NYSERDA Presents: Hydrogen in NYS: State of the Science

Kickoff Webinar May 31, 2022

Meeting Procedures:

- Attendees are muted upon entry
- Questions and comments may be submitted using the Q&A feature during the event
- The Chat feature will be disabled (outside of facilitation sessions)
- Materials + recording from today's event will be made available online at www.nyserda.ny.gov/hydrogen
- If technical problems arise, please contact <u>Tricia.King@nyserda.ny.gov</u>

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Opening Remarks:

Doreen Harris President & CEO, NYSERDA

Agenda:

• Hydrogen (H₂) Introduction & Overview

• H_2 in NYS:

- Role of H₂ in the Climate Act
- NYS Activities & Programs
- Environmental & Climate Justice Considerations

— 10-Min. Break —

- H₂ Primer Sessions:
 - Production Overview
 - Electrolyzers & Fuel Cells
 - Delivery & Storage
 - Safety Considerations
- Ideation & Taking Stock

Ground Rules

- Honor the agenda
- Use the Q&A feature to provide questions throughout the event
- The Chat feature will only be accessible during facilitation activities at beginning/end of today's program
- Please share and/or ask questions which contribute to a meaningful discussion
- Recording & materials will be made available online at <u>www.nyserda.ny.gov/hydrogen</u>

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Facilitation:

Preliminary Interest Engagement Exercise NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Hydrogen Introduction & Overview

Introduction to Hydrogen (H₂)

The What:

• The most abundant (and simplest) element in the universe

- Energy carrier vs. energy source
- Unique characteristics: high energy density by weight, low energy density by volume
- A versatile tool in the decarbonization toolbox

Introduction to Hydrogen (H₂)

The How:

You produce it How: You power its production You use it

- **Despite its ubiquity on Earth, H₂ does not** occur on its own
- Rather, it must be derived / separated from other compounds:

(Water)

(Ethanol)

(Methane)

(Octane)

Once separated, H₂ is and can be utilized for a variety of applications / purposes

Introduction to Hydrogen (H₂)

The Why:

- H₂ is neither novel nor (relatively) niche:
- U.S. currently produces ~10 million metric tons/year (nearly all fossil)
- Primary uses today are for oil refining + industrial applications (ammonia, methanol, steel, chemical feedstock)
- Feasibility / availability of renewables
- Decarbonization & emissions reduction targets
 - Numerous potential applications: low carbon fuel, feedstock, energy carrier
- Excitement, interest, and caution at a variety of levels (local, state, federal, global)

Fireside Chat:

Hydrogen Introduction & Overview

Participant:

• Michael Colvin, Environmental Defense Fund Director, Regulatory and Legislative Affairs

Relevant/Referenced Material:

EDF Studies/Reports:

- <u>'Study: California can Reach a Decarbonized</u>
 <u>Electric Grid Affordably and Reliably by 2045</u>'
- <u>'Climate consequences of hydrogen leakage'</u>

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Please use the Webex Q&A Feature

Role of Hydrogen in the CLCPA

Key Findings from the Scoping Plan Integration Analysis

James Wilcox, NYSERDA Kevin Steinberger, Energy and Environmental Economics (E3) May 31, 2022

Contents

- > Overview of Climate Act, Scoping Plan, and Integration Analysis
- > Role of Hydrogen in New York Decarbonization Pathways
- > Hydrogen Production Methods
- > Impacts of Electrolysis on Electric Sector Loads and Resources
- > Hydrogen as Long Duration Storage

More information on the Climate Act can be found at https://climate.ny.gov/

For the full Integration Analysis, see the Climate Action Council Draft Scoping Plan Appendix G: Integration Analysis Technical Supplement <u>https://climate.ny.gov/Our-Climate-Act/Draft-Scoping-Plan</u> Climate Leadership and Community Protection Act (CLCPA, or Climate Act) – Overview

Carbon neutral economy, mandating at least an 85% reduction in emissions below 1990 levels 40% reduction in emissions by 2030 100% zero-emissions electricity by 2040 70% renewable electricity by 2030 9,000 MW of offshore wind by 2035 6,000 MW of distributed solar by 2025 3,000 MW of energy storage by 2030 185 TBtu on-site energy savings by 2025 Commitments to climate justice and just transition

Process for developing the Draft Scoping Plan

The Climate Act requires the CAC to develop a draft Scoping Plan to meet statutory emission limits by the end of 2021

- > The Draft Plan is informed by recommendations of Advisory Panels, Just Transition Working Group, and Climate Justice Working Group
- > Reflects the consensus recommendations from the Advisory Panels and JTWG as the strategies to achieve the emissions limits
- > Considers climate justice, job creation, cost reductions, public health benefits, minimizing emission leakage
- > Emissions addressed include upstream emissions associated with fossil fuels from out-of-state
- > Undertakes comprehensive benefit-cost analysis
- > The recommendations formed basis of scenario modeling to show impact of interaction of strategies across sectors
 - 3 scenarios to achieve emissions limits seeking public feedback on the mix of strategies and level of ambition

GHG Emission Reduction Requirements

Current Estimated GHG Emissions by Sector

New York State GHG Emissions (MMtCO₂e)

Scenario Overview

- > Integration Analysis assessed three mitigation scenarios that meet or exceed GHG emission limits, achieve carbon neutrality by midcentury
 - Foundational themes across <u>all</u> mitigation scenarios based on findings from Advisory Panels and supporting analysis
 - Zero emission power sector by 2040
 - Enhancement and expansion of transit & vehicle miles traveled reduction
 - More rapid and widespread end-use electrification & efficiency
 - Higher methane mitigation in agriculture and waste
 - End-use electric load flexibility reflective of high customer engagement and advanced techs
 - Scenario 2: Strategic Use of Low-Carbon Fuels
 - Includes the use of bioenergy derived from biogenic waste, agriculture & forest residues, and limited purpose grown biomass, as well as green hydrogen, for difficult to electrify applications
 - Scenario 3: Accelerated Transition Away from Combustion
 - Low-to-no bioenergy and hydrogen combustion; Accelerated electrification of buildings and transportation
 - Scenario 4: Beyond 85% Reduction
 - Accelerated electrification + limited low-carbon fuels; Additional VMT reductions; Additional innovation in methane abatement; Avoids direct air capture of CO2

Level of Transformation by Mitigation Scenario

Key Benefit-Cost Findings

Cost of Inaction Exceeds the Cost of Action by more than \$90 billion

There are significant required investments to achieve Climate Act GHG Emissions Limits, accompanied by even greater external benefits and the opportunity to create hundreds of thousands of jobs

