat recovery?

The difficult business case of waste heat recovery

The countries taking the lead in heat recovery

How waste heat is captured and transported

What is a heat pump?

Growing policy interest in waste heat recovery

Advances in district heating networks

Applications for waste heat

Growing policy interest in waste heat recovery

Governments are starting to take more interest in waste heat recovery schemes.

EU Energy Efficiency Directive (EED) Recast: Data centers \geq 1MW must recover waste heat, or else show that heat recovery is not feasible

Additional heat reuse legislation in Europe, present or pending:

Germany Denmark Netherlands Norway

Applications for waste heat

Uptime's research continues

Uptime's reports help data center owners, operators, equipment suppliers, and other stakeholders explore new opportunities and reduce exposure to risk.

2024 research focus:

First report will come out Q1 2024.

If you are knowledgeable in any of the waste heat recovery topics here, or have more to add – I would love to speak with you!

Heat recovery Key variables in Operational and resiliency design: Changing considerations environmental, business case, thermal, including efficiency incentives

Jacqueline Davis

jdavis@uptimeinstitute.com

110

Jacqueline Davis

jdavis@uptimeinstitute.com

The briefing report **Heat reuse: a management primer** is available for download from the Uptime Institute website: <u>uptimeinstitute.com/resources</u>

Uptime Institute is the Global Digital Infrastructure Authority. Uptime Institute is headquartered in New York, NY, with offices in Seattle, London, Sao Paulo, Dubai, Singapore, and Taipei.

©2022 Uptime Institute, LLC. All Rights Reserved.

Uptime Institute 405 Lexington Avenue New York, NY 10174

Explore these Heat Recovery technologies through NYSERDA's new incentive program, please connect with us:

HeatRecovery@nyserda.ny.gov

nyserda.ny.gov/ Heat-Recovery

A BACK TO FIND A PROGRAM

Heat Recovery Program

Harnessing Wasted Heat to Fuel Building Decarbonization

NYSERDA is working to energize the New York State marketplace for heat recovery solutions. Buildings, which represent around one-third of New York's greenhouse gas emissions, waste heat (i.e., thermal energy) through a variety of processes, including ventilation, cooling, and wastewater systems. By capturing and repurposing that rejected energy, heat recovery solutions help building owners reduce operating costs and lower carbon emissions.

To increase awareness and adoption of heat recovery solutions, the Heat Recovery Program aims to advance solutions that can significantly improve thermal efficiency and support planning activities to accelerate a pipeline of successful heat recovery retrofits.

Heat Recovery Turns a Problem Into an Opportunity

Heat Recovery recycles wasted thermal energy, reducing a building's energy consumption and carbon footprint. Recovering wasted heat – energy that building owners have already paid for – and repurposing it directly at point of use or storing it for later represents a promising approach to large 112 building decarbonization.