Net System Costs Avoided Health and GHG Benefits

2020 - 2050

- Net benefits range from \$90-\$120 billion
- Costs are a small share of New York's economy: 0.6-0.7% of GSP in 2030 and 1.4% in 2050
- As a share of current overall system expenditures, costs are moderate: 9-11% in 2030 and 25-26% in 2050

Total Energy by Fuel Scenario 2: Strategic Use of Low-Carbon Fuels

Includes energy use from transportation, industrial, commercial, and residential sectors. 2020 is a modelled year, reflecting historical trends 21

Role of Hydrogen in the Integration Analysis

- Hydrogen can play critical role in decarbonizing hard-to-electrify applications
- In near-term, NY may need to spur initial adoption of hydrogen to help decarbonize:
 - Medium and heavy-duty vehicles
 - High-temperature industrial applications
- In longer term, low-carbon fuels may support decarbonization of:
 - District heating systems
 - Non-road transportation
 - Power generation

Overview of Hydrogen Production Methods Applicability in Climate Act

> Focus of Draft Scoping Plan was on zeroemissions hydrogen to achieve carbon neutrality by 2050

Note: Hydrogen is colorless and odorless at standard conditions; these color codes are just shorthand for production pathway

Annual Loads Impacts of Electrolysis Loads by 2050

- > Analysis assumes that 50% of New York's hydrogen demand must be supplied with in-state electrolysis loads
 - 100% supply of H2 with in-state electrolysis loads explored as an additional sensitivity analysis, which more than doubles electrolysis demand by 2050
- > Electrolysis loads are significant contributor to total loads by 2050 across all Mitigation scenarios (27-42 TWh)
- > Electrolysis is modeled as a highly flexible end use that does not contribute to peak loads

Note: this slide has been updated to reflect a minor update to load forecasts in Scenarios 3 and 4.

Impacts of Electrolysis on Resource Builds

- > Electrolysis loads are modeled as highly flexible and can absorb renewable curtailment, but additional dedicated renewable resources are also needed at this scale
- Sensitivity examined impacts of producing 100% of New York's hydrogen demand with in-state renewables
- > Required 14.6 GW of new solar resources and 2.3 GW of new land-based wind resources

Hydrogen as Long Duration Storage Medium

Electricity Generation Comparison of 2050 Installed Capacity

- > In these Scenarios, firm capacity is provided by hydrogen resources to meet multi-day reliability needs, ranging from 21-25 GW
- > Significant expansion of foundational resources (wind, solar, and storage) is needed across scenarios
 - Offshore wind: 16-19 GW
 - Land based wind: 16-17 GW
 - Solar: 61-65 GW
 - Storage: 19-21 GW

160,000

Note: In Scenario 3, existing fossil fuel resources are retired by 2040 and no new combustion-based (CCGT or CT) capacity is permitted. New firm capacity is provided by a combustion-free resource (e.g. hydrogen fuel cells).

Electricity Generation Comparison of 2050 Annual Generation

- > Share of annual generation across mitigation scenarios:
 - Solar: 36-40%
 - Wind: 39-42%
 - Zero-carbon firm resource: 1-2%

350,000

Typical Spring Week in 2050 Scenario 3

Multi-Day Reliability Needs in 2050 Scenario 3

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Hydrogen in NYS: Activities & Programs

NYS H₂ Planning Activities

Hydrogen Opportunity and Strategy Study

- Compile foundational and baseline information and data
- Evaluate production & end-use opportunities for clean hydrogen

Options Analysis

- Catalogue and evaluate hydrogen policy and incentive options
- Analyze potential impacts, pros/cons to inform decision making

H₂ Economic Development & Supply Chain Analysis

- Market analysis examining potential economic opportunities and impacts
- Assess applications and workforce requirements across H₂ value chain

Center for Hydrogen Safety

- Enables access to an expert Hydrogen Safety Panel for safety review
- Provides access to information and best practices on hydrogen safety

HyBlend Collaborative

- Identifying principles of operation of blended hydrogen/natural gas delivery system
- Evaluating the use of existing natural gas infrastructure for hydrogen

NYS H₂ Planning Activities (cont.)

Long Duration Energy Storage

- Encourage product development & demonstration projects targeting 6+ hours of storage
- Applicable technologies include hydrogen, mechanical, thermal, and others

MOU with Danish Ministry

- Collaborate and exchange information on decarbonization solutions
- Focus on carbon capture, utilization, storage & green hydrogen

Stakeholder Engagement & Education

- Looking to engage with and understand perspectives from across the stakeholder landscape
- □ Aim to provide programming & forums that are relevant and responsive to stakeholder priorities, interests, and concerns

NYS H₂ Planning Activities (cont.)

- Governor Hochul's 2022 State of the State signaled a commitment to bolstering clean hydrogen in NYS, including:
 - Intention to compete for ~\$10 billion in federal funding for hydrogen, including \$8 billion for hydrogen hubs.
 - Development of a hydrogen regulatory framework to measure emissions reduction and health benefits, as well as development of codes and standards.
 - Focus on clean hydrogen fuel cell microgrids, aiming to replace fossil fuel backup systems
 - Deployment of \$27 million in Hydrogen Innovation funding through competitive solicitations
 - Development of a proposal for a clean hydrogen demonstration focused on district heating & cooling
 - Support industry collaboration and clean hydrogen firm expansion in NYS

Federal Funding Opportunities for H₂:

Infrastructure Investment & Jobs Act allocated \$9.5 billion for hydrogen-related activities and infrastructure development:

\$8B for at least 4 regional clean hydrogen hubs

- 5 years: 2022-2026
- Program purpose: Develop regional/federal networks of connected hydrogen producers, consumers, and connective infrastructure; focus on building a diverse portfolio in terms of energy sources, applications, and regionality

\$1B for electrolysis RD&D

- 5 years: 2022-2026
- Program purpose: to improve the efficiency, increase the durability, and reduce the cost of producing clean hydrogen using electrolyzers.

\$500M for clean hydrogen process manufacturing & recycling R&D

- 5 years: 2022-2026
- Program purpose: to increase the reuse and recycling of clean hydrogen technologies.

NYS H₂ Planning Activities

In late-March, Governor Hochul announced a multi-state agreement to develop a proposal for a Northeast Regional Hydrogen Hub, noting:

- Collaboration with New Jersey, Connecticut, and Massachusetts
- 40+ early-stage partners from across the hydrogen ecosystem

As of late-May, the Hydrogen Hubs funding opportunity remains outstanding, and is expected to be shared in late-Summer/early-Fall!
NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Please use the Webex Q&A Feature

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Climate & Environmental Justice Considerations

Fireside Chat:

Climate & Environmental Justice Considerations

Participants:

- Josh Berman, Sierra Club Senior Attorney, Environmental Law Program
- Meagan Burton, Earthjustice Senior Attorney

Relevant/Referenced Material:

- Earthjustice Report: "<u>Reclaiming Hydrogen for a</u> <u>Renewable Future</u>"
- Sierra Club: <u>Hydrogen: Future of Clean Energy or a</u> <u>False Solution?</u>

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

10-Minute Break!

Returning at ~11:05 AM for: **Primer Session: Hydrogen Production Overview**

Hydrogen Production Overview

Mark Ruth

May 31, 2022

Hydrogen Background

- Hydrogen is the smallest and simplest element (atomic number 1 and atomic weight 1.00794)
- Hydrogen is the most abundant element in the universe (≈75% of normal matter)
- Hydrogen fusion is the dominant process that generates energy in stars
- On earth, hydrogen atoms are almost all contained in more complex molecules
- Robert Boyle produced hydrogen gas in 1671 (experimenting with iron and acids) but no one realized that it was a distinct element before 1766 (Henry Cavendish)
- Like electricity, hydrogen is an energy carrier
- Michael Faraday discovered electrolysis in 1800 and Sir William Robert Grove is credited with creating the first hydrogen fuel cell a few years later
- Jules Verne imagined a hydrogen future in *The Mysterious Island*

Henry Cavendish

Glucose molecule

Current Hydrogen Energy in the U.S.

- ≈10 MMT H₂/yr primarily for oil refining and ammonia production
- Almost all the hydrogen is produced by reforming natural gas which requires about 2 quad natural gas annually: ≈2% of total energy use
- The U.S. has ≈1600 miles of hydrogen pipelines including ≈40 miles in the L.A. Basin

Recent Increased Interest in Hydrogen: Global Drivers

Low-cost
 renewables are
 now available

- Countries see
 clean H₂ can
 help meet
 climate goals
 - Hard to decarbonize sectors
 - Energy storage
 - Import/export opportunities

\$80B Global Government Funding. 6X More with Private Sector through 2025

Studies show potential for 10 to 25% global GHG reduction using clean hydrogen. \$2.5T Revenue. 30M Jobs.

H2@Scale and Hydrogen's Potential

Current DOE focus is moving to hydrogen as an energy carrier and in additional chemical operations

DOE is Investing in RD&D Across the Hydrogen Supply Chain

DOE is focused on developing technologies to make, move, use, and store hydrogen and cost-sharing deployment of systems that integrate the four areas.

Early-stage research is required to evolve and de-risk the technologies

4.20

66.6/kW

Sann/kW

S) u 35

3.0

2.5

1.5

5 2.0

0.1 Q

Canacity Factor

Capital Cost

Cost of Electricity

Efficiency (LHV)

Optimizing H₂ storage and distribution

https://www.hydrogen.energy.gov/pdfs/review18/tv045_ruth_2018_o.pdf

40%

¢2/kWh | ¢1/kWh

S4007/kW

ANALS | SIAMS

\$100/kW

end use applications.

Hydrogen Production Technologies

Source: Tanase, Lavinia. "Underpinning the Transition: European Commission Prefers Green H2" (April 21, 2021) https://laviniatanase.medium.com/underpinning-the-transition-european-commission-prefers-green-h2-3a61e7169ecb

DOE Uses Carbon Intensity Instead of Colors to Discuss Environmental Impacts

Hydrogen Shot: "111" \$1 for 1 kg in 1 decade for clean hydrogen

Example: Cost of Clean H₂ from Electrolysis 2020 ~ \$5/kg 5 Capital Costs

Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

Electrolysis: One of several pathways to reach goals

- Reduce electricity cost from >\$50/MWh to
 - \$30/MWh (2025)
 - \$20/MWh (2030)
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

All pathways for clean hydrogen included: Thermal conversion w/ CCS, advanced water splitting, biological approaches, etc.

Bipartisan Infrastructure Law – \$9.5B H2 Highlights

- \$8B for at least 4 regional clean H2 Hubs
- \$1B for electrolysis (and related H2) RD&D
- \$0.5B for clean H2 technology mfg. & recycling R&D
- Aligns with H2 Shot priorities by directing work to reduce cost of clean H2 to \$2/kg by 2026
- Requires developing a National H2 Strategy & Roadmap

2020 Baseline: PEM low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Need less than \$300/kW by 2025, less than \$150/kW by 2030 (at scale)

(Adapted from multiple briefing slides from Sunita Satyapal, DOE's HFTO)

NREL

Monolith Methane Pyrolysis

- DOE provided conditional approval of a \$1.04B loan guarantee for Monolith Nebraska
- Monolith has an offtake agreement with Goodyear Tire & Rubber
- Monolith claims a carbon intensity of 0.45 kg CO₂e/kg H₂ if using renewable electricity

Sources: Image: <u>https://www.chemengonline.com/methane-pyrolysis-process-uses-renewable-electricity-split-ch4-h2-carbon-black/</u>

https://www.eenews.net/articles/doe-unveils-1b-loan-for-hydrogen-plant-but-is-it-

- clean/#:~:text=On%20Dec.,gas%2C%20known%20as%20methane%20pyrolysis.
- https://www.ammoniaenergy.org/articles/monolith-materials-new-deal-with-goodyear-1-billion-loan-from-doe/ https://monolith-corp.com/process-comparison

Advanced Clean Energy Storage (ACES) Project

- DOE issued \$504M in loan guarantees for hydrogen storage in Delta, UT
- Recipients: Mitsubishi Power Americas Inc. and Magnum Development LLC
- Design: 220 MW electrolysis and 5,500 tons of H₂ storage
- Agreements with Intermountain Power Plant (1900 MW) with High Voltage DC connection to Los Angeles
- Plant converting from coal to 70% natural gas – 30% hydrogen to 100% hydrogen

Sources: Image <u>https://www.canarymedia.com/articles/hydrogen/massive-green-hydrogen-hub-in-utah-wins-504m-federal-loan-guarantee#:~:text=The%20Advanced%20Clean%20Energy%20Storage,tons%20of%20hydrogen%20a%20day. https://www.eenews.net/articles/doe-unveils-500m-loan-for-massive-clean-hydrogen-project/</u>

Thank you!

www.nrel.gov

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Please use the Webex Q&A Feature

Hydrogen Color Spectrum

Source: NARUC "Coal and Carbon Management Guidebook: Coal-to-Hydrogen Opportunities and Challenges" (Sept 2021) <u>https://pubs.naruc.org/pub/63211779-1866-DAAC-</u> 99FB-C7D38972AEB8

Advanced Hydrogen Production in the U.S.

Electrolysis and other technologies are expanding in the U.S.

Source: Satyapal, Sunita "U.S. DOE Hydrogen Production Program & LAWE Meeting" January 26, 2022

Current and under construction installations over 120 kW as of Jun. 2021 * Source: Arjona, et al, DOE HFTO Program Record, June 2021

Hydrogen Technologies: Electrolyzers and Fuel Cells

Bryan Pivovar, National Renewable Energy Laboratory (NREL)

Date: 5/31/22 NYSERDA Webinar

Relevance – 2020's Decade of Hydrogen

Hydrogen Council

CLIMATE CH2AMPION: HYDROGEN IS THE MISSING PIECE OF THE ENERGY PUZZLE

HYDROGEN COST TO FALL SHARPLY AND SOONER THAN EXPECTED

HYDROGEN DEPLOYMENT ACCELERATING WITH MORE THAN \$300 BILLION IN PROJECT PIPELINE

Potential Impacts from Hydrogen Council Roadmap Study. By 2050:

- \$2.5 trillion in global revenues
- 30 million jobs
- 400 million cars, 15-20 million trucks
- 18% of total global energy demand

https://hydrogencouncil.com/en/

The global race to develop 'green' hydrogen

sued on: 31/03/2021 - 05:52 Modified: 31/03/2021 - 05:50

Hydrogen-powered fuel cells could solve the key problem with battery electric vehicles – the long recharge times – as filling up a tank with hydrogen takes just a bit longer than putting in petrol. GEORGES GOBET AFP/File

() 4 min

Paris (AFP)

It's seen as the missing link in the race for carbon-neutrality: "green" hydrogen produced without fossil fuel energy is a popular buzzword in competing press releases and investment plans across the globe.

https://www.france24.com/en/livenews/20210331-the-global-race-todevelop-green-hydrogen

Politics

Hydrogen Is 'Jump Ball' in Global Clean-Energy Race, Kerry Says

By <u>Jennifer A Dlouhy</u> and <u>Will Wade</u> March 2, 2021, 9:38 AM MST

Climate envoy touts oil-industry opportunity at CERAWeek
 Says tensions with China won't block aggressive climate action

WARNETS Coinbase Hangover Rattles Crypto Assets With Bitcoin in Freefall

SPAC Wipeout Is Punishing Followers of Chamath Palihapitiya

TECHNOLOGY Amazon Cancels Lord of the Rings Game Announced Two Years Ago

TECHNOLOGY Covid Survivors May Require Just One Shot of a Two-Dose Vaccine

Covid Claims 3 Million Lives as Burden Shifts to Poorer Nations

https://www.bloomberg.com/news/articl es/2021-03-02/hydrogen-is-jump-ballin-global-clean-energy-race-kerry-says

Now is the time for hydrogen and the "global race" is on

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021

Bipartisan Infrastructure Law - Hydrogen Highlights

- Covers \$9.5B for clean hydrogen:
 - \$8B for at least four regional clean hydrogen hubs
 - \$1B for electrolysis research, development and demonstration
 - \$500M for clean hydrogen technology manufacturing and recycling R&D

President Biden Signs the Bipartisan Infrastructure Bill on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026
 https://www.energy.gov/sites/default/ files/2021-12/h2iq-12082021.pdf
- **Requires developing a National Hydrogen Strategy and Roadmap**

Fuel Cells: electrochemical devices that convert chemical energy directly into electrical energy. Electrolyzers: electrochemical devices that convert electrical energy directly into chemical energy.

Characterized by electrolyte:

- Polymer Electrolyte
- Alkaline
- Phosphoric Acid
- Molten Carbonate
- Solid Oxide

General Cell/Stack Structure

Membrane Electrode Assembly

Ohma et al., *Electrochim. Acta*, **56**, 10832 (2011)

PEMFC Cost Advances

- Billions in RD&D investments have significantly reduced FC transportation system costs
- They have reached the ability to near parity in light duty vehicle markets
- BEVs have significantly advanced as well
- Scale and supply chain remain challenges.

B. Pivovar, Nature Catalysis, 2, 2019, 562–565.

Use

https://www.energy.gov/eere/fuelcells/h2-scale

- Transportation and Industry are strongest economic sectors (also difficult to decarbonize)
- Many of the processes are or could be electrochemical
- Difficult or impossible to fully electrify
- R&D needs are significant
 - Fuel Cells (M2FCT), NH3, Steel, burners/turbines

H2NEW connection to H2@Scale

- Making H2 is the inherently obvious, first step to spur the wideranging benefits of the H2@Scale vision.
- Electrolysis has most competitive economics and balances increasing renewable generation challenges.

Illustrative example, not comprehensive https://www.energy.gov/eere/fuelcells/h2-scale

Electrolyzers by Type

Туре	Pros	Cons		
Alkaline	Well established, lower capital cost,	Corrosive liquid electrolyte used, higher	1	
	more materials choices at high pH, high	ohmic drop, lack of differential pressure		
	manufacturing readiness, can leverage	operation, shunt currents, limited		
	established supply chains, demonstrated	intermittency capabilities, efficiency	Low	
	in larger capacity		Temperature	
Polymer	Low ohmic losses/high power density	Requires expensive materials (Ti, Ir, Pt,		
Electrolyte	operation, differential pressure	perfluorinated polymers), lower	(0 - 200°C)	
Membrane	operation, DI water only operation,	manufacturing and technology		
	leverages PEM fuel cell development and	readiness, efficiency		
	supply chain, load following capability		J	
Solid Oxide	High efficiency, low-cost materials,	High temperature materials challenges,	1	
	integration with continuous high	limited intermittency capabilities,	High	
	temperature electricity sources (e.g.,	thermal integration, lower	Tomporatura	
	nuclear energy), leverages SOFC	manufacturing and technology	(>500°C)	
	development and supply chain,	readiness, steam conversion and		
	differential pressure operation	separation challenges		

Badgett, Ruth and Pivovar, "Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis," accepted 2021.

H2NEW : H2 from Next-generation Electrolyzers of Water

A comprehensive, concerted effort focused on overcoming technical barriers to enable affordable, reliable & efficient electrolyzers to achieve <\$2/kg H₂

- Launching in Q1 FY21
- Both low- and high-temperature electrolyzers
- \$50M over 5 years

The focus is not new materials but addressing components, materials integration, and manufacturing R&D

Clear, well-defined stack metrics to
guide efforts.

Draft Electrolyzer Stack Goals by 2025

	LTE PEM	HTE	
Capital Cost	\$100/kW	\$100/kW	
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²	
Lifetime	80,000 hr	60,000 hr	

Durability/lifetime is most critical, initial, primary focus of H2NEW

- Limited fundamental knowledge of degradation mechanisms.
- Lack of understanding on how to effectively accelerate degradation processes.
- Develop and validate methods and tests to accelerate identified degradation processes to be able to evaluate durability in a matter of weeks or months instead of years.
- National labs are ideal for this critical work due to existing capabilities and expertise combined with the ability to freely share research findings.

Relevance: Stack Costs (PEM Centric)

Stack Targets	Status	2023	2025
Cell (A/cm ² @1.9V)	2.0	2.5	3.0
Efficiency (%)	66	68	70
Lifetime (khr)	60	70	80
Degradation (mV/khr)	3.2	2.75	2.25
Capital Cost (\$/kW)	350	200	100
PGM loading (mg/cm ²)	3	1	0.5

These 3 areas

- 1. Increased efficiency/current density
- 2. Decreased PGM loading
- 3. Scale-up

Are the strongest levers for addressing stack costs.

https://www.hydrogen.energy.gov/pdfs/review21/p196_pivovar_boardman_2021_o.pdf

Thank You!!!! Happy to take questions Bryan.Pivovar@nrel.gov

Materials Needs

Materials Needs for PEM

- Thrifting/replacing of Ir
 - Supports
 - Novel compositions/structures
 - Electrode fabrication impacts
- Improved membranes
 - Increased selectivity, thin membranes
 - Improved durability
 - Recombination layers
- Novel Porous Transport Layers (PTLs)
 - Materials
 - Morphology
 - Coatings

Iridium Prices for the Last 2 Years

https://www.dailymetalprice.com/metalpricecharts.php?c=ir&u=oz&d=120
Alkaline Needs

- Traditional (Conc. KOH)
 - Intermittent operating capability
 - Operating pressure
 - Degradation mechanisms/ASTs
 - Performance/efficiency improvements
- AEM/hybrid (low conc/KOH-free systems)
 - Novel materials development
 - Stable polymers
 - Advanced catalysts
 - Performance dependence on electrolyte
 - Degradation mechanisms/ASTs

Accomplishment: Duty cycle implications for ASTs

LMP heatmaps can give insight into potential operating strategies

On-off cycle duration and frequency can help support AST development.

Sensitivity Analysis

- Yield insight into primary cost drivers for PEMEC stacks
- Membrane cost, Pt loading, precious metal coatings are easily identifiable materials advances for impact
- Manufacturing processes and yields are important
- Power density can be impacted by materials advances

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Please use the Webex Q&A Feature

Hydrogen Delivery and Storage: Implications for Structural Integrity

Chris San Marchi Sandia National Laboratories (Livermore CA)

NYSERDA Hydrogen State of the Science Workshop 31 May 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's Nationa l Nuclear Security Administration under contract DE-NA-0003525.

Hydrogen has broad potential for decarbonization

H2@Scale enables deep decarbonization across sectors

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

"Hydrogen is the Swiss Army knife of decarbonization"

Julio Friedmann, former Principal
 Deputy Assistant Secretary for
 DOE's Office of Fossil Energy

Source: Washington Examiner

Motivation and Outline

materials

structures

- How is hydrogen delivered and stored?
- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?
 - Is there a threshold below which hydrogen effects can be ignored?
- What is the implication of hydrogen on life of pipelines and piping?

Motivation and Outline

• How is hydrogen delivered and stored?

- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?
 - Is there a threshold below which hydrogen effects can be ignored?
- What is the implication of hydrogen on life of pipelines and piping?

Hydrogen can be managed like other fuel gases

What is the best method to transport and store H₂?

• "It depends..."

- The standard engineering answer to a poorly posed question

- Gaseous
 - Typically high-pressure to achieve volumetric density
 - Current state-of-the-art for vehicle fuel, very large (geologic) storage, and long distance, high volume transport (e.g., pipelines)
- Liquid
 - Very low temperature (20K lower than liquid N₂)
 - Current state-of-the-art for some transport and storage applications
- <u>Carriers</u>
 - Not economical at present
 - Often toxic

What are the hydrogen challenges?

- Hydrogen technologies are not new
 - Cornerstone of astronautics
 - "Chemical" hydrogen is used extensively in industry (10B kg/yr in US)
 - Hydrogen pipelines exist to serve industry (>2,500 km in US)
- Commercial uses are emerging
 - Fuel cell cars, buses, trains, boats, back-up power, etc.
 - H₂-powered materials handling equipment (e.g., forklifts)
- Non-industrial (green) hydrogen is too expensive
 - Supply chain for non-industrial use is nascent
 - Infrastructure at scale cannot be replaced/developed overnight
 - Gas network is estimated to be valued at >\$1,000B
 - Over 150,000 gasoline stations in US (value ~\$100B)
- Hydrogen is managed as chemical, not as energy/fuel
 - We need "non-hardhat" relationship with hydrogen

International scale is greater in some areas: eg, >2000 buses

afety

Motivation and Outline

• How is hydrogen delivered and stored?

• What is hydrogen embrittlement and when is it important?

 How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?

- Is there a threshold below which hydrogen effects can be ignored?
- What is the implication of hydrogen on life of pipelines and piping?

Motivation

With growing interest in decarbonization, hydrogen is being considered as a means to reduce carbon in energy infrastructure

Challenge

Hydrogen degrades fatigue and fracture resistance of steels, and the effects on pressure vessel and line pipe steels are significant

Hydrogen embrittlement occurs in **materials** under the influence of **stress** in hydrogen **environments**

Is hydrogen embrittlement a showstopper?

- Fatigue crack growth rate is accelerated by 10X in H₂ compared to air
 - Typical of many construction steels
- Is this material safe to use in gaseous hydrogen?
 - -Yes No Maybe

Construction steels are used in hydrogen applications

Motivation and Outline

materials

structures

- How is hydrogen delivered and stored?
- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?
 - Is there a threshold below which hydrogen effects can be ignored?
- What is the implication of hydrogen on life of pipelines and piping?

Fatigue crack growth is not a strong function of pipeline grade

- Pipeline steels show very consistent behavior in gaseous hydrogen, including
 - Wide range of steel quality
 - Wide range of steel grade
- Effects of pressure and 'load ratio' are predictable

Fatigue performance can be codified, thus negating the need for extensive fatigue testing

Low hydrogen partial pressure = large effect on fatigue

• Large ∆K FCG is independent of pressure

- Fatigue crack growth rate in 3% H_2 is the same as in 100% H_2
- Intermediate ∆K FCG is dependent on hydrogen partial pressure
 - Fatigue crack growth rate is slower in $3\% H_2$ than in 100% H_2

Design curves predict fatigue crack growth rates as a function of H₂ partial pressure (fugacity)

Ref: San Marchi et al, PVP2021-62045

Low hydrogen partial pressure = large effect on fracture

- Measurements of fracture resistance in gaseous mixtures of H₂ and N₂ show substantial effects of H₂
- 1% H₂ is only modestly different than 100% H₂
- Fracture resistance does not scale linearly with pressure/fugacity

<1 bar of H₂ substantially reduces fracture resistance

Ref.: Briottet et al, PVP2018-84658

Motivation and Outline

- How is hydrogen delivered and stored?
- What is hydrogen embrittlement and when is it important?
- How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?
 - Is there a threshold below which hydrogen effects can be ignored?

What is the implication of hydrogen on life of pipelines and piping?

structures

Application of materials behavior to structural integrity analy example)

- Flaw
 - depth: 25% of wall thickness (a/t =0.25)
 - length: 40 mm (2c = 40mm) propagate with constant aspect ratio

Analysis of transmission pipe structure (simple example)

- Stress is <u>large</u> in this example
 - $P_{max} = 20 MPa$
 - $-\sigma_{hoop} \sim 68\%$ SMYS
- Initial crack/flaw: a/t = 0.25
 K_{applied} = 33 MPa m^{1/2}

fatigue response (for R = 0.5)

- How is hydrogen delivered and stored?
 - Much like natural gas: as gas or liquid depending on use case
- What is hydrogen embrittlement and when is it important?
 - Hydrogen reduces fatigue and fracture resistance of steels whenever is present; outcome of this degradation depends on use case
- How does gaseous hydrogen affect fatigue and fracture of (pipeline) steels?
 - Is there a threshold below which hydrogen effects can be ignored?
 - <u>No</u>, there is no general threshold below which hydrogen does not affect fatigue and fracture properties of metals
- What is the implication of hydrogen on life of pipelines and piping?
 - Depends on characteristics of the structure

structures

Thank You!

Chris San Marchi cwsanma@sandia.gov

Joe Ronevich jaronev@sandia.gov

Kevin Simmons kl.simmons@pnnl.gov

https://h-mat.org/ https://www.sandia.gov/matlsTechRef/ https://granta-mi.sandia.gov/ Special thanks to Sandia's Safety, Codes and Standards team, H-Mat team and HyBlend team:

James McNair **Brendan Davis** Jeff Campbell Robert Wheeler **Rakish Shrestha** Jay Foulk Chris LaFleur **Brian Ehrhart** Ethan Hecht **Remi Dingreville** Khalid Hattar **Coleman Alleman** Vince Pericoli

Xiaowang Zhou Chris Nowak Mark Wilson Nalini Menon Norm Bartelt Kathryn Small Matthew Brownell Brian Kagay Amalie Frischknecht Brandon Talamini Ben Schroeder Austin Glover

NYSERDA Presents: Hydrogen in NYS: State of the Science Kickoff

Please use the Webex Q&A Feature

Informational resources

- Technical Reference for Hydrogen Compatibility of Materials
 - <u>https://www.sandia.gov/matlsTechRef/</u>
 - Report no. SAND2012-7321 (Technical Reference v.2)
 - Report no. SAND2013-8904 (polymers)
- Technical Database for Hydrogen Compatibility of Materials
 - https://granta-mi.sandia.gov/
- Study Group on Materials Testing and Qualification for Hydrogen Service
 - Annual topical discussion group: international and industrial participation
- ASME Pressure Vessels and Piping Division Annual Conference (2005 current)
 - Materials for Hydrogen Service: session organization (2014-current)
- Expanded resources under development at
 - Including H-Mat DataHUB (https://h-mat.org)

Background: thermodynamics (origin of fugacity)

H in metals: $\mu^H = \mu_0^H + RT \ln c_H$ Gas phase: $\mu^{HH} = \mu_o^{HH} + RT \ln f_{HH}$ At equilibrium: $\frac{1}{2}H_2 \leftrightarrow [H]$ $\frac{1}{2}\mu^{HH} = \mu^{H}$ $\frac{\frac{1}{2}\mu_o^{HH} - \mu_o^H}{RT} = \ln \frac{c_H}{(f_{uu})^{1/2}}$ General form of Sieverts' Law $K = \frac{c_H}{(f_{\mu\mu})^{1/2}}$

Equation of state for H₂ Abel-Noble formulation $V_m = \frac{RT}{P_{m}} + b$ Pure gaseous H₂: $f_{HH} = P_{HH} \exp\left(\frac{bP_{HH}}{RT}\right)$ Blended H₂: $f_{HH} = P_{HH} \exp\left(\frac{bP_{total}}{RT}\right)$

Background: stress intensity factor, K

 $K = \sigma \sqrt{\pi a} \times f(geometry) \qquad \sigma = stress \\ a = crack size$

$$\Delta K = K_{max} - K_{min}$$
$$R = \frac{K_{min}}{K_{max}}$$

- K characterizes the stress state at a crack tip
 - analogous to the stress, but for the case of cracks in structures
- K is a transferable parameter that is used to generalize the state of a crack and transfer information between one geometry and another
 - for example between a laboratory test and a real-world application

Design curves enable upper bound prediction for fatigue crack growth as function of loading and pressure

Hydrogen Safety Considerations and Resources

Nick Barilo Executive Director, Center for Hydrogen Safety May 31, 2022

Hydrogen's Great Potential

Hydrogen Properties and Behavior

Gas at ambient conditions

- Rises and disperses rapidly (14x lighter than air)
- Flammable range 4-75% in air
- ▶ Liquid at -253°C (-423°F) a cryogen
 - LH₂ stored at 50 psi in vacuum insulated tanks
 - No liquid phase in compressed gas H₂ storage
 - Liquid hydrogen expands about 850 times when transitioning transforming from liquid to gas phase

Energy content comparison :

- 1 kg of hydrogen ~ 1 gallon gasoline
- 33.3 kWh/kg hydrogen vs. 32.8 kWh/gal gasoline

Molecular Hydrogen Model: 2 protons (H+) sharing 2 electrons (e-)

Additional Properties of Hydrogen

Description

Colorless, odorless, tasteless

General Properties

- Flammable
- Non-irritating, nontoxic, asphyxiant
- Non-corrosive
- Lightest gas, buoyant, can escape earth's gravity

Physical Properties

- GH₂ density @ NTP
- GH₂ specific gravity
- Viscosity
- Diffusivity
- Thermal Conductivity

0.0838 kg/m³ (1/15th air) 0.0696 (Air = 1.0) 33.64 x 10⁻³ kg/m hr (1/2 air)

- $33.04 \times 10^{\circ}$ Kg/IIIIII (1/2 dll
- 1.697 m²/hr (4x NG in air)
- 0.157 kcal/m hr K (7 x air)

Potential Hazards

- Combustion (fire and explosion)
- Pressure hazards
- Low temperature
- Hydrogen-induced material embrittlement
- Asphyxiation (rare)

	Hydrogen Gas	Natural Gas	Gasoline
Toxicity	None	Some	High
Odor	Odorless	Yes (mercaptan)	Yes (benzene)
Buoyancy Relative to Air	14X Lighter	2X Lighter	Vapor is 3.75X Heavier
Flammable Range by volume in air	4-75%	5-15%	1.4-7.6%
Autoignition Temperature (C)	585°	53 9 °	232°
Minimum Ignition Energy (mJ)	0.017	0.288	0.250-0.300
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg
Energy by Volume	4X < Gasoline	1.5X < Gasoline	120 MJ/Gallon

State of Hydrogen Safety

Safety issues can be a 'deal breaker' and must be addressed for successful hydrogen technology acceptance and deployment

Its Use as a Fuel is New to Many

- Users may lack experience or expertise for its safe use
- Some users have misconceptions... and may not know that they don't know

Stable Foundation

- Hydrogen can be used safely... It has been for nearly a century by industry
- Safety knowledge and best practices exist

Dangerous Assumptions

- "We already know how to use hydrogen safety" (apathy established users)
- "Hydrogen is like any other flammable gas" (misconceptions new players)
- "Hydrogen is too dangerous" (fear general public/AHJ's)

Failure to address the knowledge gaps can result in impactful incidents and industry setbacks

Hydrogen Incidents... Seeing the Common Thread

Electrolyzer

 Personnel did not fully understand the interrelation of electrolyzer membrane gas permeability, membrane degradation, and dynamic operating range

Hydrogen Vehicle Fueling Station

 Assembly error of an end plug for the high-pressure hydrogen tank

Hydrogen Transport

- Incorrect pressure relief devices installed during maintenance
- Hydrogen Tanker Loading
 - Unauthorized repair and failure to follow procedures
- Hydrogen Bus Fueling Station
 - Incompatible pressure relief device installed

Courtesy of Gangwon Fire HeadQuarter

Damage from Electrolyzer Incident

Common Fuels Incidents

All fuels contain energy and can be hazardous if handled improperly

Gasoline

- ~1,000 fueling station fires per year in the U.S. as a result of gasoline ignition (2004-2008) (NFPA)
- ~171,500 highway vehicle fires in the U.S. between 2014 and 2016 (FEMA)
 - o 345 deaths
 - o 1,300 injuries
 - o \$1.1 billion USD in property loss
 - o 13% of all fires responded to by fire departments
- Natural Gas average/year (U.S. 2007-2011) (NFPA)
 - 13,730 fires
 - 35 deaths
 - 254 injuries
 - \$303 million USD property damage

2019 Gasoline Station Fire

Three Parts, One Purpose, Strong Together

A threefold cord is not quickly broken

Be Invested in Safety

Implement Regulations, Codes and Standards

Utilize Best Safety Practices

Implement Regulations, Codes and Standards

Hydrogen regulations, codes and standards (RCS) are maturing quickly for many mainstream fuel cell applications

- RCS provide the information needed to safely build, maintain, and operate equipment, systems, and facilities
- Ensures uniformity of safety requirements
- Provides inspectors and safety officials the information needed to approve systems and installations
- Bolsters public and stakeholder confidence and helps protect investments

Did you know? Many codes and standards were developed using industry best practices.

See <u>http://www.fuelcellstandards.com/...</u> a database of international codes and standards

Example International Codes and Standards

International

- ISO TC/197 Hydrogen Technologies
 - 17 published standards (4 in development)
 - 22 participating countries
- ► IEC TC/105 Fuel Cell Technologies
 - 24 published standards (11 in development)
 - 19 participating countries

North America

- NFPA 2 Hydrogen Technologies Code
- CAN/BNQ 1784 Canadian Hydrogen Installation Code

Hydrogen Tools		RESOURCES HYARC ABOUT Q LOGIN G
HOME / FUEL CELL STAN	DARD	5
Reset Filters 151 results found		About the Codes & Standards resource.
(-) North America		
Application type		۵)
H2 AND FUEL CELL ROAD VEHICLES	(5)	CGA H-XXXX Small Scale Hydrogen Production and Delivery
HYDROGEN & FUEL CELL VEHICLE APPLICATIONS	(15)	American Institute of Aeronautics and Astronautics
HYDROGEN	(92)	AllA C 005 Cuide to Refer to Hudroson and Hudroson Sustame
MISC	(6)	AIAA G-035 Guide to Salety of Hydrogen and Hydrogen Systems
MISCELLANEOUS	(2)	American Society of Mechanical Engineers
Show more		ACHE DOL 4 Davies Distan
Organization		ASME B31.1 Power Piping
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS) (1)	ASME B31.3 Process Piping
AMERICAN SOCIETY FOR TESTING AND MATERIALS	(22)	ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids
AMERICAN SOCIETY OF MECHANICAL ENGINEERS	F (14)	ASME B31.8 Gas Transmission and Distribution Piping Systems
CALIFORNIA AIR RESOURCES BOARD	(1)	ASME B31.8S Managing System Integrity of Gas Pipelines
CALIFORNIA GOVERNOR'S OFFICE OF BUSINESS AND ECONOMIC DEVELOPMENT	(1)	ASME B31.12 Hydrogen Piping and Pipelines
Show more		ASME STP-PT-006 Design Guidelines for Hydrogen Piping and Pipelines
Region		ASME BPVC Section VIII, Division 1 Rules for Construction of Pressure Vessels Division 1
NORTH AMERICA	(151)	
Location		ASME BPVC Section VIII, Division 2 Rules for Construction of Pressure Vessels Division 2, Alternate Rules
CANADA	(4)	
UNITED STATES	(116)	ASME BPVC Section VIII, Division 3 Rules for Construction of Pressure Vessels Division 3,
UNITED STATES - ALL STATES	(1)	Alternate Rules High Pressure Vessels Article KD-10 Special Requirements for Vessels in High Pressure Gaseous Hydrogen Transport and Storage
UNITED STATES - CALIFORNIA	(3)	ASME Code Case 2300 Composite Bainforced Pressure Vessels

ASME BPVC-Section X Fiber-Reinforced Plastic Pressure Vessels

UNITED STATES

Show more

U.S. Codes and Standards for Hydrogen Facilities

Model Code References to NFPA 2

National Hydrogen Specific Codes⁷⁸

- NFPA 2 Hydrogen Technologies Code
- NFPA 30A Motor Fuel Dispensing Facilities and Repair Garages
- NFPA 55 Compressed Gases and Cryogenic Fluids Code

Component Design Standards

- ASME Boiler and Pressure Vessel⁷⁹
- ASME B31.12–Hydrogen Piping and Pipelines
- ASME B31.1–Power Piping
- ASME B31.8–Gas Transmission and Distribution Piping Systems
- ASME B31.8S–Managing System Integrity of Gas Pipelines
- ASME B31.3–Process Piping
- CGA S-1.1-3: Pressure Relief Device Standards
- CGA-G-5.5: Hydrogen Vent Systems
- SAE J2600–Compressed Hydrogen Surface Vehicle Fueling Connection Devices
- UL 2075–Standard for Gas and Vapor Detectors and Sensors
- NFPA 77 and API RP 2003 offer guidance on grounding and static electricity

Model Codes

- International Fire Code
- International Building Code

Component Listing and Design Standards

Currently, few existing components are tested to listing standards implemented by a nationally recognized testing laboratory (NRTL). AHJs may allow the station manufacturer to provide technical information to prove that the compression, storage, and dispensing components used are fit for service. As the market develops, the list of listed components (and systems) is expected to grow.

Station Developer Standards (For informational use)

- SAE J2601–Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles⁸⁰
- SAE J2799–Hydrogen Surface Vehicle to Station
 Communications Hardware and Software
- SAE J2719–Hydrogen Fuel Quality for Fuel Cell Vehicles
- HGV CSA Series Standards (currently being updated)

Best practice... a technique or methodology that has reliably led to a desired result

Utilizing Best Safety practices:

- Implements the benefits of extensive experience in the safe use of hydrogen
- Protects people, equipment and environment and minimizes risk of incidents
- Is demonstrated by their incorporation into designs, standard operating procedures, etc.

Those who cannot remember the past are condemned to repeat it.

- George Santayana

More info... https://h2tools.org/bestpractices/best-practices-overview

Did you know? Hydrogen best safety practices are based on a wealth of knowledge and experience related to safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings.

A best practice record from h2tools.org

Investment in Safety:

- Is directly impacted by your organization's:
 - Beliefs
 - Perceptions
 - Values
- Is critical for:
 - Building a sustainable legacy
 - Maximizing an organization's impact and reaching goals
 - Ensuring long-term acceptance of the hydrogen industry
- Must be demonstrated
 - A culture of safety

General Safety Planning

- Safety planning should be embraced as an integral part of the design, construction, operation and maintenance of a system rather than being considered an after thought or a barriers to overcome
- Safe practices in the production, storage, distribution, and use of hydrogen are essential to protect people from injury or death, and to minimize damage to facilities
- Safe practices will also help avoid negatively impacting the public's perception of hydrogen systems
- Helpful guidance on safety planning can be found at <u>https://h2tools.org/bestpractices/</u> <u>safety-planning</u>.

The Safety Basics

- Eliminate hazards or define mitigation measures
- Ensure system integrity
- Provide proper ventilation to prevent accumulation
- Manage discharges
- Detect and isolate leaks
- Train personnel

There is Much to Consider for Hydrogen Safety

Resources to Help You Navigate to Safety

An online hydrogen information portal URL: h2tools.org

An international nonprofit focused on applied hydrogen safety URL: <u>www.aiche.org/chs</u>

Significant hydrogen safety resources in one location

URL: h2tools.org

- Supports implementation of the safe handling practices and procedures
- Brings together a variety of tools and web-based content on safety of hydrogen
- Informs designers, stakeholders and first responders

Center for Hydrogen Safety's Strategic Vision

Empower stakeholders and the workforce

Ensure the safe and timely transition to hydrogen and fuel cell technology

Bringing together a global nonprofit membership to expand the body of safety knowledge

CHS Focus

- Collaborate in a global hydrogen safety community
 - Demonstrate commitment to safety "License to do business"
 - Participate in member meetings
 - Contribute to working groups and conferences

- Access resources to remove barriers and manage risk
 - Hydrogen Safety Panel
 - Hazard analysis, site evaluation, custom training
 - Outreach, incident investigation

- Increase knowledge and expertise
 - Training courses, credentialing, and webinars
 - Conferences and workshops
 - Best practices and incident resources
 - Technical bulletins

Education and Training

Center FOR Hydrogen Connecting a Global Community

Fundamental Hydrogen Safety E-Courses

- Hydrogen as an Energy Carrier
- Properties and Hazards
- Safety Planning
- Facility Design
- Equipment and Components
- Liquid Systems
- Material Compatibility
- System Operation
- Inspection & Maintenance
- Laboratories*
- Electrolyzer Safety*
- Fueling Stations*
- Hazard Analysis for H₂ Facilities*

First Responder Hydrogen Safety E-Courses

- Introduction to Hydrogen Safety for First Responders
- First Responders Micro
 Training Learning Plan
- Introduction to Hydrogen Fuel Cell Vehicles for Incident Response
- Fire Response & Extrication of a Hydrogen Fuel Cell Vehicle
- Transport of Hydrogen Fuel
- Hydrogen Fueling Station
 Incident Response

https://tinyurl.com/CHS-Course

Other Training Resources

- Safety of Water Elecrolysis
 [Recorded Webinar]
- Global Hydrogen Safety Codes and Standards [Recorded Webinar]
- Ventilation Considerations for Hydrogen Safety [Recorded Webinar]
- Material Compatibility Considerations for Hydrogen [Recorded Webinar]
- Custom Virtual or In Person Hydrogen Safety Training

We must recognize that with the promise of hydrogen comes the responsibility of safety

- Applications using hydrogen will grow in volume and diversity
- Because hydrogen as a fuel is still new, the best methods of handling, storage, transport, and use may not be well understood by participants
- Safe practices for the production, storage, distribution, and use of hydrogen are essential
- CHS and the Hydrogen Tools Portal are available to help project participants to understand and apply safe practices

Thanks for Your Attention!

Nick Barilo

Executive Director | Center for Hydrogen Safety, AIChE 120 Wall Street, 23rd Floor New York, NY USA Tel: 509-371-7894 <u>nickb@aiche.org</u> <u>http://www.aiche.org/chs</u> <u>http://h2tools.org</u>

CHS LinkedIn Site: https://www.linkedin.com/showcase/center-for-hydrogen-safety/

TER FOR

Hydregen SAFETY

Connecting a Global Community

CHS... Bringing together individuals and organizations to develop and share best safety practices and learnings

Please use the Webex Q&A Feature

Facilitation: Ideation & Taking Stock

Closing & Next Steps

- Materials, recordings, and additional information to be made available at <u>www.nyserda.ny.gov/hydrogen</u>
- Join our email list for future updates/events: <u>https://www.nyserda.ny.gov/Researchers-and-</u> Policymakers/Hydrogen/Contact-Us
- Questions can be shared at <u>cleanhydrogen@nyserda.ny.gov</u>

Thank you!